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I. INTRODUCTION

A fundamental problem in signal processing is the estimation of unknown parameters or func-

tions from noisy observations. Important examples include localization of objects in wireless

sensor networks [1] and the Internet of Things [2]; multiple source reconstruction from elec-

troencephalograms [3]; estimation of power spectral density for speech enhancement [4]; or

estimation in genomic signal processing [5]. Within the Bayesian signal processing framework,

these problems are addressed by constructing posterior probability distributions of the unknowns.

The posteriors combine optimally all the information about the unknowns in the observations with

the information that is present in their prior probability distributions. Given the posterior, one

often wants to make inference about the unknowns, e.g., if we are estimating parameters, finding

the values that maximize their posterior, or the values that minimize some cost function given

the uncertainty of the parameters. Unfortunately, obtaining closed-form solutions to these types
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of problems is infeasible in most practical applications, and therefore, developing approximate

inference techniques is of utmost interest.

A methodology that comes to the rescue for solving most difficult problems of inference is

based on random drawing of samples. It was first applied systematically by the Italian physicist

Enrico Fermi when he studied neutron diffusion [6]. However, no publication is available from

him on this topic. Later the methodology came to be known as Monte Carlo (MC) sampling.

The MC methods we know today were created by Stanislaw Ulam, John von Neumann and

others [7]. Their efforts coincided with the development of the first general computer and resulted

in the Metropolis algorithm [8]. The next major advancement of MC methods came with a

generalization of the Metropolis algorithm proposed by Hastings in 1970 [9]. All these methods

represent a family of simulation-based algorithms that aim at generating samples from a target

probability distribution (often a posterior distribution in a Bayesian setting). The algorithms

are based on constructing a Markov chain that has the desired distribution as its equilibrium

distribution, which is why they are referred to as Markov chain Monte Carlo (MCMC) algorithms

[10] (a review of the history of MCMC sampling can be found in [7]). The most prominent MCMC

algorithms remain the Metropolis-Hastings and Gibbs sampling algorithms [10]. Since the 1990s,

MCMC-based methods have seen tremendous growth and success.

An important alternative to MCMC sampling is the class of Importance Sampling (IS) methods.

The IS methods are elegant, theoretically sound, simple-to-understand, and widely applicable

[7]. Assume that the aim is to approximate a given target probability distribution. The basic IS

mechanism consists of (a) drawing samples from simple proposal densities, (b) weighting the

samples by accounting for the mismatch between the target and the proposal densities, and (c)

performing the desired inference using the weighted samples. IS was first used in statistical physics

for inference of rare events, and in particular for estimating the probability of nuclear particles

that penetrate shields [11]. Later, IS was also used as a variance reduction technique based on



3

simulating from a proposal density instead of the target density [12]. The interest in IS techniques

was running in parallel to the emergence of Bayesian computational methods. The interest was not

only driven by their simplicity, but also by their ability to estimate normalizing constants of the

target distribution, a feature not shared by MCMC methods that turns out useful in many practical

problems (e.g., model selection).

It is well known that the performance of IS methods directly depends on the choice of the

proposal densities [7]. When the method is applied naively, only few of the IS weights take relevant

values, while the rest are negligible. This phenomenon is widely known in the IS literature as

weight degeneracy [7]. If the goal is to estimate the mean of the samples of a target distribution,

then the proposals must be adapted to parts of the space where the posterior probability is large,

while if the focus is on a problem related to system reliability, then the probability of rare events

is better approximated by placing the proposals in the tails of the posterior. Locating the regions

from which samples should be drawn may not be easy, which suggests that the main challenge

in implementing IS methods lies in finding good proposal densities. However, designing these

proposals usually cannot be done a priori, and thus, adaptive procedures must be constructed and

applied iteratively. The objective is that with passing iterations the quality of the samples improves

and the inference from them becomes more accurate. This leads us to the concept of adaptive

importance sampling (AIS). AIS methods are endowed with the nice feature of being able to learn

from previously sampled values of the unknowns and consequently, to become more accurate. It

is important to note that the AIS algorithms must remain simple, i.e., both the drawing of samples

and the computation of their weights should be easily managed.

In this feature article, we first go over the basics of IS and then proceed with explaining the

learning process that takes place in AIS and with presenting several state-of-the-art methods. We

discuss AIS estimators and their convergence properties, and then show numerical results on signal

processing examples. The article also provides an outlook of the research in AIS. For a clearer
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presentation, in Table I we display the notation used throughout the paper.

TABLE I: Summary of notation.

Notation Description
dx dimension of the unknown parameter vector
x ∈ Rdx unknown realization of a parameter vector
dy dimension of the observed data vector
y ∈ Rdy observed data vector
j iteration variable
J total number of iterations
N number of proposal distributions in an iteration
K number of generated samples per proposal in an iteration
π̃ target pdf
π̃K approximated target pdf with K samples and weights
` likelihood function
p0 prior distribution
Z normalizing constant
ĪK natural estimator computed from K samples generated from the target
ÎK non-normalized estimator computed from K samples
ĨK self-normalized estimator computed from K samples

x
(k)
n,j k-th sample of the nth proposal at iteration j

w
(k)
n,j IS weight associated with x

(k)
n,j

w̄
(k)
n,j normalized IS weight associated with x

(k)
n,j

f test function/moment of the target
qn,j nth proposal function in the jth iteration
θn,j parameters defining the proposal qn,j ; e.g., θn,j = [µn,j Cn,j ] for a Gaussian
µn,j location parameter (usually mean) of the proposal qn,j
Cn,j scale parameter (usually covariance) of the proposal qn,j
ρn,j weight in the mixture of the nth proposal at iteration j.
∇ gradient
Hx Hessian evaluated at x

λj gradient step at iteration j
Eπ̃[·] expected value with respect to the pdf π̃
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II. BACKGROUND (WITH EXAMPLES)

A. Problem statement

Let us consider a generic inference problem where a dx-dimensional vector of unknown static

real parameters, x ∈ X ⊆ Rdx , has a probability density function (pdf) given by

π̃(x) =
π(x)

Z
, (1)

where π(x) is a non-normalized non-negative target function, and Z =
∫
X π(x)dx is a finite

normalizing constant that may be unknown. The goal is to compute some particular moment of

x, which can be defined as

I =

∫

X
f(x)π̃(x)dx, (2)

where f(·) can be any function of x which is integrable with respect to (w.r.t.) π̃(x).

The previous mathematical formulation can be used to represent different problems, including

the estimation of rare events [12] or Bayesian inference [7]. For instance, when estimating rare

events, Z is perfectly known and the moment of interest can be f(x) = Ig(x)>0, where g(x) is a

given function and I is the indicator function that takes the value 1 if g(x) > 0, and 0 otherwise.

In this case, π̃(x) is completely characterized, and the challenge is in computing the integral given

by Eq. (2). In Bayesian inference, π̃(x) often represents the posterior distribution that is linked

to some observed data, y ∈ Rdy , and is expressed as

π̃(x) = p(x|y) =
`(y|x)p0(x)

Z(y)
∝ `(y|x)p0(x), (3)

where p(x|y) is the posterior pdf, `(y|x) is the likelihood function, p0(x) is the prior pdf, and

Z(y) is the model evidence or partition function. For some specific statistical models, e.g., when

p0(x) is a conjugate prior of `(y|x) [13], Z(y) =
∫
X `(y|x)p0(x)dx can readily be obtained. In

general, however, computing Z can be a very difficult problem. For this reason, we define the
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non-normalized target function

π(x) = `(y|x)p0(x). (4)

From here on and without loss of generality, we focus on the generic case where Z(y) is

unknown. To simplify the notation, we drop the dependence of Z on y and write Z ≡ Z(y). In

the rest of the paper, we refer to Z as a normalizing constant. This term is more general than

“model evidence” or “marginal likelihood,” which are often used in Bayesian theory. Finally, note

that we concentrate on real parameters and observations for the sake of clarity in the exposition.

However, all of the AIS methods presented and the considerations performed throughout the paper

are directly applicable to multidimensional-complex target densities.

B. Monte Carlo methods: motivation and basics

Obtaining closed-form solutions of the described problem is infeasible in most practical ap-

plications, and therefore the next best thing is to develop approximate inference techniques with

good accuracy. Let us assume that it is possible to draw K independent samples, {x(k)}Kk=1, from

the target distribution π̃(x). The integral I can then be approximated by

ĪK =
1

K

K∑

k=1

f(x(k)), where x(k) ∼ π̃(x). (5)

With the drawn samples, we can approximate the target probability distribution corresponding to

the density π̃(x) as

π̃K(x) =
1

K

K∑

k=1

δ(x− x(k)), (6)
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where δ(x − x(k)) is the Dirac delta function centered at x(k). With this approximation, we can

estimate I in Eq. (5) by

I =

∫

X
f(x)π̃(x)dx

≈
∫

X
f(x)π̃K(x)dx =

1

K

K∑

k=1

∫

X
f(x)δ(x− x(k))dx, (7)

which yields Eq. (5).

The estimator ĪK is consistent with K, since it converges almost surely to I by the strong

law of large numbers [7]. Moreover, it can be easily shown that the estimator is unbiased, i.e.,

Eπ̃[ĪK ] = I and, assuming that f(x) is real and square-integrable, its variance is given by [7]

Varπ̃(ĪK) =
Varπ̃ (f(X))

K
. (8)

This methodology is known as the Monte Carlo method [7], and it was first described in [14].

As already pointed out, very often π̃(x) does not have a known closed form and it is not possible

to draw samples from it. Moreover, in some other settings, it might not be convenient to generate

samples from the target distribution even if it is possible. This is the case of rare event estimation,

where it is not efficient to simulate samples from π̃(x) since the estimation of I would depend

on a very low number of effective samples [15].

C. Importance sampling: motivation and basics

The IS methodology was first used in statistical physics for rare event inference. More specif-

ically, it was applied to estimate the probability of nuclear particles that penetrate shields [11].

Later, IS was also used as a variance reduction technique based on simulating from a proposal

density instead of the target one, reducing the computational effort to compute rare events from

the target distribution [12]. The interest in IS techniques has run in parallel to the growth of the

theory of Bayesian inference. The reason for this is that often it is not possible to generate samples
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from the posterior distribution because it can only be evaluated up to a normalizing constant.

Let us consider K independent samples, {x(k)}Kk=1, drawn from a single proposal pdf, q(x),

with heavier tails than the target, π(x). Each sample has an associated importance weight given

by

w(k) =
π(x(k))

q(x(k))
, k = 1, . . . ,K, (9)

where the weights represent the significance of the samples in the approximation of the target by

the considered proposal. Using the samples and weights, the integral in Eq. (2) can be approximated

by a self-normalized estimator as

ĨK =
1

KẐ

K∑

k=1

w(k)f(x(k)), (10)

where Ẑ = 1
K

∑K
k=1w

(k) is an unbiased estimator of Z =
∫
X π(x)dx [7]. It is not difficult to see

that now we approximate the target distribution by

π̃K(x) =

K∑

k=1

w̄(k)δ(x− x(k)), (11)

where the w̄(k)s are normalized weights of the samples obtained by

w̄(k) =
w(k)

∑K
i=1w

(i)
. (12)

If the normalizing constant is known, then it is possible to use the non-normalized estimator

ÎK =
1

KZ

K∑

k=1

w(k)f(x(k)). (13)

Note that ĨK is only asymptotically unbiased, whereas ÎK is unbiased. Both ĨK and ÎK

are consistent estimators of I and their variance is directly related to the discrepancy between

π̃(x)|f(x)| and q(x) [7]. However, when several different moments of the target must be estimated

or the function f is unknown a priori, a common strategy in IS is to decrease the mismatch between
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the proposal q(x) and the target π̃(x) [16]. This is equivalent to minimizing the variance of the

weights and consequently the variance of the estimator Ẑ.

D. Multiple importance sampling: motivation and basics

The target density can only be evaluated point-wise, and therefore it cannot be easily charac-

terized in many cases. This entails that finding a single good proposal pdf, q(x), is not always

possible. A robust alternative consists of using a set of proposal pdfs, {qn(x)}Nn=1. The resulting

method is referred to as multiple importance sampling (MIS) and it was greatly advanced during

the 90s in statistics and computer graphics simulation [12], [17], [18]. MIS constitutes the basis

of most of the state-of-the-art AIS algorithms [19], [20], [21], [22], [23], [24].

A general MIS framework has recently been proposed in which different sampling and weighting

schemes can be combined [25]. Here, we briefly review the most common sampling and two

common weighting schemes. Suppose that we draw one sample from each proposal pdf, i.e.,

xn ∼ qn(x), n = 1, ..., N, (14)

where, since K = 1, we drop the superscript (k). The most common weighting strategies in the

literature are:

1) Standard MIS (s-MIS) [19]:

wn =
π(xn)

qn(xn)
, n = 1, . . . , N. (15)

2) Deterministic mixture MIS (DM-MIS) [18]:

wn =
π(xn)

ψ(xn)
=

π(xn)
1
N

∑N
i=1 qi(xn)

, n = 1, . . . , N, (16)

where ψ(x) represents the mixture pdf composed of all the proposal pdfs evaluated at x.

From the weighted set {xn, wn}Nn=1, generated by either the s-MIS or the DM-MIS methods
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described above, we can compute a self-normalized estimator ĨN and a non-normalized estimator

ÎN in the same way as in Eqs. (10) and (13), respectively. The self-normalized ĨN is consistent

and asymptotically unbiased, whereas the non-normalized ÎN is both consistent and unbiased. The

DM approach is superior w.r.t. that of s-MIS in terms of variance of the estimator ÎN , as proved in

[25]. Although both alternatives perform the same number of target evaluations, the DM estimator

is computationally more expensive w.r.t. the number of proposal evaluations. In particular, s-MIS

and DM require N and N2 evaluations, respectively. Therefore, in scenarios where the number

of proposals N is large, the O(N2) in the number of proposal evaluations can be prohibitive.

Alternative efficient solutions have recently been devised to mitigate this excess of computational

load [26], [27].

Figure 1 illustrates the processes of sampling and weighting based on the different methods

explained in this section. More specifically, Fig. 1(a) displays the generated samples and associated

weights when sampling from the target distribution is possible. We observe that all the weights

are equal in this case. For both Figs. 1(b) and 1(c), the generation of samples is performed using a

single proposal pdf. However, the proposal pdfs, plotted with dashed lines, are differently located,

and therefore one can appreciate how the second choice is more appropriate by observing the

variability of the weight values. Note that the scale of the vertical axes is different in order to

show the large weights in Fig. 1(b). Figures 1(d) and 1(e) use the concept of MIS, i.e., there we

use two proposal pdfs. The weights in Fig. 1(d) are calculated using the standard formulation of

weight update from Eq. (15), while in Fig. 1(e), they are computed according to Eq. (16). It is

clear that a smaller variance of the weights is achieved with the DM approach.

Finally, the validity of the possible different weighting schemes for MIS is justified in [25]

by using the concept of a proper set of weighted samples. More precisely, the suitability of a

particular MIS scheme is guaranteed if the non-normalized estimator ÎN and the normalizing

constant estimator Ẑ are unbiased and consistent, which also implies that the self-normalized
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(a) MC sampling directly from the
target.
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(c) IS, single proposal pdf (with a
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(d) MIS with standard weights.
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(e) MIS with DM weights.

Fig. 1: Approximations of the target pdf, π(x), by different discrete probability distributions
(displayed by thin bars with weights corresponding to heights of the bars). The target pdfs are
shown by solid lines, while the proposal pdfs are plotted with dashed lines. (a) Ideal situation: an
approximation with equally weighted samples, as they are drawn directly from the target. (b)–(c)
Approximations with IS and a single proposal to show the effect of the location: a better proposal
placement leads to more uniform weights. (d)–(e) Approximations with MIS and two proposals to
show the effect of the choice of the weighting scheme: the deterministic mixture (DM) approach
leads to more uniform weights than the standard approach.

estimator ĨN is consistent.

III. ADAPTIVE IMPORTANCE SAMPLING

A. The basics of AIS

The AIS methodology is based on an iterative process for gradual evolution of the single or

multiple proposal densities to accurately approximate the target pdf. The procedure consists of

three basic steps: generation of samples from a proposal or set of proposals (sampling), calculation

of the importance of each of the samples (weighting), and updating (adapting) the parameters that

define the proposal(s) to obtain the new proposal(s) for the next iteration. Figure 2 shows a simple
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flow diagram of the steps of AIS with only one proposal pdf. The diagram also shows the possible

data dependencies among the basic steps.
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1 Introduction

In many real applications, the systems in question are characterized by high-
dimensional dynamical models exhibiting highly non-linear behavior and with
ensuing distributions that are distinctly non-Gaussian [?]. The non-linearity
and non-Gaussianity features justify particle filtering (PF) as the methodology
of choice for approximation of the posterior distributions of the parameters
of interest [?]. The obtained approximations of these distributions consist of
simulated samples (particles) drawn by a selected instrumental (importance
or proposal) function and of weights assigned to the particles calculated by
application of Bayes’ rule [?, ?].
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Fig. 2: A generic flow diagram of the AIS methodology, showing the three steps that must be
performed iteratively by any AIS algorithm (sampling, weighting and adaptation), and the data
flow among these steps.

In the general case, the algorithm is initialized with a set of N proposals {qn(x|θn,1)}Nn=1,

each one parametrized by a vector θn,1. After drawing a set of samples, x
(k)
n,1, n = 1, . . . , N, k =

1, . . . ,K (recall that K is the number of samples generated by a proposal), and weighting

them, one obtains a discrete probability distribution that approximates the target distribution,

{x(k)n,1, w
(k)
n,1}, n = 1, . . . , N, k = 1, . . . ,K. Then, the parameters of the n-th proposal are updated

from θn,1 to θn,2. This process is repeated, i.e., sampling, weighting and moving from θn,j to

θn,j+1, until an iteration stoppage criterion is met (e.g., a maximum number of iterations, J , is

reached). Table II outlines the main steps of the general algorithm.

Figure 3 shows the evolution in the approximation of a target pdf, π̃(x), which in this case is a

mixture of two Gaussian pdfs. In this example just one Gaussian proposal (N = 1) is used, q1(x),

with initial vector parameter θ1,1 = [µ1 σ
2
1] = [−4 3], where µ1 and σ21 denote the mean and the

variance, respectively. Figure 3 displays three iterations of the AIS algorithm, where the initial

parameter vector θ1,1 is updated in the next proposal so that it can produce samples and weights

that yield a better approximation of the target distribution. Note that the final scale and location
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TABLE II: Generic AIS algorithm

Initialization
Choose K, N , J , {θn,1}Nn=1

For j = 1, . . . , J :

1. Sampling
Draw K samples from each of the N proposal pdfs, {qn,j(θn,j)}Nn=1,
x
(k)
n,j , k = 1, . . . ,K, n = 1, . . . , N

2. Weighting
Calculate the weights, w(k)

n,j , for each of the generated KN samples.
3. Adaptation

Update the proposal parameters {θn,j}Nn=1 −→ {θn,j+1}Nn=1.
Outputs

Return the KNJ pairs {x(k)
n,j , w

(k)
n,j} for all k = 1, . . . ,K, n = 1, . . . , N , j = 1, . . . , J .

of the proposal is much more adequate than the starting proposal in that it effectively covers both

modes of the target.

-10 -5 0 5 10

x

0

0.2

0.4
t=1

(x)

q
1
(x)

-10 -5 0 5 10

x

0

0.1

0.2
t=2

(x)

q
2
(x)

-10 -5 0 5 10

x

0

0.05

0.1

0.15
t=3

(x)

q
3
(x)

Fig. 3: Proposal adaptation through AIS. The initial proposal q1(x) (too narrow and poorly placed)
is iteratively moved towards a better location at some intermediate location between the two modes
of the target pdf and widened in order to properly cover the effective support of the target.

In order to approximate the integral I in Eq. (2), there exist different possibilities for combining

all the KNJ weighted samples, {x(k)
n,j , w

(k)
n,j}, generated by the AIS method [28]. A common (and

straightforward) choice is to assign to each sample a normalized weight w̄(k)
n,j , which considers all
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the weights, i.e.,

w̄
(k)
n,j =

w
(k)
n,j∑J

l=1

∑N
i=1

∑K
r=1w

(r)
i,l

. (17)

Hence, the self-normalized AIS estimator is ĨKNJ =
∑J

j=1

∑N
n=1

∑K
k=1 w̄

(k)
n,jf(x

(k)
n,j).

B. Modern AIS methods

AIS methods got their turn in the spotlight of MC computations after the publication of the

population Monte Carlo (PMC) sampling method by Cappé et al. in 2004 [19], notwithstanding

the existence of several AIS schemes at that time (see [28] for a review). The PMC methodology

offered a framework to adapt a population of proposals which was simple, flexible and free from

the convergence and ergodicity issues of adaptive MCMC techniques. The original PMC algorithm

used a multinomial resampling stage (note that any of the better alternative resampling strategies

developed for particle filters can also be used [29]) and was unstable due to the use of the s-MIS

weighting strategy of Eq. (15). However, the proposed approach raised a considerable interest

within the computational statistics community, and improved PMC algorithms shortly followed,

like the D-kernel PMC [30], [31] or the mixture PMC (M-PMC) [20]. Furthermore, several authors

have recently shown that the performance of PMC can be improved even more through the use of

a nonlinear transformation of the weights [32] or the combination of the DM weighting scheme

of Eq. (16) and sophisticated resampling schemes [24].

On the other hand, encouraged by the renewed interest in AIS methods spurred by the PMC

approach, several authors have proposed AIS algorithms that do not fall within the PMC frame-

work. For instance, the idea of incremental IS mixtures (originally proposed in [33]) was taken

up again by Cornuet et al. in the adaptive multiple importance sampling (AMIS) method [21].

AMIS uses a single proposal per iteration, but applies the DM weighting scheme of Eq. (16)

using a mixture composed of the present and all past proposal pdfs. Much more robust and stable

estimators are thus obtained, but at the expense of a substantial increase in the computational
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cost. An alternative to AMIS is the recently proposed adaptive population importance sampling

(APIS) algorithm [22]. APIS is also based on the DM weighting scheme of Eq. (16), but it uses a

mixture with a fixed number of proposals per iteration. In this way, APIS inherits the robustness

and stability of AMIS, but with the benefit of allowing a user controllable computational cost that

does not increase as the algorithm is iterated. Moreover, gradient information can be incorporated

to the APIS algorithm in order to improve the performance in high-dimensional state spaces [34].

Finally, note that the combination of MCMC and AIS techniques has also been considered

in several works. For instance, MCMC steps can be used to accelerate the adaptation of the

AIS technique [22], or the MCMC outputs can be used to build a proposal distribution for AIS

estimation [35]. Sequential MC samplers have also been suggested as AIS schemes in static

scenarios [36].

IV. IMPLEMENTATION AND CLASSIFICATION OF AIS ALGORITHMS

A. Implementation of AIS algorithms

Many important AIS algorithms have been proposed in the literature in the last two decades.

In this section we describe in detail some of the most popular AIS algorithms:

• Standard population Monte Carlo (PMC) [19]: In this algorithm, N proposals are adapted

via resampling, which is a well-known mechanism in MC methodologies that allows us to

select the most promising samples and to eliminate those with low weights in order to avoid

particle degeneracy [29]. At each iteration, exactly one sample is drawn from each proposal

and weighted with the standard IS weights calculated by Eq. (15). Then, N multinomial

resampling steps (with replacement) are performed within the population of the N drawn

samples (one sample is generated per proposal, i.e., K = 1). The surviving set of particles

constitutes the set of location parameters for the next population of proposals.
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• Mixture population Monte Carlo (M-PMC) [20]: For this method, the proposal used to

generate K samples at each iteration is a mixture of N kernels, where the mixture is adapted

to decrease the Kullback-Leibler divergence between the mixture and the target. In its simplest

version, the algorithm adapts the location, scale and weight of each kernel in the mixture.

• Nonlinear population Monte Carlo (N-PMC) [32]: In this algorithm, the weights are computed

in two steps. First, standard importance weights w(k)
j are obtained. Then, a nonlinear function

is applied to calculate a set of transformed weights w̆(k)
j . The goal of this transformation is to

reduce the variance of the weights and hence avoid, or at least mitigate, the weight degeneracy

problem. While the standard weights can be used for estimation, the nonlinearly-transformed

weights are crucially used for the adaptation step. The latter can be carried out in different

ways, with [32] advocating for a simple Gaussian proposal where both the mean vector and

the covariance matrix are adapted through the iterations.

• Layered adaptive importance sampling (LAIS) [23]: The adaptive process of the LAIS algo-

rithm is independent of the samples drawn at each iteration. In particular, the algorithm can

be seen as a two-layer procedure where the location parameters of the proposals are adapted

through one or several MCMC steps with the target as the stationary distribution. In its basic

version, a single MCMC step is independently performed at each location parameter.

• Deterministic mixture population Monte Carlo (DM-PMC) [24]: This algorithm meets the

simplicity of the standard PMC of [19] with a very high performance. DM-PMC calculates

the weights using Eq. (16) instead of Eq. (15), which provides two important advantages,

namely the variance of the estimators is decreased (see [25]) and the resampling step with

the DM weights promotes the replication of proposals in relevant parts of the target that

are underrepresented by the set of proposals (i.e., the exploration is coordinated). DM-PMC

generates K samples per each of the N proposals (instead of one, as in [19]). At each

iteration, the population of KN samples must be reduced to N via either global or local
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resampling.

• Adaptive multiple importance sampling (AMIS) [21]: In this algorithm, just one proposal

is used and adapted over the iterations. The adaptive procedure consists of estimating the

moments of the target with the available set of K weighted samples, and fitting the moments

of the proposal. Its key feature is the re-weighting of all the past samples with a temporal

mixture weight where the whole sequence of proposals is used in the denominator.

• Gradient adaptive population importance sampling (GAPIS) [34]: Similarly to the LAIS

algorithm, GAPIS adapts N proposals by a process that is independent of the samples.

In its basic version, the location parameters of the proposals are adapted via a gradient

ascent of the target, and the scale parameter by using the Hessian of the target. An advanced

implementation is proposed which adds a repulsive interaction among proposals to promote

a cooperative exploration of the target.

In Tables III and IV, six out of the seven previous algorithms are outlined by means of

pseudocodes. Note that we follow the structure sampling-weighting-adaptation described in Fig. 2

and Table II. We have skipped the N-PMC scheme in these tables for the sake of clarity. We simply

point out that, in this algorithm, the standard weights w(k)
n,j are transformed using a nonlinearity

Φ, namely w̆
(k)
n,j = Φ

(
k, {w(l)

n,j}Kl=1

)
. These transformed weights are then fed to the adaptation

stage. In [32], the nonlinearity Φ(·, ·) is either a tempering or a simple truncation of the largest

weights, while the adaptation is carried out as in the AMIS method of Table IV.

B. Classification of relevant AIS algorithms

Table V serves as a summary and compares the main features of different AIS implementations.

The features include the number of proposals, the weighting procedure, the updating strategy of

the parameters, and the updated parameters. Note that most of the algorithms use more than one

proposal. However, due to the adaptive procedure, even with N = 1, more than one proposal
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TABLE III: Pseudocodes of PMC, DM-PMC, and LAIS.

PMC DM-PMC LAIS
Initialization

J , N , K = 1
{θn,1}Nn=1 ≡ {µn,1,Cn}Nn=1

J , N , K,
{θn,1}Nn=1 ≡ {µn,1,Cn}Nn=1

J , N , K,
{θn,1}Nn=1 ≡ {µn,1,Cn}Nn=1

For j = 1, . . . , J :

1. Sampling

xn,j ∼ qn,j(x|µn,j ,Cn)

n = 1, . . . , N

x
(k)
n,j ∼ qn,j(x|µn,j ,Cn)

n = 1, . . . , N
k = 1, . . . ,K

x
(k)
n,j ∼ qn,j(x|µn,j ,Cn)

n = 1, . . . , N
k = 1, . . . ,K

2. Weighting

wn,j =
π(xn,j)

qn,j(xn,j)

n = 1, . . . , N

w
(k)
n,j =

π(x
(k)
n,j)

1
N

∑N
i=1 qi,j(x

(k)
n,j)

n = 1, . . . , N
k = 1, . . . ,K

w
(k)
n,j =

π(x
(k)
n,j)

1
N

∑N
i=1 qi,j(x

(k)
n,j)

n = 1, . . . , N
k = 1, . . . ,K

3. Adaptation

Multinomial resampling with
replacement over
{xn,j , w̄n,j = wn,j∑N

i=1 wi,j
}Nn=1

to update {µn,j+1}Nn=1

Multinomial resampling with
replacement over
{x(k)

n,j , w̄
(k)
n,j =

w
(k)
n,j∑N

j=1

∑K
m=1 w

(m)
j,j

}N,Kn=1,k=1 to

update {µn,j+1}Nn=1

One (or more) MCMC steps
from µn,j to µn,j+1, with π̃
as a stationary distribution,
for n = 1, ..., N

Outputs

{xn,j , wn,j}
n = 1, . . . , N
j = 1, . . . , J

{x(k)
n,j , w

(k)
n,j}

n = 1, . . . , N
k = 1, . . . ,K
j = 1, . . . , J

{x(k)
n,j , w

(k)
n,j}

n = 1, . . . , N
k = 1, . . . ,K
j = 1, . . . , J

is used. This is exploited in AMIS and in some implementations of LAIS, where the temporal

mixture of proposals is used to re-weight the samples via deterministic mixture IS weights. Note

that the different adaptive mechanisms can be classified into mechanism based on (a) resampling,

(b) moment matching, and (c) independent adaptive processes. Moreover, the moment matching

can include all the past weighted samples (AMIS) or just those of the current iteration (APIS).

Figure 4 shows three possible dependence charts related to generated samples and the adaptation

of the proposal parameters. Note also that, although all the proposal parameters can be adapted,
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TABLE IV: Pseudocodes of AMIS, GAPIS, and M-PMC.

AMIS GAPIS M-PMC
Initialization

J , K, N = 1, θ1 ≡ {µ1,C1} J , N , K,
{θn,1}Nn=1 ≡ {µn,1,Cn}Nn=1

J , N , K, {θn,1}Nn=1 ≡
{ρn,1,µn,1,C1,n}Nn=1

For j = 1, . . . , J:
1. Sampling

x
(k)
j ∼ qj(x|µj ,Cj)

k = 1, . . . ,K

x
(k)
n,j ∼ qn,j(x|µn,j ,Cn)

n = 1, . . . , N
k = 1, . . . ,K.

x
(k)
j ∼

N∑

i=1

ρi,jqi,j(x|µi,j ,Ci,j),

k = 1, . . . ,K.

2. Weighting

w
(k)
j =

π(x
(k)
j )

1
j

∑j
i=1 qi(x

(k)
j )

k = 1, . . . ,K

w
(k)
n,j =

π(x
(k)
n,j)

1
N

∑N
i=1 qi,j(x

(k)
n,j)

n = 1, . . . , N
k = 1, . . . ,K

w
(k)
j =

π(x
(k)
j )

∑N
i=1 ρi,jqi,j(x

(k)
j )

k = 1, ...,K

3. Adaptation

Update µj+1 and Cj+1 with
the empirical mean and
covariance using all the
weighted samples

Use a suitable λj to update
µn,j+1 =
µn,j + λj∇ log (π(µn,j)) and
the Hessian matrix of
− log(π(x)) to update
Cn,j+1 =

(
Hµn,j

)−1

Update
{ρn,j+1,µn,j+1,Cn,j+1}Nn=1

by minimizing the KL
distance between the proposal
and the target approximation

Outputs
{x(k)

j , w
(k)
j }

k = 1, . . . ,K
j = 1, . . . , J

{x(k)
n,j , w

(k)
n,j}

n = 1, . . . , N
k = 1, . . . ,K
j = 1, . . . , J

{x(k)
j , w

(k)
j }

k = 1, . . . ,K
j = 1, . . . , J

in the basic implementation of most algorithms, just the location parameters are adapted.

TABLE V: Comparison of various AIS algorithms according to different features.

Algorithm # proposals Weighting Adaptation strategy Parameters adapted
Standard PMC N > 1 standard resampling location

M-PMC N > 1 spatial mixture resampling location
N-PMC either nonlinear moment estimation location/scale
LAIS N > 1 generic mixture MCMC location

DM-PMC N > 1 spatial mixture resampling location
AMIS N = 1 temporal mixture moment estimation location/scale
GAPIS N > 1 spatial mixture gradient process location/scale
APIS N > 1 spatial mixture moment estimation location
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(a) The proposal parameters are
adapted using the last set of drawn
samples (Standard PMC, DM-PMC,
N-PMC, M-PMC, APIS).
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xn,1
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(b) The proposal parameters are
adapted using all drawn samples up
to the latest iteration (AMIS).
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xn,1 xn,t+1

qn,1

yn,j

yn,j yn,j

qn,j+1qn,j
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(c) The proposal parameters are
adapted using an independent
process from the samples (LAIS,
GAPIS).

Fig. 4: Graphical description of three possible dependencies between the adaptation of the proposal
parameters θn,t and the samples. Note that qn,t ≡ qn,t(x|θn,t).

Table VI provides a comparison of the computational complexity of the different algorithms.

We display the number of target and proposal evaluations, and also the same quantities per drawn

sample. We observe that in AMIS the number of proposal evaluations is increased with the number

of iterations, while in the algorithms with deterministic mixture weights this problem appears when

we increase the number of proposals. In the latter case, the strategies proposed in [26], [27] can

be employed to reduce the number of proposal evaluations. Although this is not displayed in Table

VI, the GAPIS algorithm also requires NJ gradient and Hessian evaluations in total, i.e., one per

proposal at each iteration.

TABLE VI: Comparison of various AIS algorithms according to the computational complexity.

Algorithm # target eval # proposal eval # target eval/sample # proposal eval/sample
Standard PMC NJ NJ 1 1

N-PMC NJ NJ 1 1

M-PMC KJ KNJ 1 N

LAIS K(N + 1)J KN2J 1 + 1/N N

DM-PMC KNJ KN2J 1 N

AMIS KJ KJ2 1 J

GAPIS KNJ KN2J 1 N

APIS KNJ KN2J 1 N

C. A brief summary and comparison of AIS algorithms

In this section, we provide intuition behind the relevant AIS algorithms presented above. The

standard PMC [19] opened the door for the fast growth of the AIS methodology. While the
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simplicity is its main advantage, the use of the standard IS weights of Eq. (15) has two adverse

effects: (a) the variance of the estimators is increased, and (b) each importance weight measures

the difference between the target and a specific proposal (regardless of where the other N − 1

proposals are placed). The latter effect precludes a stable and coordinated adaptation of the whole

mixture of proposals, and provokes a path degeneracy due to the resampling step.

The M-PMC [20] addresses the weak points of the standard PMC by applying a robust Rao-

Blackwellization step in the adaptation of the proposals. The goal in M-PMC is to iteratively

decrease the KL divergence between the target and the mixture of proposals (for the first time,

they are seen as a mixture instead of a collection of proposals). M-PMC is more robust and

allows for the adaptation of the covariance of each proposal and its weight in the mixture. The

disadvantage is the extra computational cost and the potential instability in the adaptation of the

covariance (it can tend to a delta) and in the mixture weights (the mixture can end up being

formed by just one proposal).

The DM-PMC addresses the open challenges of the standard PMC in a different way. The use

of deterministic mixture IS weights, followed by the resampling step, implicitly aims at iteratively

reducing the mismatch between the target and the mixture of proposals (see Eq. (16)). In addition,

DM-PMC allows to draw K > 1 samples per proposal per iteration, which improves the local

exploration in the region of each proposal and then increases the stability of the algorithm. Two

variants of the algorithm, GR-PMC and LR-PMC, allow for different resampling steps to transition

from NK samples in iteration j to N proposals in iteration j+1. The advantage of DM-PMC and

its variants is the simplicity in the implementation and the high performance. The disadvantage is

that only the location parameter of the proposals is adapted.

In general, all the PMC-based algorithms use the set of weighted samples to adapt the proposals.

While this recycling is efficient, the dependence between the samples and the next generation of

proposals hinders the theoretical analysis of the algorithms.
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The LAIS algorithm disconnects the sampling and the adaptive procedures by establishing a

two-layer scheme (see Fig. 4(c) ). In its simplest version, the adaptive layer of LAIS is driven by

Metropolis-Hastings chains, enjoying some of the advantages of the MCMC methods, e.g., their

good behavior in high dimension. The LAIS scheme is simple and shows good performance, but

again it does not adapt the covariance of the proposals.

The GAPIS algorithm also decouples the adaptation and sampling procedures, adding the

information of the gradient and Hessian of the target in the adaptation of the proposals. This

scheme performs well in challenging problems, even in high dimensions, and is able to adapt the

location and scale parameters of the proposals. Its main disadvantage is the complexity associated

to the computation of the gradient and the Hessian.

The AMIS algorithm is also simple because the proposal adaptation is carried out via moment

matching. The algorithm has shown good performance in a variety of problems. Furthermore, it

is robust because the IS weights are permanently recomputed via Rao-Blackwellization by using

the deterministic mixture idea with the mixture of temporal proposals. The main disadvantage is

precisely this recomputation of all the weights at every iteration, which precludes its use when the

needed number of iterations J is high. The DM-PMC, LAIS and GAPIS methods are particularly

well-suited to multimodal target distributions, which are often hard for conventional algorithms

(e.g., non-adaptive importance samplers or classical MCMC schemes).

Finally, note that the nonlinear transformation of the importance weights featured by the NPMC

method (in order to reduce the weight variance) can readily be applied to other schemes (DM-PMC,

AMIS, etc.). This is especially useful at the first stages of the adaptation, when the proposal(s)

can still be poorly aligned with the target density and the use of transformed weights can often

prevent severe sample impoverishment. Once the the proposal is roughly adapted, the nonlinear

transformation can be dropped and conventional weights can be used to reduce the computational

cost.
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V. DISCUSSION OF AIS METHODS

A. Convergence of IS estimators

The convergence of IS schemes is often assessed in terms of the approximation of integrals of

test functions. Specifically, if X is a random vector of interest, taking values on Rdx and with pdf

π̃(x), then we study the approximation of the integral

I(f) =

∫

X
f(x)π̃(x)dx, (18)

where f : Rdx → R is a real test function, assumed integrable w.r.t. the density π̃(x) (now we

make the test function f explicit in the notation). Note that I(f) is the expected value of the

real random variable f(X), which can be alternatively denoted by Eπ̃[f(X)], and the integrability

assumption simply states that this expectation exists, i.e., Eπ̃[f(X)] <∞.

We recall that a standard IS scheme with a proposal function q(x) produces a set of random

weighted samples {x(k), w(k)}Nk=1, where x(k) ∼ q(x) and w(k) = π(x(k))
q(x(k)) , that we use to

approximate the integral I(f) as

ĨK(f) =
1

∑K
i=1w

(i)

K∑

k=1

w(k)f(x(k)). (19)

Note that ĨK(f) is a random variable itself. Intuitively, we expect that the error I(f) − Ĩ(f)

should vanish, in some proper probabilistic sense, when K →∞. This is, indeed, a consequence

of the strong law of large numbers [7]. Assuming that q(x) > 0 whenever π(x) > 0, it can be

proved that [37]

lim
K→∞

ĨK(f) = I(f) almost surely (a.s.), (20)

and it is said that ĨK(f) is a consistent estimator of I(f). Under additional, yet mild, assumptions
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on the weight and test functions, namely,

Eπ̃[w(X)] <∞ and Eπ̃[f2(X)w(X)] <∞, (21)

a central limit theorem (CLT) also holds for the IS estimator [37]. (Note that here we use the

notation w(X) to remind the reader that the weights are functions of the random vector X and

therefore are random variables themselves.) In particular,

√
K
(
ĨK(f)− I(f)

)
d
= N (0, σ2(f)), (22)

where d
= denotes convergence of the limit in distribution and the limit variance depends on the

test function, namely σ2(f) ∝ Eπ̃
[
(f(X)− Eπ̃[f(X)])2w(X)

]
.

Equation (22) is one of various results that show how IS estimators converge with the optimal

Monte Carlo rate O
(

1√
K

)
, i.e., the errors are asymptotically of the same order as with the

standard Monte Carlo estimator constructed with K i.i.d. samples from the target pdf π̃(x). The

same optimal rate is obtained for the convergence of the Lp norms of the errors ĨK(f)− I(f) if

we assume that both the test function f and the weight function w are bounded, namely

‖f‖∞ = sup
x∈Rdx

|f(x)| <∞ and ‖w‖∞ = sup
x∈Rdx

|w(x)| = sup
x∈Rdx

∣∣∣∣
π(x)

q(x)

∣∣∣∣ <∞, (23)

where ‖Z‖p indicates the Lp norm of the random variable Z with a pdf g(z), i.e., ‖Z‖p =

(∫
Zpg(z)dz

) 1

p . Whenever Eq. (23) holds, it can be proved that [38]

‖I(f)− ĨK(f)‖p ≤
c‖f‖∞√

K
, (24)

for any p ≥ 1 and some constant c < ∞ independent of K. The inequality in Eq. (24) is easily

extended, using a standard argument based on the Markov inequality and the Borel-Cantelli lemma

[39], to yield limK→∞ Ĩ
K(f) = I(f) a.s.

A more sophisticated analysis allows us to obtain an upper bound for the random error (not
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just for its Lp norm) of the form [38]

|I(f)− ĨK(f)| ≤ Uε

K
1

2
−ε , (25)

where ε ∈ (0, 12) is an arbitrarily small constant and Uε is an a.s. finite random variable independent

of K. The inequality (25) holds for every value of K, hence it is stronger than the classical CLT

of Eq. (22). As Eq. (22), it displays the optimal Monte Carlo error rate O
(

1√
K

)
, since ε > 0 can

be chosen as close to zero as desired.

B. Convergence of AIS estimators

The results summarized above hold for general importance samplers. In an AIS framework,

however, it is of specific interest to study the convergence of the estimators as the proposals

are adapted. This issue is tackled in the classical paper [40], where the estimators that result

from aggregating weighted samples produced through several consecutive iterations are analyzed.

Assuming that an AIS algorithm is run through J iterations, producing K samples per iteration

for a total of JK samples overall (here we work with one proposal function per iteration), we

construct the aggregated estimator of I(f) as

ĨJ×K(f) =

∑J
j=1

∑K
k=1 f(x

(k)
j )w

(k)
j∑J

j=1

∑K
k=1w

(k)
j

. (26)

In the setup of [40], the proposal functions qj(x) are selected from a parametric family q(x;θ),

where θ = [θ1, . . . , θm]> ∈ Rm. The conditions to be satisfied by q(x;θ) are fairly general:

q(x;θ) is a continuous function of θ, the weight function w = π(x)

q(x;θ)
is uniformly bounded (over

the space of x and θ), and q(x;θ) > 0 whenever π(x) > 0. In addition, it is assumed that there

exists an “optimal choice” of the proposal function, of the form q(x;θo) where θo = Eπ̃[ξ(x)] for

some (possibly unknown) integrable function ξ : Rdx → Rm. The latter is a regularity assumption:

it implies that, if the weights are proper and K → ∞, it is possible to approximate the target
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proposal q(x;θo) as tightly as we wish. Under these assumptions, in [40] it is proved that

lim
J×K→∞

ĨJ×K(f) = I(f) a.s., and lim
J×K→∞

√
JK(ĨJ×K(f)− I(f))

d
= N (0, σ2(f)), (27)

where the limit variance σ2(f) is finite, and it depends on the test function and the normalization

constant of π̃. Convergence of the first limit in Eq. (27) guarantees consistency, while the second

expression is a CLT that shows that the asymptotic optimal error rate O
(

1
JK

)
can be achieved

without discarding any samples. Consistency of the aggregate estimator ĨJ×K(f) can be proved

in a rather straightforward manner for most AIS schemes as long as the importance weights are

proper at each iteration and the weight function remains bounded, even if an “optimal” or “desired”

proposal q(x;θo) does not exist (or simply changes from one iteration to the next).

C. AIS and high-dimensional target pdfs

The error bounds of (24) and (25) or the variances in the CLT’s (22) and (27) depend on the

dimension dx of the target random vector X, often in an intricate manner. Few analytical results

on the effect of the dimension are available in the literature. In simplified scenarios, and through

numerical studies, it has been shown that often the number of samples K has to be increased

exponentially with dx in order to attain a prescribed performance [41]. However, it has not been

proved that this is necessarily the case and some recent theoretical results actually suggest other-

wise. In [42], the stability of the effective sample size (ESS), constructed as ESSKj =
(
∑K

k=1 w
(k)
j )

2∑K
k=1(w

(k)
j )2

,

of a sequential MC sampler as the dimension increases, dx → ∞, is analyzed. The ESS, related

to the variance of the weights, is commonly used to assess the numerical stability of the adaptive

algorithms and detect the degeneracy phenomenon. In this AIS scheme, the target pdf π̃(x) is

approximated through a sequence of “bridge” densities π0(x), π1(x), . . . , πj(x), . . . , πJ(x), where

π0(x) is “sufficiently easy” to approximate via IS and πJ(x) = π̃(x). The intuition is that we

can start approximating π0 and, assuming πj−1(x) and πj(x) are similar enough, we can then
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move parsimoniously through the sequence of bridge pdf’s until we obtain an approximation of

π̃(x) = πJ(x). In this setup, the proposal functions qj(x) are devised as Markov kernels that jump

from πj−1(x) to πj(x). In the specific scheme analyzed in [42], the bridge pdfs are constructed

by tempering, i.e., selecting a sequence of positive real numbers 0 < ε0 < ε1 < · · · < εJ = 1 and

then setting πj(x) = π̃εj (x).

Under the strongly simplifying assumption of X being a vector of independent variables, i.e.,

π̃(x) =
∏dx
i=1 π̃i(xi), but still assuming that the sample vector x

(k)
j is drawn jointly (and not

independently, entry-wise) from the proposal qj(x), it is proved in [42] that limdx→∞ ESSKj = C

a.s., where C is a positive constant, even if the number of samples K is held constant. Moreover,

this can be achieved when the number of bridge pdf’s is J = O(dx). These results indicate that

this particular AIS method remains numerically stable (i.e., the weights do not degenerate) as

the dimension dx becomes arbitrarily large; however, they are mainly of theoretical (rather than

practical) interest because of the strong assumptions involved. Nevertheless, they suggest that AIS

schemes may beat the curse-of-dimensionality in some scenarios if properly designed.

D. A comparison of the convergence properties of IS and MCMC methods

MCMC [43] and AIS methods are often competing techniques to tackle the same class of

inference problems, hence a brief comparison of their theoretical properties is relevant. MCMC

schemes generate a chain of correlated samples x(1),x(2), . . . ,x(k), . . . using a suitable Markov

kernel K(x(k−1),x(k)) to draw x(k) conditional on x(k−1). Different algorithms, e.g., the Gibbs

sampler or the Metropolis-Hastings (MH) method [43], yield different kernels. In any case, K(·, ·)

is designed so as to guarantee, under mild assumptions, that limk→∞ pk = π̃ a.s., where pk denotes

the pdf of the kth element of the chain, which generates x(k), i.e., the generated sequence ξ(k),

k = 1, 2, ..., has π̃ as a stationary pdf [7], [43], [44]. There are no known rates for the convergence

of pk towards π̃. However, it has been found that this rate can be very low in some scenarios.
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Moreover, it has to be taken into account that estimators constructed from an MCMC run of length

K have the form

ĨKMCMC =
1

K − k0

K∑

k=k0+1

f(x(k)), (28)

where the first k0 samples are discarded to allow for the convergence of pk. While E[ĨKMCMC(f)] ≈

I(f), assuming pk ≈ π̃, the random variates f(x(k)) are correlated and, therefore, the analysis of

Var(ĨKMCMC) is difficult. Again, it can be shown that ĨKMCMC(f)→ I(f) a.s. but no error rates

are available.

This double asymptotics inherent to MCMC (we need the chain to burn-in so that pk → π̃, then

we need K →∞ for ĨKMCMC(f)→ I(f)) often make these algorithms slower and computationally

less efficient than AIS schemes [32], [38]. Moreover, in problems where the normalizing constant

Z =
(∫
π(x)dx

)−1 is of interest (e.g., for model validation or model selection) AIS is a natural

solution, as it readily yields unbiased estimates ẐKj = 1
K

∑K
k=1w

(k), j = 1, ..., J , while MCMC is

often harder to apply [45]. There have been many recent attempts to devise algorithms that combine

MCMC and AIS principles in order to take advantage of the strengths of both approaches [35],

[46].

A pictorial comparison between IS and MCMC approaches is provided in Figure 5. In an MH-

type sampler, a new state in the chain is proposed, and it is accepted or rejected with a suitable

probability α. The number of repetitions of the same current state x(k) plays the role of a weight

in the estimator ĨKMCMC(f). However, unlike in IS, given a sample x(k), the weighting procedure

is not provided by a deterministic function (e.g., by π(x)
q(x) ), but instead is a result of a stochastic

process defined by the acceptance MCMC tests performed at each iteration.
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Fig. 5: Graphical representation of importance sampling and MCMC procedures in order to provide
an estimator ĨK(f) of I(f). More specifically, we have considered Metropolis-Hastings (MH) type
of MCMC algorithms, where a novel possible state x′ is drawn from q(x), and it is accepted, thus
setting x(k) = x′ with a suitable probability α. Otherwise, the next state of the chain is set equal
to the previous one, i.e., x(k) = x(k−1) with probability 1− α.

E. Parallelization

IS methods are easily parallelizable as the samples x(k) are independent and, therefore, can be

generated concurrently. In comparison, competing MCMC methods are much harder to parallelize,

because the samples in a Markov chain are inherently sequential. With the availability of state-

of-the-art multi-core computers and GPUs, this may be a key factor in favor of IS schemes. See

[47] for a comparison of various MC schemes running on GPU systems.

In the specific case of AIS schemes, it is relatively straightforward to identify two stages

in all of the presented algorithms. The first stage, that includes sampling and weighting, is a

readily parallelizable task. This is the same as in standard IS, where each sample can (ideally) be

generated and processed independently. The second stage, however, involves adaptation and, for

some schemes, resampling. In this stage, it is necessary to process together all the samples and

weights, e.g., to calculate the parameters of the new proposals in schemes like AMIS or N-PMC,
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or even to run MCMC steps in the LAIS method. The adaptation step can be expected to be

non-parallelizable, or parallelizable to a lesser extent, on standard computing devices.

F. Applications and challenges

While the range of applications of AIS algorithms is broad, it is worth discussing some particular

fields where this methodology has either been applied with special success (compared to state-of-

the-art techniques) or appears as a promising tool to tackle hard and long-standing problems.

The problems of detection and estimation in wireless sensor networks have been of great interest

to the signal processing community for more than a decade. They involve scenarios where data

related to a particular signal of interest are collected at various different sites of a network.

Often, these observations can only be shared under tight constraints (due to scarce communication

bandwidth, limited power, etc.) and estimation has to be performed with partial data or in a

distributed fashion. One example of this class of problems, the localization of an object using

signal-strength measurements, is presented in Section VI-A. A general challenge in this field

is the design of schemes for the distributed implementation of AIS schemes with a minimal

communication among the nodes of the network. Ideas based on the exchange of summary statistics

have been explored, especially in the context of sequential importance sampling (see, e.g., [48]),

but efficient schemes (accurate yet affordable in terms of both communication and computation)

are still needed.

Another example explored in Section VI-B is the fitting of Gaussian processes (GPs) for

nonlinear regression problems. GPs have found a plethora of applications in problems where

one needs to approximate smooth functions for which a parametric model is not available at all,

and the complete function has to be learned from a discrete collection of data-points [49]. While

GPs are powerful models, their performance can be very sensitive to the fitting of a number of

hyperparameters. The example in Section VI-B shows that AIS can efficiently tackle this problem.
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AIS has also shown advantage compared to state-of-the-art methods in performing inference

for stochastic kinetic models (SKMs) [32]. SKMs are used in biochemistry or ecology to model

complex interactions among populations of different species [50]. In ecology, SKMs yield a

generalization of classical predator-prey models. In biochemistry, an SKM represents a system

with n types of molecules (species) and k types of reactions. In both cases, it is of interest to

track and predict the species populations, which evolve as a multidimensional continuous-time

jump process, and estimate the rates that govern the dynamics. It has been shown [32] that AIS

schemes (in this case, the NPMC algorithm) can attain the same performance as state-of-the-

art particle MCMC methods [51] with a fraction of the computational cost for modest SKMs.

The accurate fitting of complex, high-dimensional SKMs is an open problem with outstanding

real-world applications.

AIS techniques also enable consistent parameter estimation in α-stable distributions with very

heavy tails [38]. α stable distributions are often denoted as S(α, β, γ, δ), where 0 < α ≤ 2

determines the weight of the tails (the smaller the value of α, the heavier the tails), β is a

skewness parameter, and γ > 0 and δ determine the scale and location. Except for particular

cases, the associated pdf’s can only be approximated numerically. Fast, classical methods for

parameter estimation are known to work only for α ≥ 0.5 (i.e., with moderate tails). The results

in [38], including an example with real data, show that AIS methods can overcome this limitation

and open the door to address problems formerly intractable.

Finally, a challenging arena for the application of AIS methods includes a number of problems

where very large scale models are used and need to be fitted from (often scarce) data. This

includes many large-scale systems used in geophysics, for example in oceanography [52], climate

modeling [53] or cosmology [54]. In all these cases, algorithms that attain a good trade-off between

computational complexity and accuracy of the resulting estimators are very much needed and

advanced AIS holds potential to be successfully applied.
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VI. NUMERICAL EXAMPLES

A. Localization problem in a wireless sensor network

We consider the problem of positioning a target in a wireless sensor network using range

measurements [55]. We assume that the measurements of the sensors are contaminated by additive

white Gaussian noise (AWGN) with different unknown powers. This situation is common in many

practical scenarios where, even if the sensors are of the same manufacturer and model, the noise

level can be different due to various factors. They include signal propagation conditions, manu-

facturing imperfections, and environmental conditions (e.g., humidity or temperature). Moreover,

these conditions can change over time. Hence, in practice the central node of the network has to

re-estimate the noise powers (in addition to the target’s position and possibly other parameters of

the model) whenever a new block of observations is acquired.

More specifically, we denote the unknown target’s position with the random vector Λ =

[Λ1,Λ2]
>, and a specific realization of it as λ. Let there be M sensors at locations hm, m =

1, 2, · · · ,M . The model for the observations is

yi,m = 20 log (||λ− hm||) + vi,m, m = 1, . . . ,M ; i = 1, 2, . . . , No
(29)

where ‖ · ‖ denotes the L2 norm, yi,m is the ith observation of the M th sensor, No is the number

of observations of each of the sensors, and the vi,m’s are independent Gaussian random variables

with pdfs N (vi,m; 0, γ2m), m = 1, . . . ,M . We denote the vector of standard deviations as γ =

[γ1, . . . , γM ]. We adopt a uniform prior U(Rλ) for the position [Λ1,Λ2]
>, over a predefined

support, and a uniform prior for γj , also over a preset range, Rγ . Thus, the posterior pdf is

π̃(λ,γ|Y) ∝ `(y|λ1, λ2, γ1, . . . , γM )

2∏

i=1

p(λi)

M∏

m=1

p(γm),

=

[
No∏

i=1

M∏

m=1

1√
2πγ2m

exp

(
− 1

2γ2m
(yi,m − 20 log (||λ− hm||)2

)]
I(Rλ)I(Rγ),

(30)
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where No is the number of observations, yi,m is the ith observation of the mth sensor, and Ic(S)

is an indicator function that takes a value equal to one if c ∈ S, and is equal to zero otherwise.

Thus, in this problem x = [λ>,γ>]>, and dx = M + 2.

Our goal is to compute the Minimum Mean Squared Error (MMSE) estimate, which corresponds

to the expected value of the posterior π̃(λ,γ|y1,y2, . . . ,yM ), where the yms are vectors whose

elements are the measurements of the mth sensor. Since the MMSE estimate cannot be computed

analytically, we applied several AIS methods to approximate it via MC quadrature. In particular,

we worked with the standard PMC method [19], two different DM-PMC techniques [24], AMIS

[21] and LAIS [23].

In our experiment, we had M = 6 sensors, and the locations of the sensors were at h1 =

[3,−8]>, h2 = [8, 10]>, h3 = [−4,−6]>, h4 = [−8, 1]>, h5 = [10, 0]> and h6 = [0, 10]>. In all

the cases, we employed Gaussian proposal densities, qn,j(x|µn,j ,Cn,j) = N (x|µn,j ,Cn,j) with

µn,1 ∼ U([1, 4]dx) for n = 1, . . . , N . The target was located at λ = [λ1 = 2.5, λ2 = 2.5]>, and

the vector of standard deviations was γ = [γ1 = 1, γ2 = 2, γ3 = 1, γ4 = 0.5, γ5 = 3, γ6 = 0.2].

We generated No = 20 observations for each sensor according to the model given by Eq. (29). The

uniform prior U(Rλ) over the position [λ1, λ2]
> had a support Rλ = [−30×30]2, and the uniform

prior of the γis was U([0.01, 20]). Thus, the overall prior of γ was U(Rγ) with Rγ = [0.01, 20]M .

Then, we obtained the measurement vectors y1, . . . ,yM , where yi ∈ RNo . Note that, regarding

the dimension of the observations, we have dy = NoM = 120.

For the PMC, the DM-PMCs and LAIS we set Cn,j = Cn = C = σ2I with σ = 1. In

AMIS, we have N = 1 and Cn,j = Cj = σ2j I, and we set σ1 ∈ {1, 2}. In the adaptation layer of

LAIS, in order to obtain {µn,j}Nn=1 from the previous population {µn,j−1}Nn=1, we employ parallel

Metropolis-Hastings chains with a Gaussian random-walk proposal pdf, ϕn(µn,j |µn,j−1, σ2I) =

N (µn,j |µn,j−1, σ2I) with σ = 1. Moreover, we also test the application of N independent parallel

Metropolis-Hastings algorithms with the same Gaussian random-walk proposal pdf, ϕn(µn,t|µn,j−1, σ2I),
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employed in the adaptation of LAIS.

We fix the total number of evaluations of the posterior density to E = 104, since this is usually

the most costly step in MC algorithms. Let us recall that J denotes the total number of iterations

and K the number of samples drawn from each proposal at each iteration. Moreover, we denote

as S the total number of samples employed in the final IS estimator. In LAIS, the total number

of evaluations of the target pdf is E = NJ(K + 1), whereas S = NJK (i.e., E > S due to the

use of the Markov adaptation process). For the rest of the methods, we have E = S = NKJ

(note that N = 1 in AMIS, while K = 1 in standard PMC and Metropolis-Hastings). Several

combinations of N , J and K are tested for the fixed E = 104 evaluations.

We computed the Mean Squared Error (MSE) of the different estimators obtained w.r.t. the

ground-truth, x = [λ>,γ>]>. The results, averaged over 500 independent runs, are provided in

Tables VII–XII (one table per technique) with the best and worst MSE values highlighted in

boldface. In this particular experiment, with a unimodal posterior pdf and a good initialization

µn,1 ∼ U([1, 5]dx), the PMC techniques and the AMIS method provide the smallest MSE values.

The standard PMC method seems to perform better if one uses a larger value of N and a smaller

number of iterations J . In fact, the use of a small number of proposal pdfs can lead to catastrophic

results in this case. The DM-PMC techniques substantially mitigate this problem, with GR-DM-

PMC showing a more robust behavior w.r.t. the parameter choice than LR-DM-PMC (note that

GR stands for global resampling and LR for local resampling). AMIS provides very good results,

although it shows some sensitivity w.r.t. the choice of the initial scale parameter, σ1. Note that

LAIS provides slightly worse results than AMIS, but also shows less sensitivity w.r.t. the parameter

choice and outperforms the performance of N independent parallel MH chains. Finally, Fig. 6

shows the evolution of the estimators of AMIS (J = 300, K = 200) and standard PMC (N = 1000,

J = 100) as functions of the number of iterations, j, in one specific run.
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TABLE VII: Results standard PMC [19] (localization example).

MSE 25.12 3.96 1.35 1.08 0.72 0.61 0.70
N 5 10 50 100 500 1000 2000
J 2000 1000 200 100 20 10 5
E S = NJ = 104

Range Min MSE = 0.61 ——— Max MSE = 25.12

TABLE VIII: Results GR-DM-PMC [24] (localization example).

MSE 0.96 0.89 0.75 0.84 0.85 1.47 0.81 0.76 0.79 0.84 0.80 0.81
N 5 5 5 10 10 10 50 50 100 100 500 1000
J 50 100 10 10 5 200 5 10 5 10 5 5
K 40 20 200 100 200 5 40 20 20 10 4 2
E S = NTM = 104

Range Min MSE = 0.75 ——— Max MSE = 1.47

TABLE IX: Results LR-DM-PMC [24] (localization example).

MSE 1.14 1.52 0.77 0.77 0.79 2.91 1.01 1.24 1.26 1.44 1.32 1.49
N 5 5 5 10 10 10 50 50 100 100 500 1000
J 50 100 10 10 5 200 5 10 5 10 5 5
K 40 20 200 100 200 5 40 20 20 10 4 2
E S = NTM = 104

Range Min MSE = 0.77 ——— Max MSE = 2.91

TABLE X: Results AMIS [21] (localization example).

MSE (σ0 = 1) 0.80 0.72 0.75 0.76 0.88 1.29
MSE (σ0 = 2) 1.53 1.48 1.42 1.29 1.48 1.71

N 1
J 200 100 50 20 10 5
K 50 100 200 500 1000 2000
E S = TM = 104

Range Min MSE = 0.72 ——— Max MSE = 1.71

TABLE XI: Results LAIS [23] (localization example).

MSE 1.91 1.52 1.14 1.11 1.10 1.06 1.29 1.25 1.26 1.30 1.41
N 1 2 5 5 10 10 100 100 100 200 103

J 5 · 103 500 250 500 250 500 10 25 50 25 5
K 1 9 7 3 3 1 9 3 1 1 1
S 5 · 103 9 · 103 8750 7500 7500 5 · 103 9 · 103 7500 5 · 103 5 · 103 5 · 103

E S +NT = NT (M + 1) = 104

Range Min MSE = 1.06 ——— Max MSE = 1.91
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TABLE XII: Results independent Metropolis-Hastings parallel chains (localization example).

MSE 1.42 1.31 1.44 2.32 2.73 3.21 3.18 3.15
N 1 5 10 50 100 500 1000 2000
J 104 2 · 103 103 200 100 20 10 5
E S = NT = 104

MSE range Min MSE = 1.31 ——— Max MSE = 3.21
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Fig. 6: Evolution of AMIS (T = 300, M = 200) and standard PMC (N = 1000, T = 100)
estimators as functions of the number of iterations, j, in one specific run.

B. Learning hyperparameters for Gaussian process regression models

Gaussian processes (GPs) are a modern machine learning approach to solving regression prob-

lems [56]. Given a covariance kernel function, learning its hyper-parameters is the key to attain

accurate performance. In this section, we test the different AIS schemes for estimating the hyper-

parameters of a Gaussian process (GP) regression model.

Let us assume that we have a set of observed data pairs, {yi, zi}Pi=1 with yi ∈ R and zi ∈ RL,

and let us denote the corresponding P ×1 output vector as y = [y1, . . . , yP ]> and the L×P input

matrix as Z = [z1, . . . , zL]. We address the problem of inferring the unknown function f that

links the variables y and z. Namely, the assumed model is y = f(z) + e, where e ∼ N(e; 0, σ2)

and f(z) is a realization of a GP, f(z) ∼ GP(µ(z), κ(z, r)) with z, r ∈ RL, µ(z) = 0, and the
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kernel function has the form

κ(z, r) = exp

(
−

L∑

`=1

(z` − r`)2
2α2

)
. (31)

(We point out that f(·) in this section has nothing to do with the test function used earlier

in the paper.) Given these assumptions, the vector f = [f(z1), . . . , f(zP )]> is distributed as

p(f |Z, α, κ) = N (f ; 0,K), where 0 is a P × 1 null vector, and [K]ij := κ(zi, zj) for all i, j =

1, . . . , P , is a P ×P matrix. Therefore, dx = 2 and the vector containing the hyper-parameters of

the model is x = [x1 = α, x2 = σ] ∈ R2, where α is the hyper-parameter of the kernel function

in Eq. (31), and σ is the standard deviation of the observation noise. In this experiment, we focus

on the marginal posterior density of the hyperparameters [56], π̃(x|y,Z, κ) ∝ p(y|x,Z, κ)p(x),

which can be evaluated analytically, but we cannot compute integrals involving it. Considering a

uniform prior p(x) over [0.01, 20]2, and since p(y|x,Z, κ) = N (y; 0,K + σ2I), we have

log [π(x|y,Z, κ)] =− 1

2
y>(K + σ2I)−1y − 1

2
log
[
det
(
K + σ2I

)]
, (32)

where K depends on α [56]. Since the moments of this marginal posterior cannot be computed

analytically, we use again MC integration with different AIS methods to approximate the MMSE

estimator, x̂ = [α̂, σ̂], which corresponds to the expected value of X w.r.t. π̃(x|y,Z, κ).

For this experiment, we generated P = 200 pairs of data, {yj , zj}Pj=1, according to the previous

GP model with α = 3, σ = 10, L = 1 and zj ∼ U([0, 10]). Fixing the generated data, we

then computed the true value of the MMSE, x̂ = [α̂, σ̂] ≈ [3.5200, 9.2811], using an exhaustive

and costly grid search approximation, in order to compare the different AIS techniques. The

corresponding posterior pdf is given in Fig. 7(a).

We compared the standard PMC method [19], the LR-DM-PMC technique [24], the AMIS [21]

and the LAIS [23] algorithms. Again, for all of them we considered Gaussian proposal densities,

qn,j(x|µn,j ,Cn,j) = N (x|µn,j ,Cn,j) with µn,1 ∼ U([1, 4]2) for n = 1, . . . , N . Note that, unlike
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in the previous experiment, the true value of x does not belong to the initialization region [1, 4]2.

For PMC, LR-DM-PMC, and LAIS we set Cn,j = Cn = C = σ2I with σ = 2. For AMIS, we

had N = 1 and Cn,j = Cj = σ2j I and we set σ1 = 2. In the adaptation layer of LAIS, in order

to obtain {µn,j}Nn=1 from the previous population {µn,j−1}Nn=1, we employed parallel MH chains

with a Gaussian random-walk proposal pdf, ϕn(µn,j |µn,j−1, σ2I) = N (µn,j |µn,j−1, σ2I) with

σ = 2. Once more, we fixed the total number of evaluations of the posterior pdf to E = 104 and

we tested the algorithms considering different combinations of the parameters.

The results, in terms of MSE in the estimation of x, are given in Tables XIII, XIV, XV and

XVI. They were averaged over 500 independent runs. In this numerical experiment, LAIS and

LR-DM-PMC provided smaller MSEs. The reason is that they discover and explore faster the tail

of the posterior distribution with respect to the other techniques. The adaptation of the location

parameters produced in one specific run by LAIS (N = 5 and T = 100) is shown in Fig. 7(b).

TABLE XIII: Results standard PMC [19] (GP example).

MSE 0.44 0.87 1.01 0.88 0.86 0.95 1.15
N 5 50 100 200 500 1000 2000
T 2000 200 100 50 20 10 5
E S = NT = 104

Range Min MSE = 0.44 ——— Max MSE = 1.15

TABLE XIV: Results LR-DM-PMC [24] (GP example).

MSE 0.41 0.39 0.16 0.09 0.04 0.23 0.07 0.46
N 5 5 5 50 50 100 100 1000
T 10 20 40 10 20 10 20 5
M 200 100 50 20 10 10 5 2
E S = NTM = 104

Range Min MSE = 0.04 ——— Max MSE = 0.46

VII. CONCLUDING REMARKS AND OUTLOOK

In signal processing, an important task is making inference from data about model parameters

or models in general. From a Bayesian point of view, ideally this inference is made from posterior
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TABLE XV: Results AMIS [21] (GP example).

MSE 1.32 1.35 1.26 1.27 1.23
N 1
T 200 100 50 20 10
M 50 100 200 500 1000
E S = TM = 104

Range Min MSE = 1.23 ——— Max MSE = 1.35

TABLE XVI: Results LAIS [23] (GP example).

MSE 1.04 0.46 0.21 0.09 0.03 0.31 0.65
N 1 5 10 50 100 500 1000
T 5000 1000 500 100 50 10 5
M 1
E NT (M + 1) = 104

Range Min MSE = 0.03 ——— Max MSE = 1.04
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Fig. 7: (a) Posterior density π(x|y,Z, κ). (b) Evolution of the location parameters µn,t in one
specific run of LAIS with N = 5 and T = 100 (jointly with the contour plot of the posterior pdf).
The starting points are shown with x-marks whereas the final locations are depicted with circles.

distributions of the unknowns. For complex models, it is very difficult to find these posteriors. In

such cases, one resorts to approximations in the sense that one generates samples that are drawn

from the posterior distributions. A tool that helps practitioners to get such samples is MCMC

sampling. As already pointed out, the MCMC algorithms and the growth of computing power

have invigorated the Bayesian methodology in the last two and a half decades to the point that
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today we use them to solve most intricate problems.

In this article, we have argued that practitioners of signal processing should be aware of another

option for solving inference problems by way of drawing samples from distributions. It is based on

a methodology known as AIS. AIS methods have the subtle ability to learn the pdfs that produce

better samples for constructing posteriors and that eventually allow for a more accurate inference.

The learning is accomplished in iterations where the samples from previous iterations serve to

find better proposal pdfs.

AIS is often simpler to implement than MCMC sampling. Besides simplicity, AIS has other

advantages over MCMC sampling, including that it does not produce correlated samples, that

there is no such thing as burn-in period, and that AIS is easier for parallelization. We also have

better understanding of the rates of convergence of AIS methods than those of MCMC sampling.

A pitfall of importance sampling methods is the possibility of using proposal pdfs with thinner

tails than those of the target distribution which can easily ruin any estimate from the generated

data and the computed weights.

In this article, we have surveyed the state-of-the-art of AIS methods and the advances in the

area in recent years. Next we provide some direction of future work.

The most important open problem of AIS, as we have already alluded, is the development

of AIS methods that can work accurately in high dimensional spaces. As the dimension of x

increases, the complexity of finding good proposal pdfs explodes (curse-of-dimensionality). One

approach for resolving this problem is to work with compartmentalized spaces of the unknowns

and accept that we will not have approximations of the full joint posterior but instead, a number

of marginalized posteriors.

Another way of addressing high-dimensionality is by particle flows. This approach has been of

interest in particle filtering, where samples drawn from the prior distribution are migrated to the

posterior distribution of the unknowns by solving partial differential equations [57]. Even though
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the problems we solve with AIS are different from those addressed by particle filtering, there is

enough common ground between the two methodologies to investigate the application of particle

flows to AIS. How can the underlying principles of particle flows be exploited in AIS?

In recent years, stochastic optimization methods have seen a resurgence. One reason for this is

that there are many problems that can be formulated as optimization problems where the minimized

objective function is a sum of many loss functions. Importance sampling is one of a number of

Monte Carlo sampling-based methods for stochastic optimization. It can improve the convergence

rate of the optimization and reduce the stochastic variance of the result [58]. The use of AIS for

optimization raises various challenging questions, including convergence to optimal solutions and

optimal values.

A specific application of stochastic optimization is in stochastic variational Bayesian methods.

These methods can be applied to complex probabilistic models and large data sets with a vast

range of applications in machine learning. Recently, a synthesis between variational inference and

MCMC sampling for variational approximation has been proposed [59]. It was claimed that a

fast posterior approximation through the maximization of an explicit objective was accomplished.

Furthermore, the proposed method offered trade offs between computation and accuracy. Clearly,

AIS is a natural candidate to be applied in the same setting with the possibility of performing

even better than MCMC sampling.

Finally, in the years to come, we expect that AIS methods will find increased use within the

signal processing community. Much of the research in this area will be driven by novel applications

and by models with expanded complexity. There will be new applications that may even include use

of AIS in deep learning for computing the weights of the hidden layers. The addressed problems

will not only require estimating unknown quantities, but also finding the best models from a set of

predefined models or finding the best model in nonparametric Bayesian settings where the number

of models is not set a priori.
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[49] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of sparse approximate Gaussian process regression,”

Journal of Machine Learning Research, vol. 6, no. Dec, pp. 1939–1959, 2005.

[50] R. J. Boys, D. J. Wilkinson, and T. B. L. Kirkwood, “Bayesian inference for a discretely observed stochastic

kinetic model,” Statistics and Computing, vol. 18, no. 2, pp. 125–135, 2008.

[51] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain Monte Carlo methods,” Journal of the Royal

Statistical Society B, vol. 72, no. 3, pp. 269–342, 2010.

[52] C. K. Wikle, R. F. Milliff, D. Nychka, and L. M. Berliner, “Spatiotemporal hierarchical Bayesian modeling tropical

ocean surface winds,” Journal of the American Statistical Association, vol. 96, no. 454, pp. 382–397, 2001.

[53] J. Rougier, “Probabilistic inference for future climate using an ensemble of climate model evaluations,” Climatic

Change, vol. 81, no. 3, pp. 247–264, 2007.

[54] A. Lewis, “Efficient sampling of fast and slow cosmological parameters,” Physical Review D, vol. 87, no. 10, pp.

103529, 2013.

[55] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky, “Nonparametric belief propagation for self-localization

of sensor networks,” IEEE Transactions on Selected Areas in Communications, vol. 23, no. 4, pp. 809–819, April

2005.

[56] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006.

[57] Y. Li and M. Coates, “Particle filtering with invertible particle flow,” arXiv preprint arXiv:1607.08799, 2016.

[58] T. Homem-de Mello and G. Bayraksan, “Monte Carlo sampling-based methods for stochastic optimization,”

Surveys in Operations Research and Management Science, vol. 19, no. 1, pp. 56–85, 2014.



46

[59] T. Salimans, D. Kingma, and M. Welling, “Markov chain Monte Carlo and variational inference: Bridging the

gap,” in Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 2015, pp. 1218–1226.


