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Efficient Multiple Importance Sampling Estimators
Víctor Elvira, Luca Martino, David Luengo, and Mónica F. Bugallo

Abstract—Multiple importance sampling (MIS) methods use
a set of proposal distributions from which samples are drawn.
Each sample is then assigned an importance weight that can be
obtained according to different strategies. This work is motivated
by the trade-off between variance reduction and computational
complexity of the different approaches (classical vs. deterministic
mixture) available for the weight calculation. A new method that
achieves an efficient compromise between both factors is intro-
duced in this letter. It is based on forming a partition of the set
of proposal distributions and computing the weights accordingly.
Computer simulations show the excellent performance of the
associated partial deterministic mixtureMIS estimator.

Index Terms—Adaptive importance sampling, deterministic
mixture, Monte Carlo methods, multiple importance sampling.

I. INTRODUCTION

I MPORTANCE SAMPLING (IS) methods approximate sta-
tistical moments of a variable of interest by sets of samples,

drawn from a proposal distribution different from the targeted
one, and weights, assigned to the samples in order to measure
their adequacy in approximating the target [1], [2]. In its stan-
dard form, IS uses one proposal distribution fromwhich all sam-
ples are drawn. However, a more powerful strategy to reduce
the variance of the estimators consists of using a set of different
proposal distributions. This is the basis of multiple importance
sampling (MIS) techniques [3]. The samples drawn from the dif-
ferent proposals in MIS are then assigned weights proportional
to the ratio between the target and the proposal densities evalu-
ated at the sample values. Several strategies for calculating the
weights have been considered, depending on the way in which
the proposal evaluation in the denominator is interpreted. In the
standard MIS, the evaluated proposal is exactly the one from
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which the sample was generated. This constitutes the simplest
method in terms of computational complexity. A different ap-
proach, referred to as deterministic mixture (DM) MIS, inter-
prets the set of generating proposals as a whole mixture distri-
bution and calculates the weight of a given sample by consid-
ering the entire mixture as the global proposal [4]. This method
attains a variance reduction at the expense of an increase in the
computational load [5], [6].
In this work, we propose a novel MIS method that provides

an efficient tradeoff in terms of computational complexity and
variance reduction of the associated IS estimators. The approach
is based on creating a partition of the set of available proposals
and considering that each partitioned set constitutes a mixture
distribution. A sample drawn from a mixand in one of the par-
titions (mixtures) is then assigned a weight that only accounts
for that particular mixture, instead of the entire composite mix-
ture as in the full DM-MIS. A remarkable reduction in com-
putational complexity is achieved by this approach, while the
variance of the associated partial DM-MIS estimator remains
comparable to that of the full DM-MIS estimator. The method
can not only applied to IS methods with static distributions (i.e.,
characterized by fixed parameters), but also to IS methods that
adapt the parameters of the proposal distribution in an iterative
way (i.e., adaptive IS (AIS) methods [7]–[9]). Computer simu-
lations show the excellent performance of the proposed scheme
in terms of variance reduction for a given computational load.

II. PROBLEM STATEMENT AND BACKGROUND

In many applications, the interest lies in obtaining the poste-
rior density function (pdf) of set of unknown parameters given
the observed data. Mathematically, denoting the vector of un-
knowns as and the observed data as , the
pdf is defined as

(1)

where is the likelihood function, is the prior pdf,
and is the normalization factor.1 The computation of a
particular moment of is then given by

(2)

where can be any integrable function of . In many prac-
tical scenarios, we cannot obtain an analytical solution of (2)
and Monte Carlo methods are used to approximate it.

1From now on, we remove the dependence on to simplify the notation.
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A. Importance Sampling (IS)
Let us consider samples ( ) drawn from a pro-

posal pdf, , with heavier tails than the target, . The
samples have associated importance weights given by

(3)

Using the samples and weights, the moment of interest can be
approximated as

(4)

where is an unbiased estimator of
[1]. Note that Eq. (4) always provides a con-

sistent estimator of , but its variance is directly related to
the discrepancy between and (for a specific
choice of ) or to the mismatch between the target and
the proposal (for a general and arbitrary ) [1], [10].

B. Multiple Importance Sampling (MIS)
Finding a good proposal pdf, , is critical and can also be

very challenging [4]. An alternative and more robust strategy
consists of using a population of different proposal pdfs. This
scheme is often known in the literature as multiple importance
sampling (MIS) [7]–[9]. Let us consider a set of (normal-
ized) proposal pdfs, , and let us assume that
exactly one sample is drawn from each of them, i.e., ,

. The importance weights associated to these sam-
ples can then be obtained according to one of the following
strategies:
• Standard MIS: .
• Deterministic mixture MIS (DM-MIS) [4]:

(5)

where is the mixture pdf, com-
posed of all the proposal pdfs. This approach interprets the
complete set of samples, , as being distributed ac-
cording to the mixture , i.e., .
See Appendix A for further details.

In both cases, the consistency of the estimators is ensured.
The main advantage of the DM-MIS weights is that they yield
more stable and efficient estimators [4], i.e., with less variance
(as proved in Appendix B). However, the DM-MIS estimator is
computationally more expensive, as it requires evaluations of
the proposal to obtain each weight instead of just one.2 In some
practical scenarios, this additional load may be excessive (espe-
cially for large values of ) and alternative efficient solutions
must be developed.

C. Adaptive Importance Sampling (AIS)
In order to decrease the mismatch between the proposal and

target pdfs, there are several Monte Carlo methods that itera-

2Note that the number of evaluations of the target is the same regardless
of whether the weights are calculated according to (3) or (5).

tively adapt the parameters of the proposal pdf using the infor-
mation of the past samples [7]–[9]. In this scenario, we have
a set of proposal pdfs , where the
superscript indicates the iteration index and is the total
number of adaptation steps. Some of these well-known AIS
methods, which are also based on MIS, are Population Monte
Carlo (PMC) and its variants [7], [11]–[13], adaptive multiple
importance sampling (AMIS) [8], and adaptive population im-
portance sampling (APIS) [5], [9].

III. PARTIAL DETERMINISTIC MIXTURE APPROACH

In this section we develop a partial DM-MIS scheme,
which groups the proposal pdfs, , into mix-
tures composed of mixands, with (recall that

).3 Namely, we define a partition
of into disjoint subsets of indices, with

, s.t.

(6)

where for all and . Each
subset, , contains indices,

for and . Following
this strategy, the weights of the -th mixture are computed as

(7)

The resulting partialDM-MIS (p-DM-MIS) estimator is then
given by

(8)

which coincides with the expression in (4), but using the weights
given by Eq. (7). Note that the particular cases and

correspond to the full DM-MIS (f-DM-MIS) and the
standard MIS (s-MIS) approaches, respectively. The number
of evaluations of the proposal pdfs is then . Since

, the computational cost is larger than that
of s-MIS approach ( times larger), but lower than that of the
f-DM-MIS approach (since ).
The good performance of the novel approach is ensured by

Theorem 1 and Corollary 2 (see Appendix B) and can be sum-
marized by the following expression:

(9)

which holds regardless of the choice of and the strategy fol-
lowed to group the original proposals into mixtures.
Therefore, there is a tradeoff between performance and compu-
tational cost: using a smaller number of mixtures ( ) leads to a
reduced variance, but at the expense of an increase in the number
of evaluations of the proposal densities.

A. Choice of the number of mixtures
A simple strategy to choose the number of mixtures consists

of starting with (which coincides with the standard MIS

3For the sake of simplicity, we assume that all the mixtures contain the same
number of proposal pdfs. However, any strategy that clusters the proposals
into disjoint mixtures (regardless of their size) is valid.
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scheme), computing the corresponding estimator in Eq. (8), and
iteratively reducing the number of mixtures (thus increasing

) while the estimation significantly changes w.r.t. the
previous step. This iterative approach does not require a signif-
icant additional computational cost (since the proposal evalua-
tions can be stored and re-used) and results in an efficient and
automatic procedure to select .

B. Design of the mixtures
Developing an optimal strategy to cluster the proposals into

mixtures is a difficult task, since the number of possible configu-
rations is extremely large. Indeed, unless this clustering strategy
is computationally inexpensive, the additional computational
effort might be better invested in decreasing (thus increasing

and reducing the variance of the estimators). There-
fore, we propose applying a simple random clustering strategy,
where different proposals are randomly assigned to
each partition. This approach provides an excellent performance
for large values of (see Table II), so there seems to be little
room for improvement (except maybe for small values of ).
Note that this result is not surprising: randomness is the key el-
ement behind compressive sampling [14], and many random-
ized clustering algorithms have been developed for applications
such as data mining [15], image processing [16] or blind channel
identification [17].

C. Application to AIS schemes
For the sake of simplicity, we have focused on p-DM-MIS

for a static framework, where the parameters of the proposals
are fixed. However, all the previous considerations can be easily
applied in AIS schemes, where the proposals are iteratively up-
dated. In methods like PMC [7] or APIS [9], a population of
proposal densities is adapted during iterations. At the -th iter-
ation, the -th sample is drawn from the -th proposal, i.e.,

for and . Thus, after
iterations we have samples drawn from

different proposal pdfs.
Regardless of the adaptation procedure followed by each al-

gorithm, different strategies can be used to design an efficient
DM-MIS estimator when considering all the pro-
posal pdfs. Table I summarizes the weight calculation for three
well-known AIS methods (PMC, AMIS and APIS), comparing
them to the DM-MIS estimators. We also analyze the com-
plexity in terms of the number of proposal evaluations and the
performance in terms of the variance reduction. We can see that
the novel p-DM-MIS approach provides a very good compro-
mise between performance and computational cost. Finally, it is
important to remark that Table I does not take into account the
specific adaptive procedures of each algorithm, which can also
have a large influence on the final performance.

IV. NUMERICAL EXAMPLE

We consider a bivariate multimodal target pdf, defined as a
mixture of 5 Gaussians:

(10)

where , , ,
, , ,
, , and

TABLE I
DIFFERENT STRATEGIES FOR WEIGHT CALCULATION IN AIS

ALGORITHMS USING PROPOSALS PER ITERATION
(NOTE THAT IN AMIS), AND ITERATIONS

TABLE II
MSE IN THE ESTIMATION OF THE MEAN AND NORMALIZING CONSTANT OF

THE TARGET FOR DIFFERENT VALUES OF AND .

. The goal is to approximate, using some
Monte Carlo method, the expected value of , i.e.,

and .
We apply the MIS algorithm in a setup with

Gaussian proposal pdfs, , where
is the randomly chosen loca-

tion parameter and , with , is the scale matrix.
We proceed as follows. First, we draw a sample from each pro-
posal. Then, we compute the corresponding weight according
to (7). Finally, we build the estimator using (8) for
different number of mixtures for (i.e.,

). Since , the number of
proposals per mixture is .
Note that the case (i.e., ) corresponds to
the f-DM-MIS approach, while (i.e., ) corre-
sponds to the s-MIS. A random assignment of the proposals to
the mixtures is performed in all cases.
Table II shows the mean square error (MSE) in the estima-

tion of the mean of the target (averaged over both dimen-
sions) and the normalizing constant . All results are averaged
over 500 independent runs. The last column of Table II shows
the total number of proposal evaluations for each value of .
Fig. 1 shows the MSE in the estimation of the mean of the target
w.r.t. the total number of proposal evaluations. The results show
that decreasing reduces the MSE (as expected) at the ex-
pense of an increase in the computational cost (measured by the
number of proposal evaluations). However, note that decreasing
the number of mixtures below does not improve the
performance significantly. Indeed, the p-DM-MIS with
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Fig. 1. MSE in the estimation of the mean of the target w.r.t. the total number
of proposal evaluations.

obtains an MSE close to that of the f-DM-MIS estimator while
performing 98.4% less proposal evaluations, thus attaining an
excellent performance-cost tradeoff.

V. CONCLUSION
In this letter we propose a novel approach for the calcula-

tion of the weights in multiple importance sampling schemes
that provides an efficient tradeoff between computational com-
plexity and variance reduction of the associated estimator. The
proposed scheme is based on constructing a random partition
of the set of available proposals and then calculating the weight
of each sample locally using only the corresponding subset of
the partition. Computer simulations reveal a very good perfor-
mance of the method, which is able to attain an excellent per-
formance-computational cost tradeoff.

APPENDIX A
DRAWING SAMPLES FROM A MIXTURE OF PDFS

Let us consider a mixture of normalized pdfs with equal
weights, i.e.,

(11)

The classical procedure for drawing samples from is
(starting with ):
1) Draw with equal weights .
2) Draw .
3) Set and repeat until .
In this way, each sample is distributed according to

and, as a consequence, . An alternative
procedure, more deterministic than the previous one, consists of
the following steps (starting with ):
1) Draw one sample from each , i.e., .
2) Set and repeat until .
In this case, we have for , but the

joint set is again distributed as , i.e.,
. This is the underlying theoretical argument of the deter-

ministic mixture (DM) weights approach used throughout this
work. Furthermore, given indices with

:

APPENDIX B
VARIANCE REDUCTION OF DETERMINISTIC MIXTURE WEIGHTS

A. Theorem 1
Consider a normalized target pdf, , and

samples drawn from a set of normalized proposal pdfs (one
from each pdf), for . The standard
multiple importance sampling (s-MIS) and the full deterministic
mixture IS (f-DM-IS) estimators can be expressed as

(12a)

(12b)

The variance of the f-DM-IS estimator is always lower or equal
than the variance of the s-MIS estimator,

(13)

1) Proof: See Appendix A of [5], [6].

B. Corollary 2
For the standard MIS, full DM-MIS and partial DM-MIS es-

timators the following inequality holds:

1) Proof: For the first inequality, note that the full DM-MIS
estimator of (12b) can also be expressed as

where

is the proposal associated to the -th mixture. Similarly, the par-
tial DM-MIS estimator is given by

Hence, applying Theorem 1 with instead of
and instead of , we have

.
For the second inequality, following the same approach, the

standard MIS estimator of (12a) can be rewritten as

Applying Theorem 1 with instead of
, we have .
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