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ABSTRACT

In this work, we focus on advancing the theory and practice
of a class of Monte Carlo methods, population Monte Carlo
(PMC) sampling, for dealing with inference problems with
static parameters. We devise a new method for efficient adap-
tive learning from past samples and weights to construct im-
proved proposal functions. It is based on assuming that, at
each iteration, there is an intermediate target and that this tar-
get is gradually getting closer to the true one. Computer sim-
ulations show and confirm the improvement of the proposed
strategy compared to the traditional PMC method on a simple
considered scenario.

Index Terms— Importance sampling, Monte Carlo meth-
ods, population Monte Carlo.

1. INTRODUCTION

In Bayesian signal processing, all the information about the
unknowns of interest is contained in their posterior distri-
butions. The unknowns can be parameters of a model, or
a model and its parameters. In many important problems,
these distributions are impossible to obtain in analytic form.
An alternative is to generate their approximations by Monte
Carlo-based methods [1, 2]. In this work, we focus on Popu-
lation Monte Carlo (PMC) sampling methods [3, 4] for deal-
ing with problems with static parameters. PMC methodol-
ogy belongs to the adaptive importance sampling (AIS) fam-
ily [5, 6, 7, 8, 9, 10] and has been an active area of research
for more than a decade since the publication of [3]. Since
then, several variants have been proposed: the D-kernel algo-
rithm [11, 12], the mixture population Monte Carlo algorithm
[13], the nonlinear PMC [14] or the DM-PMC, GR-PMC and
LR-PMC [4]. Other sophisticated AIS schemes have been re-
cently proposed in the literature, e.g. the AMIS [15, 16, 17],
APIS [18, 19] and LAIS [20, 21, 22] methods.

PMC is based on importance sampling, which amounts to
generating samples from a selected distribution called instru-
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mental, importance or proposal probability density function
(pdf). More specifically, a set of proposal pdf s is consid-
ered. These distributions are different from the target distri-
bution because we assume that direct sampling from the tar-
get distribution is unfeasible. Good proposal functions are
the ones that are close to the target distribution. Once the
samples are generated from the set of proposal pdfs, they are
assigned weights. The samples with their associated weights
represent an approximation of the target distribution. This
approximation is used for adapting the location parameters of
the proposal pdfs. The process repeats and the proposal func-
tions keep adapting as we proceed with the iterations, which
is why the PMC methodology belongs to the AIS family. In
this process, learning takes place from samples and weights
obtained in previous iterations.

In this paper, we devise a new method for efficient adaptive
learning from past samples and weights to construct improved
proposal functions. For the adaptation step, tempered target
and weights are considered for improving the state space ex-
ploration. For the construction of the estimators, the standard
importance weights are applied (differently from [23, 24]), so
that the consistency is not jeopardized. The new method will
be particularly useful for current signal processing challenges
concerning complex systems. For instance, With large num-
bers of unknowns and/or data, the resulting target distribu-
tions are extremely peaky and very difficult to approximate.
The novel PMC methodology uses a sequence of modified
targets, which facilitates the adaptability of the algorithm and
then improves its performance.

2. PROBLEM STATEMENT AND BASICS OF PMC

Suppose that we want to approximate a target distribution by
a set of samples and weights. Here x € R% is the unknown
state of the system. The distribution of interest is most of-
ten a posterior, 7(x) = p(x|y1.n, ), where y,, € R% repre-
sents observations with information about x, and yi.n, =
{¥1,¥2,---,yn,}. In general, we know 7(x) only up to
a normalizing constant, i.e., we can evaluate 7(x) < 7(X).
More precisely, we have

m(x) = L(y1.n, [%) (%), 1)
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where ¢ is the likelihood function and h represents the prior
pdf.

2.1. The basics of AIS

First, we review the concept of importance sampling [25,

1, 2]. Let the samples used for approximation be drawn
from 7(x) itself and let them be denoted by x("™), m =
1,2,---, M. The approximating distribution is
E: x™), @
m:l

where §(x(™)) is the unit delta measure centered at x(").
When it is difficult or impossible to draw samples from 7(x),
the alternative is to use a proposal function ¢(x), with a shape
as close as possible to 7(x) and support larger than that of

(m)

7(x). If now x"’ ~ qo(x), then the approximation of 7(x)

is
M
A}
(m.) (m)
where w(m) ™0 ) and w(m) Yo

= LD are the un-

(xo"”)
normalized and normahzed importance weights, respectively.
The generation of samples from a proposal function and the
corresponding assignment of weights is known as importance

sampling (IS).
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Fig. 1. AIS in two iterations.

The idea behind AIS is to use the random measure yg =
{xém)7 (m)} ; for creating a proposal function better than
go(x) (see Fig. 1 for a pictorial description of AIS). The
new function, ¢; (x), is used to obtain a new random measure,

X1 = {le) 5’") 1, which approximates the target by

A]VI Z {U\(m)é (m) 3)

where the subscript of 7} (x) indicates the approximation of
m(x) at the first iteration. One can also combine the initial
random measure Xo with x; to improve the approximation
(5), e.g., by

M
A o Y (@Ml +

m=1

" o(™)) . ©)

The 2M weights must be normalized altogether in order to
sum up to one. The process can obviously continue iteratively
(in the sequel, we use the subscript 7 to denote iteration num-
ber). In the second iteration, one can use the random measure
x1 and create yet an even better proposal function. Or, one
can use both measures xo.1 (here, x0.1 = {xo, x1}) to obtain
the new proposal function. The iterative process proceeds un-
til a stopping condition is met.

Algorithm 1 PMC Sampling
1: [Initialization]: Select the adaptive parameters P; =
{,A”,. ,ulm)} and the static parameters, {C("™)1M_,
of the M proposals.

2: [Fori=1toI]:

(a) Draw one sample from each proposal pdf,

x" g™ (xlp{™, €M), m= 1, M

(b) Compute the importance weights,

n(x")
0" " ™, G

)

(m)
(m) _
ML maR with m =

j=1W

and normalize them, w,

1,..., M.
(c) Draw M independent parameters ugrl)

the discrete

from

random measure, 7M(x) =

Zi\f 1 w(m)é (x — (m)) obtaining the next popu-
lation of parameters, P; 1 = {/'l’z+17 ) 7u1+ )}

3: [Output, i = I]: Return the pairs {xi ,wgm)} form =

2Mandi=1,...,1.

2.2. Implementation of AIS: PMC sampling

The PMC algorithm constitutes a possible implementation of
the AIS methodology. In its most basic implementation, it
considers M proposals (as many as samples) that are iter-
atively adapted (z = 1,---,I). In particular, location pa-
rameters {u(m)}m , will be adapted, while the parameters
{CMIM_ are static (e.g., with Gaussian proposal densities,
the location and the static parameters are the mean vectors and
the covariance matrices, respectively). At each iteration, ex-
actly one sample is drawn from each proposal, and its weight
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is computed. The M location parameters for the next itera-
tion are drawn from the obtained discrete random measure.
Algorithm 1 summarizes the basic PMC method.

3. PROPOSED METHOD

We investigate a novel strategy for effective adaptive learning
based on assuming that the proposal function belongs to a
family of mixtures with predefined kernels. The parameters
of these kernels are learned from the generated samples and
their weights as the iterations proceed. In the problems that
we address, the likelihoods will be much more peaked than
the priors, which implies that the posteriors will also be much
more peaked.

Algorithm 2 PMC Sampling with Gradual Learning
[Initialization]: Select the adaptive parameters P; =
{8V u{™1 the static parameters, {C(™) }M_ of the
M proposals, and the sequence [A\; < ... < Ar].

[For ¢ =1to L]:
[Fori=1to I]:

(a) Draw one sample from each proposal pdf,

x("™ ~ g™ (xlu{™, CM), m= 1 M

(b) Compute the modified-tempered weights,

m AZ m
(e, ™)) nx™)
q,(;m) (Xgm) |,u7(:m>, Ccm)

w™ —

(m)

and normalize them, ©\™) = —“—— with m =
i=1"
1,..., M. Compute also the non-modified weights

_my _ ﬂ_(xgm))
S g ™, )

withm =1,..., M.

(c) Draw M independent parameters ;,LgiLl) from the dis-

crete random measure, 7 (x) = M, o™ 5(x —

xgm)), obtaining the new set of parameters P; 11 =
(1) (M)
{piye o migq

[Output, i = I]: Return the pairs {xgm), ﬁ?gm)} form =
1,...,Mandi=1,...,1.

This is especially the case when the number of data is
large and/or the dimension of x is high, which will most likely
entail that there will be no samples in parts of the space with
large probability masses. To avoid that, we use the concept
of gradual learning. Let us consider the first iteration ¢ =
1. The underlying idea is that, for the adaptation (i.e., for

o P — posterior: p(zly1.n,) < p(y1.n, |2)p(x)
likelihood | | {7 —
1=2X3> X\

p(yrn, [2) 1 \ posterior likelihood prior

target at

target at
AL > Ao
target at A\g =0

prior p(x)

Fig. 2. New strategy for gradual learning.

the resampling step), we weight the generated samples by
assuming that a tempered target proportional to the product
(U(y1.n, x))Al h(x) (this would be an “intermediate poste-
rior” that we pursue), where A; is some small positive num-
ber less than one. The weights are then given by Eq. (7).
At the next iteration, the weight for the adaptation are com-

puted by using as a target distribution (¢(y1.n, |x)))‘2 h(x),
where 0 < A\; < A2 < 1. By choosing a larger Ao, we allow
for more influence of the likelihood in the computation of the
samples’ weights.

Algorithm 2 summarizes the proposed methodology. The
key point of the novel technique is the joint use of two impor-
tance weights:

e The standard importance weights,

m) _ m(x")
Wi T Ty ) (M) )y
g (x; py 7, C0M)

are used for inference purposes, i.e. for building the IS
estimators.

e The modified-tempered weights

m Aé m
(e, ™)) n™)
g™ (<™ |u{™, com)

w™ =

are used for adaptation purposes. They are normalized
as wfm), m = 1,..., M, and used at the resampling

step of each iteration.

A sequence of positive and increasing values is used to temper
the target, i.e.,

D<A < A<...<A\...<1,

as shown in Figures 2. When A\ = 1, the target distribution is
the posterior and the corresponding samples and weights rep-
resent its approximation. We conjecture that in this way we
can obtain a good proposal function for any dimension of x.
Obviously, the higher the dimension of x is, the more steps
in learning the proposal function we need. We recall that the

~(m)

returned weights, used for building the IS estimators, w,
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are computed using the true unmodified target, so that the re-
sulting IS estimators are always consistent. Note also that
their calculation is almost free (only a new re-normalization
is needed), since the modified weights of Eq. (7) have ﬁ;\gm)
as intermediate result (i.e., the likelihood function is always

evaluated for the tempered weights).

4. NUMERICAL RESULTS

In this section, we tackle the problem of estimating the fre-
quencies of a weighted sum of sinusoids. The data are given
by

S
Ye(r) = Ao+ Y Aicos(2nfit + ¢i) +7(7), TER,

i=1

where S is the number of sinusoids, A, is a constant term,
{A;}7_, is the set of amplitudes of the sinusoids, {f;};_,
represents the set of frequencies, {¢;}5_, are the phases, and
7(7) arei.i.d. zero-mean Gaussian samples with variance o2,
Let us assume that we have N, equally spaced samples y.(7)
with period Ts < m i.e. fulfilling the sampling
theorem [26],

5
y[p] = Ao —Q—ZAicos(Qik—i—qbi) +rlpl, p=1,...,dy,

i=1

where y[p| = y.(pTs) forp =0,1,...,dy, —1,Q; = 2n ;T
fori=1,...,5, and r[p] ~ N(0,02). The goal consists on
inferring the set of unknown frequencies {f;}7_,. We set a
uniform prior on D, where D = [O, %} % is the hypercube con-
sidered a domain of the target (which is periodic outside D).
Then the posterior given the data is 7(x) o exp (—V(x)),
where

Vi(x) = % > <y[k} — Ao — > Ajcos(zik + dn)) Ip(x).

i=1

We the address the bi-dimensional problem with .S = 2 si-
nusoids where the true frequencies, {f;}2; = [0.27 0.43],
are unknown. For generating N, = 20 observations, we set
Ay = Ay = Ay = 1 and ¢; = ¢o = 0. Therefore, the
problem consists in characterizing the posterior pdf of the
frequencies {f;}2_, given the data. We use the DM-PMC
method of [4], and we implement the gradual learning strat-
egy proposed. We use a sequence of L = 8 modified tar-
gets, where we have set A; = A(i) for i = 1,...,8, where
A = [0.001,0.005,0.01,0.02,0.05,0.1,0.2,1]. As propos-
als, we use isotropic Gaussian distributions with C; = oI,
fori = 1,..., N where 0 = 0.05, and with means initialized
randomly and uniformly in D. We test the algorithms with
K €{1,2,5,10}, and N = 10. In all cases, for sake of a fair
comparison, we select 7" in such a way the number of target
evaluations is fixed to ¥ = NKTL = 16000 (note that for

AN 4

L -

FlFe = |

| - |

(a) A =0.001 (b) A =0.05 (¢) A=0.1
d AX=0.2 ) A=0.5 Hr=1

Fig. 3. Sequence of different targets as A changes. The black
points show the evolution of the mean of the proposals.

\ Method [K=1]K=2[K=5[K=10 |
[N =5 [[00521 [0.0691 | 0.1504 | 0.1389 |

’ Standard PMC ™ Iy —757 11 0.0862 [0.1507 | 0.1298 | 0.1445 |
. [N =5 [[0.0517 [0.0513 [0.0603 | 0.0574 ]

Gradual leaming PMC | 161150516 [ 0.0632 [0.0517 | 0.0687 |

Table 1. RMSE in the estimation of parameters { f; }2_;.

the standard PMC, L = 1). Table 1 shows the relative mean
square error (RMSE) in the estimation of the true parame-
ters. Note that the proposed gradual learning PMC sampling
method outperforms the standard PMC for all sets of param-
eters. Moreover, when K is bigger the number of iterations
T is smaller (since we keep £ = NKT'L constant). There-
fore, the new method is of special interest when few adaptive
iterations can be performed. Finally, Fig. 3 depicts the evolu-
tion of the proposals as A changes for the new method. It is
obvious that when A is small, the target is less peaky and ex-
ploring the space of unknowns is easier, while A tends to one,
the target gets more peaky. At the end all proposals move to
the mode (true value is [0.27 0.43]).

5. CONCLUSIONS

We discuss the implications of considering a new strategy for
proposal generation in population Monte Carlo (PMC) sam-
pling and compare the new method with the standard PMC in
terms of performance. The new PMC approach is based on
a gradual learning process that approximates the target more
precisely with iterations. Computer simulations and compar-
isons reveal a good and advantageous performance of the pro-
posed method when compared to the standard PMC. It is ex-
pected that in more challenging scenarios (higher dimension
of the space of unknowns) the gain of the proposed algorithm
will be more.
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