On Sample Generation and Weight Calculation in
Multiple Importance Sampling

Victor Elvira*, Luca Martinof, David Luengo®, Ménica F. Bugallo®

* Dep. of Signal Theory and Communic., Universidad Carlos III de Madrid, 28911 Leganés (Spain)
f Dep. of Mathematics and Statistics, University of Helsinki, 00014 Helsinki (Finland)

! Dep. of Signal Theory and Communic., Universidad Politécnica de Madrid, 28031 Madrid (Spain)

¥ Dep. of Electrical and Computer Eng., Stony Brook University, Stony Brook, NY 11794 (USA)

Abstract—Importance sampling is a Monte Carlo technique
that approximates moments of target densities by means of
weighted samples. These samples are traditionally drawn from a
single proposal density. In multiple importance sampling (MIS)
a set of different proposal densities is available. In this paper,
we propose a formal framework that allows different ways of
drawing samples from a set of proposals and different proper
weighting functions that can be applied. In particular, we describe
three sampling methods and five generic weighting functions.
As proper sampling/weighting combinations, six unique MIS
schemes (three of them are novel) are discussed throughout the
paper. All the methods are analyzed in terms of the variance of
the associated estimators, establishing a ranking regarding their
performance.

Keywords—Monte Carlo methods, multiple importance sam-
pling, Bayesian inference.

I. INTRODUCTION

Importance Sampling (IS) is a well-known Monte Carlo
technique to compute integrals involving target probability
density functions (pdfs) [1, 2]. The standard 1S technique
draws samples from a single proposal pdf, assigning them
weights based on the ratio between the target and the proposal
pdfs, both evaluated at the sample value. Although many
other proper random weight functions can be designed (see
[2, Section 2.5] and [1, Section 14.2]), this deterministic
weight assignment has prevailed in the literature. Within this
framework, the choice of a suitable proposal pdf is crucial in
order to obtain a good approximation of the desired integral.
Therefore, many different strategies have been proposed in the
literature to design efficient IS schemes [2, Chapter 2], [3,
Chapter 9].

One of the most powerful approaches is based on using
a population of proposal pdfs instead of a unique pdf. This
approach is usually known in the literature as multiple impor-
tance sampling (MIS), and several possible implementations
have been proposed [4, 5, 6]. In general, MIS strategies
provide more robust algorithms, since they do not entrust the
performance of the method to a single proposal. Moreover,
many adaptive importance sampling (AIS) algorithms have
been proposed in order to conveniently update this set of
proposals [7, 8, 9].

In this paper, we provide a general framework for sampling
and weighting in MIS schemes. First, we extend Liu’s notion of
properness [2, Section 2.5] from single IS to MIS. Then, three

different sampling approaches and five weighting functions
are described. Overall, six unique proper sampling/weighting
methods (three of them novel), altogether with two simple
rules to design additional valid schemes, are developed in the
paper. Finally, we establish a ranking of the different MIS
schemes in terms of the variance of the associated estimators,
showing that one of the discussed combinations outperforms
all the approaches available in the literature that we are
aware of. An extended version of this work, including all the
theoretical derivations (about the variance of the estimators and
the effective sample size of the different schemes), detailed
discussions on the different sampling/weighting methods, a
brief extension to the adaptive MIS scenario, and simulations
to quantify the amount of variance reduction, can be found in
[10].

This paper is structured as follows. In Section II we intro-
duce the concept of proper IS according to Liu and generalize
it for MIS schemes. Then, Sections III and IV describe several
valid sampling and weighting schemes, whereas Section V
summarizes the different unique sampling/weighting combina-
tions obtained. Finally, Section VI establishes a ranking among
the different schemes in terms of the variance of the associated
estimators, and Section VII concludes the work.

II. PROPER IMPORTANCE SAMPLING

Let us consider a system characterized by a vector of d,
unknown parameters, X € R and a set of d, observed data
related to the hidden parameters through some specific model,
y € R%. Our objective is to approximate the posterior pdf of
the parameters x given the data y,

taly) = Y

where ((y|x) is the likelihood function, h(x) is the prior pdf,
and Z(y) is the normalization factor.! A common problem is
then computing a moment g(x) of 7, i.e., solving the integral

1= /g(x)ﬁ(x)dx. 2)

In many cases, I cannot be computed because of the integral
itself or because 7 is not fully available (e.g., because Z =
J £(y|x)h(x)dx cannot be computed either).

x w(x|y) = L(y|x)h(x), (1)

In the sequel, in order to simplify the notation, the dependence on y is
removed, e.g., Z = Z(y).



In IS, N samples are drawn from the unique proposal pdf,
q, and properly weighted in order to build an estimator of [
[1, 2, 3]. Namely, the classical IS estimator is given by

| X
where x,, ~ ¢(x) and w,, = w(x,) = Z((;::))

The estimator of Eq. (3) is unbiased and its weights are
broadly used in the literature. However, this is not the unique
choice of weights. Liu, in [2, Section 2.5], states that a
weighted sample {x,,w,} drawn from a single proposal ¢
is proper if, for any square integrable function g,

Eqlg(x)w(x)]
Ey[r(x)]

i.e., w can be in any form as long as the condition of Eq. (4) is
fulfilled. Note that, for a deterministic weight assignment, the
only proper weights are the ones considered by the standard IS
approach, but many different proper weights could be designed
by defining an appropriate probabilistic weight function.

= Ex[g(x)], )

It is well known that the variance of I is directly related
to the discrepancy between 7(x)|g(x)| and ¢(x) [1, 11]. Since
the choice of a unique good proposal pdf is critical and can be
a very difficult task, in MIS, a set of proposal pdfs, {q, }\_;,
are used in order to obtain the samples. In this case, although
the MIS estimator is still given by Eq. (3), there is a large
number of possibilities for drawing and weighing the set of
samples {x,,}2__;, as we discuss in the following sections.

III. SAMPLING IN MULTIPLE IMPORTANCE SAMPLING

For the sake of clarity in the explanations, let us consider
that we draw NN samples from the set of proposals, i.e.,
the number of samples to be generated is identical to the
number of proposal pdfs. However, all the considerations can
be automatically extended to the generic case where M = kNN
samples (with £ > 1 and k € N) are drawn from each proposal.
Note also that the set of available proposal pdfs is, in principle,
unweighted, i.e., we do not know which ones provide a better
performance for the approximation of I. In this context, we
can consider that the samples will be drawn from a unique
equal-weighted mixture proposal composed of the N proposal
pdfs:

(x)

1 N
¥ 2 (). 5)
n=1

A. Selection of the proposal pdfs

We consider a sampling mechanism where we select
(randomly or not) the sequence of indexes of the proposals
Jji:N = J1,.-,JN, and then we draw the samples from the
corresponding proposals as X, ~ ¢j,(x). The full joint
distribution of all the samples and indexes is then given by

N N
p(xun,jun) = P(h) HP(jz'Uu—l)] [Hp(xi|ji)]7

(6)

and the graphical model associated to the sampling is depicted
in Fig. 1.

Fig. 1: Graphical model associated to the generic sampling
scheme.

In the sequel we describe three different mechanisms for
obtaining the sequence of indexes, ji.n, of the proposal pdfs:
two random mechanisms (with and without replacement) and
a deterministic scheme.

S1: Random index sampling with replacement. This is
the standard sampling scheme where N indexes are
independently drawn from the set {1,...,N}, ie.,
from the multinomial distribution defined by the N
possible values, each with probability 1/N. Therefore,
several j,’s may take the same value, i.e., there
may ultimately be more than one sample, x, for
n =1,..., N, generated from the same proposal pdf
and there may be proposal pdfs that are not used for
generating any samples.

S2: Random index sampling without replacement: In this
case, when an index is selected from the set of
available values, that particular index is discarded
for future generations of indexes. Note that with this
strategy, exactly one sample is drawn from each of the
proposal pdfs, i.e., the set of sampled indexes ji.n is
a permutation of the set {1,..., N}.

S3: Deterministic index selection (without replacement):
This sampling is a particular case of sampling S
where j, = n. Therefore, the n-th sample is always
drawn from gq,, i.e.,

X ~ qj, (X) = qn(X). (7

This particular index selection procedure has been
used by different algorithms in the MIS literature (e.g.,
APIS [9]), and it is also implicitly present in the
particle filtering literature (e.g., bootstrap PF [12]).

While the IS approach focuses just on the distribution of
the r.v. X,, in order to design the weight of the sample x,,,
here we are also interested in the distribution of the samples
regardless of their index n. The reason is that, in MIS schemes,
the N samples can be used jointly regardless of their specific
order of appearance. More precisely, we introduce a generic
r.v. defined as

X=X, with n~U{1,2,...,N}), ®)
where U ({1,2,...,N}) is the discrete uniform distribution
on the set {1,2,..., N}. Namely, the r.v. X is equal to X,,
chosen uniformly within the set {X;, ..., Xy }. Therefore, the



density of X is given by the expression?

1 N
F) =5 D pea (%), ©)
n=1

where py, (x) denotes the marginal pdf of X,, evaluated at
x. Note that, in the sampling schemes with random index
selection (S; and S;), we have f(x) = %Zﬁ;l P(x) =
¥(x), since px, (x) = ¥(x), whereas in the sampling with
deterministic index selection (Ss), since px,(x) = @¢n(x),
we have f(x) = %25:1 gn(x) = 1(x). Therefore, in
all the sampling schemes X is distributed according to the
mixture ¢(x), as expected. The following remark summarizes
the sufficient and necessary condition for any valid sampling
scheme within this framework.

Remark 1 (Sampling). In the proposed framework, we con-
sider valid any sequential sampling scheme for generating the
set {X1,...,XnN} such that the pdf of the rv. X defined in
Eq. (8) is given by 1. Further considerations about the r.v. X
and connections with variance reduction methods [1, 3] are
given in the appendix of [10].

IV. WEIGHTING IN MULTIPLE IMPORTANCE SAMPLING
A. Proper multiple importance sampling

Our approach is based on analyzing which weighting
functions yield proper estimators. We consider the definition
of properness of Liu, summarized in Eq. (4), and we generalize
it to the MIS scenario. This extension is not straightforward,
since there are several valid sampling procedures and, in
each of them, different conceptual interpretations of what is
the proposal pdf of each sample. Therefore, we propose a
generalized properness condition in the MIS scenario over the
whole estimator. Namely, given a specific sampling method,
we consider that the set of weighting functions {w, }2_; is
proper if

N
Byt sin) | % Lot Wng(%n)|

N
Ep(xlzNyjlzN) {% Zn:l wn}

This is equivalent to imposing the restriction

Epx1in 1v) [Zf}

Ep(x1.n1in) {Z:|
which is fulfilled if E[f] =1 and E[Z} = Z. Note that the
MIS properness is fulfilled by any set of weighting functions
{wn})_, that yield an unbiased generic estimator I, i.e.,
E[I] = I. Note also that this is a generalization of Liu-
properness, in the sense that all the weighting functions that
are Liu-proper also fulfill the restriction of Eq. (11), but the
opposite is not necessarily true.

= Ex[g(x)].  (10)

=1, (1)

In this framework, we impose the weight function to have

the (deterministic) structure w,, = sz(x(j{) 7. where 7 is the

target and pp, is a generic function parametrized by a set of

2We use a simplified argument-wise notation where f(x) denotes de pdf
of the r.v. X of Eq. (8).

parameters P,,.2 and both terms are evaluated at x,,. Note that
pp, represents the proposal pdf from which it is interpreted
that the n-th sample is drawn. It is on this interpretation of
what the proposal pdf used for the generation of the sample is
(the evaluation of the denominator in the weight calculation)
that different weighting strategies can be devised. Considering
the joint pdf of samples and indexes, given by Eq. (6) in the
proposed framework, the expectation of the generic estimator
I is given by

N
B = oy % [ TR by ot

X
i) o

12)

Then, we consider as valid any weighting scheme that results
in an unbiased estimator, as stated by the following remark.

Remark 2 (Weighting). In the proposed framework, we
consider valid any weighting scheme (i.e., any function ¢p,,
at the denominator of the weight) that yields E[I] = I in Eq.
(12).

B. General weighting functions

Here we present five possible generic functions, ¢p, , that
yield an unbiased estimator I. The functions pp, are said to
be generic because they are defined as distributions of X,, and
X, and therefore they yield different specific functions under
different valid sampling schemes (see Remark 2). 4

Wi pp, (xn) = p(Xn|j1:mn—1): It interprets the proposal
pdf as the conditional density of x, given all the
previous proposal indexes of the sequential sampling
process.

Wyt vp, (%,) = p(Xn|jn) = gj, (x,): It interprets that ¢
is the proposal g;, when the index j,, is known.

Wy vp, (x,) = p(xy,): It interprets that x,, is a realiza-
tion of the marginal p(x,,). This is probably the most
“natural” option (as it does not assume any further
knowledge in the generation of x,) and is a usual
choice for the calculation of the weights in some of
the existing MIS schemes.

Wit ¢p,(%n) = f(Xnljtn) = % Yn 1 @, (Xn): This
interpretation makes use of the distribution of the r.v.
X conditioned on the whole set of indexes.

Ws: pp, (xn) = f(xn) = % 22\21 i (%)

This option considers that all the x,, are realizations
of the r.v. X defined in Eq. (8) (see the appendix of
[10] for a thorough discussion of this interpretation).

Although some of the selected functions ¢p, may seem
more natural than others, all of them yield valid estimators.
The proofs can be found in the appendix of [10].

3The parametrization in ©p,, (xn) always corresponds to a subset (includ-
ing the empty set) of the sequence of indexes ji.n, i.e., Pn C {j1, ..., N}

4From now on, p(-) and f(-), which correspond to the pdfs of X, and X
respectively, are used as functions, and the argument represents a functional
evaluation.



TABLE I: Specific function, ¢p, , at the denominator of weight, w,, =

m(xu) _ resulting from the combination of the different

. . S . ) PPy (Xn)’
sampling schemes (Section III) and weighting functions (Section IV).
Wi Wo W3 Wy Ws
#Pn P(Xnlj1in—1) P(Xnljn) Pp(xn) F(xliaen) fx)
S1: with replacement ¥ (xr) [R3] Q5 (%) [R1] P (xr) [R3] % ZkN:1 95, (xn) [R2] P (xr) [R3]
S5 wio (random) 1 Sovkez, 9 %n) IN2T | g, (%) INIT | 9(x) N3] $(xn) N3] $(xn) N3]
S5 w/o (deterministic) Gr (Xn) [NI] Gn (%Xn) [N1] [ gn(xn) [NI] P(xn) N3] P(xn) N3]

TABLE II: Summary of the sampling procedure and the
weighting function of each MIS scheme.

[ MIS scheme [ Sampling | w(Xp) [ Usedin |
R1 s rn) Novel
L LIJ'T% (xr;,) ove
R2 S Tyl Novel
! %Z{Ll a5, (xn)
E s = I
e Ss Fricy 7]
N2 S R i €7 N Novel
2 ﬁ YVkeTy 9k (Xn)
N3 Ss T 19, 13]

V. MULTIPLE IMPORTANCE SAMPLING SCHEMES

In this section, we describe the different possible combi-
nations of the three sampling strategies considered in Section
IIT and the five generic weighting functions devised in Section
IV. Note that, although there are fifteen possibilities, they only
lead to six unique MIS methods. Table I shows the possible
combinations of sampling/weighting, indicating the function
pp, at the denominator of the weight and the resulting MIS
method within brackets. The six MIS methods are labeled
either by an R (indicating that the method uses sampling
with replacement) or with an N (denoting that the method
corresponds to a sampling scheme with no replacement).
We remark that these schemes are examples of proper MIS
techniques fulfilling Remarks 1 and 2, and that many other
choices could also be valid within this framework. Table II
summarizes the six unique schemes, providing the sampling
procedure for x,, and its associated weight w,. Figs. 2, 3,
and 4 show realizations of the sequence of indexes ji.n
(with N = 4) and the function ¢p_ at the denominator of
the weight, in the different MIS schemes corresponding to
sampling procedures &7, Sz, and S3, respectively.

VI. VARIANCE ANALYSIS

The six different MIS schemes that appear in this paper
are proper and thus yield an unbiased estimator /. However,
although obtaining an IS estimator with finite variance essen-
tially amounts to having a proposal with heavier tails than
the target (see [1, 14] for sufficient conditions that guarantee
this finite variance), the performance of estimators based
on different sampling/weighting schemes can be dramatically
different in terms of variance. In the following, we state two
theorems relating the variance of the different MIS schemes.

Available proposals:

(1 QER

jn (sampling): B B = ]
op, (%n) (weights): Bl [ | [4] 50}

(a) Scheme R1

(1 QEIR

Jn (sampling): B B [4] m

Available proposals:

or. (x,) (wveights) TN BEEE BEEEE BEEEE

(b) Scheme R2

(1 QEIR

Available proposals:

Jn (sampling): B B [4] 0]
@, (xn) (weights): [ 3 1E

(c) Scheme R3

Fig. 2: Example of a realization of the indexes selection
(N = 4) with the procedure S; (with replacement), and the
corresponding possible denominators for weighting: (a) R1:

PP, (Xn) = 4j, (Xn); (b) R2: @Pnj(vxn) = % ZkN:I Qjx (Xn);
(©) R3: ¢p, (xn) = ¥(%n) = 7 Dpy @k (%n)-

Theorem 1. For any target m, any square integrable function
o, N

g, and any set of proposal densities {q,},—_, such that the

variance of the corresponding MIS estimators is finite,

Var(lx) = Var(Iv) > Var(Izs) > Var(Iys)

Proof: See the appendix of [10]. O

Theorem 2. For any target 7, any square integrable function
g, and any set of proposal densities {qn}2_, such that the
variance of the corresponding MIS estimators is finite,

Var(fgl) = Var(fm) > Var(fgz) = Var(sz) > Var(fN3) (13)

Proof: See the appendix of [10]. O

Note that scheme N3 outperforms (in terms of variance)
any other MIS scheme in the literature that we are aware of.
Moreover, for N = 2, it also outperforms the other novel
schemes R2 and N2. While the MIS schemes R2 and N2 do
not appear in Theorem 1, we hypothesize that the conclusions
of Theorem 2 might be extended to N > 2.



Available proposals:

[ Qe

Ju (sampling): [4] ] 2
P, (xn) (weights):  [H] 1] [ |

(a) Scheme N1

[ EN

Jn (sampling): ] i [ |

Available proposals:

¢, (xn) (weights): I3 T |

(b) Scheme N2

(1 QER

Jjn (sampling): (4] m

Available proposals:

HH

p, (xn) (weights): I3 TE]

(c) Scheme N3

Fig. 3: Example of a realization of the indexes selection
(N = 4) with the procedure S, (without replacement),
and the corresponding possible denominators for weight-

ing: (@) N1: ¢p, (Xn) = ¢5,(00); (®) N2: @p, (%) =
ﬁ ZVkeIn qx(Xn); (€) N3: pp, (X,) = % Zk=1 qr(Xn).

(N EIN

jn (sampling): 1] B [4]

Available proposals:

©p, (xn) (weights): [l ] [4]

(a) Scheme N1

o EGE

Jn (sampling): i ] (4]

Available proposals:

#p, (xn) (weights): I3 T

(b) Scheme N3

Fig. 4: Indexes selection (N = 4) with the procedure S3
(without replacement), and the corresponding possible denom-
inators for weighting: (a) N1: @p, (x,) = gj, (Xp); (b) N3:

ep, (Xn) = V(Xn) = & S0e ar(xn).

VII. CONCLUSIONS

In this work, we have introduced a unified framework
for sampling and weighting in multiple importance sampling
(MIS). This framework extends Liu’s concept of a proper
weighted sample, enabling the design of a wide range of
valid sampling/weighting combinations. In particular, we have
described three specific sampling procedures and we have
proposed five types of generic weighting functions, leading to
six unique valid schemes (three of them novel). Moreover, we
have established a ranking of the different methods in terms
of the variance of the associated estimators.
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