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Abstract. Importance sampling methods are broadly used to approxi-
mate posterior distributions or some of their moments. In its standard
approach, samples are drawn from a single proposal distribution and
weighted properly. However, since the performance depends on the mis-
match between the targeted and the proposal distributions, several pro-
posal densities are often employed for the generation of samples. Under
this multiple importance sampling (MIS) scenario, many works have
addressed the selection and adaptation of the proposal distributions,
interpreting the sampling and the weighting steps in different ways. In
this paper, we establish a novel general framework for sampling and
weighting procedures when more than one proposal is available. The
most relevant MIS schemes in the literature are encompassed within
the new framework, and novel valid schemes appear naturally. All the
MIS schemes are compared and ranked in terms of the variance of the
associated estimators. Finally, we provide illustrative examples reveal-
ing that, even with a good choice of the proposal densities, a careful
interpretation of the sampling and weighting procedures can make a
significant difference in the performance of the method.

Key words and phrases: Monte Carlo Methods, Multiple Importance
Sampling, Bayesian Inference.

1. INTRODUCTION

Importance sampling (IS) is a well-known Monte Carlo technique that can be
applied to compute integrals involving target probability density functions (pdfs)
[Robert and Casella, 2004; Liu, 2004]. The standard IS technique draws samples
from a single proposal pdf and assigns them weights based on the ratio between
the target and the proposal pdfs, both evaluated at the sample value. The choice
of a suitable proposal pdf is crucial for obtaining a good approximation of the
target pdf using the IS method. Indeed, although the validity of this approach
is guaranteed under mild assumptions, the variance of the estimator depends
notably on the discrepancy between the shape of the proposal and the target
[Robert and Casella, 2004; Liu, 2004].

Therefore, several advanced strategies have been proposed in the literature to
design more robust IS schemes [Liu, 2004, Chapter 2], [Owen, 2013, Chapter 9],
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[Liang, 2002]. A powerful approach is based on using a population of different
proposal pdfs. This approach is often referred to as multiple importance sam-
pling (MIS) and several possible implementations have been proposed depending
on the specific assumptions of the problem, e.g. the knowledge of the normaliz-
ing constants, prior information of the proposals, etc [Veach and Guibas, 1995;
Hesterberg, 1995; Owen and Zhou, 2000; Tan, 2004; He and Owen, 2014; Elvira
et al., 2015a]. In general, MIS strategies provide more robust algorithms, since
they avoid entrusting the performance of the method to a single proposal. More-
over, many algorithms have been proposed in order to conveniently adapt the set
of proposals in MIS [Cappé et al., 2004, 2008; Martino et al., 2015a].

When a set of proposal pdfs is available, the way in which the samples can
be drawn and weighted is not unique, unlike the case of using a single pro-
posal. Indeed, different MIS algorithms in the literature (both adaptive and non-
adaptive) have implicitly and independently interpreted the sampling and weight-
ing procedures in different ways [Owen and Zhou, 2000; Cappé et al., 2004, 2008;
Elvira et al., 2015a; Martino et al., 2015a; Cornuet et al., 2012; Bugallo et al.,
2015]. Namely, there are several possible combinations of sampling and weighting
schemes, when a set of proposal pdfs is available, which lead to valid MIS ap-
proximations of the target pdf. However, these different possibilities can largely
differ in terms of performance of the corresponding estimators.

In this paper, we introduce a unified framework for MIS schemes, providing a
general theoretical description of the possible sampling and weighting procedures
when a set of proposal pdfs is used to produce an IS approximation. Within
this unified context, it is possible to interpret that all the MIS algorithms draw
samples from an equally-weighted mixture distribution obtained from the set of
available proposal pdfs. Three different sampling approaches and five different
functions to calculate the weights of the generated samples are proposed and
discussed. Moreover, we state two basic rules for possibly devising new valid
sampling and weighting strategies within the proposed framework. All the an-
alyzed combinations of sampling/weighting provide consistent estimates of the
parameters of interest.

The proposed generalized framework includes all of the existing MIS method-
ologies that we are aware of (applied within different algorithms, e.g. in [Elvira
et al., 2015a; Cappé et al., 2004; Cornuet et al., 2012; Martino et al., 2015a;
Bugallo et al., 2015]) and allows the design of novel techniques (here we propose
three new schemes, but more can be introduced). An exhaustive theoretical anal-
ysis is provided by introducing general expressions for sampling and weighting
in this generalized MIS context, and by proving that they yield consistent esti-
mators. Furthermore, we compare the performance of the different MIS schemes
(the proposed and the existing ones) in terms of the variance of the estimators.
A running example has been introduced in Section 3 and continued in Section 4,
Section 5, Section 6 and Section 8 in order to clarify the flow of the paper. In
addition, we perform numerical simulations on the running example, where the
proposal pdfs are intentionally well chosen, to evidence the significant effects pro-
duced by the different interpretations of the sampling and weighting schemes. We
illustrate the performance of all the methods by means of three other numerical
examples (including a high-dimensional nonlinear challenging setup), highlight-
ing the differences among the various MIS schemes in terms of performance and
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computational cost.
The rest of this paper is organized as follows. In Section 2, we describe the

problem and we revisit the standard IS methodology. In Section 3, we discuss the
sampling procedure in MIS, propose three new sampling strategies, and analyze
some distributions of interest. In Section 4, we propose five different weighting
functions, some of them completely new, and show their validity. The different
combinations of sampling/weighting strategies are analyzed in Section 5, estab-
lishing the connections with existent MIS schemes, and describing three novel MIS
schemes. In Section 6, we analyze the performance of the different MIS schemes
in terms of the variance of the estimators. Then, Section 7 discusses some rele-
vant aspects about the application of the proposed MIS schemes, including their
use in adaptive settings. Finally, Section 8 presents some descriptive numerical
examples where the different MIS schemes are simulated, and Section 9 contains
some concluding remarks.

2. PROBLEM STATEMENT AND BACKGROUND

Let us consider a system characterized by a vector of dx unknown parameters,
x ∈ Rdx , and a set of dy observed data made about the system, y ∈ Rdy .1 A
general objective is to extract the complete information about the latent state,
x, given the observations, y, by means of studying the posterior density function
(pdf) defined as

(2.1) π̃(x|y) =
`(y|x)h(x)

Z(y)
∝ π(x|y) = `(y|x)h(x),

where `(y|x) is the likelihood function, h(x) is the prior pdf, and Z(y) is the
normalization factor.2 The objective is to approximate the pdf of interest (referred
to as target pdf) by Monte Carlo-based sampling [Kong et al., 2003; Robert and
Casella, 2004; Liu, 2004; Owen, 2013]. The resulting approximation of π(x) will be
denoted as π̂(x) and will be attained using importance sampling (IS) techniques.

2.1 Standard importance sampling

Importance sampling is a general Monte Carlo technique for the approximation
of a pdf of interest by a random measure composed of samples and weights [Robert
and Casella, 2004]. In its original formulation, a set of N samples, {xn}Nn=1, is
drawn from a single proposal pdf, q(x), characterized by tails that are heavier
than those of the target pdf, π(x). A particular sample, xn, is assigned a weight,
wn, which measures the adequacy of that particular sample in the approximation
of the posterior pdf. Namely, this importance weight is given by

(2.2) wn =
π(xn)

q(xn)
, n = 1, . . . , N,

which represents the ratio between the target pdf, π, and the proposal pdf, q,
both evaluated at xn. The samples and the weights form the random measure

1Vectors are denoted by bold-faced letters, e.g., x, while regular-faced letters are used for
scalars, e.g., x.

2In the sequel, to simplify the notation, the dependence on y is removed, e.g., Z ≡ Z(y).
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χ = {xn, wn}Nn=1 that approximates the measure of the target pdf as

(2.3) π̂IS(x) =
1

NẐ

N∑
n=1

wnδxn(x),

where δxn(x) is the unit delta measure concentrated at xn and Ẑ = 1
N

∑N
j=1wj

is an unbiased estimator of Z =
∫
π(x)dx [Robert and Casella, 2004]. Fig. 1 (a)

displays an example of a target pdf and a proposal pdf, as well as the samples
and weights that form a random measure approximating the posterior.

 

 

Target pdf

Proposal pdf

Weighted samples

(a) Single proposal pdf (standard IS).
 

 

Target pdf

Proposal pdf #1

Proposal pdf #2

Weighted samples (pdf #1)

Weighted samples (pdf #2)

(b) Two proposal pdfs (MIS).

Fig 1. Approximation of the target pdf, π(x), by the random measure χ.

3. SAMPLING IN MULTIPLE IMPORTANCE SAMPLING

MIS-based schemes consider a set of N proposal pdfs,

{qn(x)}Nn=1 ≡ {q1(x), . . . , qN (x)}.

and proceed by generating M samples, {xm}Mm=1 (where M 6= N , in general)
from them and properly weighting the samples drawn. As a visual example, Fig.
1 (b) displays a target pdf and two proposal pdfs, as well as the samples and
weights that form a random measure approximating the posterior.

It is in the way that the sampling and the weighting are performed that different
variants of MIS can be devised. In this section, we focus on the generation of
samples {xm}Mm=1. For clarity in the explanations and the theoretical proofs, we
always consider M = N , i.e., the number of samples to be generated coincides
with the number of proposal pdfs. All the considerations can be automatically
extended to the case M = kN , with k ≥ 1 and k ∈ N.

Note that the use of the complete set of N proposal pdfs with no prior informa-
tion about them can also represent a single equally weighted mixture proposal,

(3.1) ψ(x) ≡ 1

N

N∑
n=1

qn(x).

The previous interpretation motivates some of the sampling and weighting schemes
discussed in this paper. Note that unequal weights could also be considered in
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the mixture, e.g. [He and Owen, 2014] shows how the weights can be optimized
to minimize the variance for a certain integrand.

3.1 Sampling from a mixture of proposal pdfs

In order to provide a better explanation of the discussed sampling procedures,
we employ a simile with the urn sampling problem. Let us consider an urn that
contains N balls, where each ball is assigned an index j ∈ {1, . . . , N}, representing
the j-th proposal of the complete set of available proposal pdfs, {qj(x)}Nj=1. Then,
a generic sampling scheme for drawing N samples from ψ(x) is given below.
Starting with n = 1:

1. Draw a ball from the urn, i.e., choose an index jn ∈ {1, . . . , N} using some
suitable approach. This corresponds to the selection of a proposal pdf, qjn .

2. Generate a sample xn from the selected proposal pdf, i.e., xn ∼ qjn(xn).
3. Set n = n+ 1 and go to step 1.

The graphical model corresponding to this sampling scheme is shown in Fig. 2.

. . . . . .

qjN(xN)qj3(x3)qj2(x2)qj1(x1)

j2 j3 jN

x2x1 x3 xN

j1

Fig 2. Graphical model associated to the generic sampling scheme.

Therefore, obtaining the set of samples {xn}Nn=1 ≡ {x1, ...,xN} from the mix-
ture pdf ψ is in general a two step sequential procedure. First, the n-th in-
dex jn is drawn according to some conditional pdf, P (jn|j1:n−1), where j1:n−1 ≡
{j1, . . . , jn−1} is the sequence of the previously generated indexes. 3 Then, the
n-th sample is drawn from the selected proposal pdf as xn ∼ p(xn|jn). The joint
probability distribution of the current sample and all the indexes used to generate
the samples from 1 to n is then

p(xn, j1:n) = P (j1:n−1)P (jn|j1:n−1)p(xn|jn)

= P (j1)

[
n∏
i=2

P (ji|j1:i−1)

]
qjn(xn),(3.2)

where p(xn|jn) = qjn(xn) for all n ∈ {1, . . . , N} is the conditional pdf of the n-th
sample given the n-th selected index, i.e., the selected proposal pdf, qjn(xn). The

3We use a simplified argument-wise notation, where p(xn) denotes the pdf of the continuous
random variable (r.v.) Xn, while P (jn) denotes the probability mass function (pmf) of the
discrete r.v. Jn. Also, p(xn, jn) denotes the joint pdf and p(xn|jn) is the conditional pdf of Xn

given Jn = jn. If the argument of p(·) is different from xn, then it denotes the evaluation of the
pdf as a function, e.g., p(z|jn) denotes the pdf p(xn|jn) evaluated at xn = z.
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full joint distribution of all samples and indexes is given by

p(x1:N , j1:N ) = P (j1)

[
N∏
i=2

P (ji|j1:i−1)

][
N∏
i=1

p(xi|ji)

]
.

(3.3)

3.2 Selection of the proposal pdfs

In the sequel, we describe three mechanisms for obtaining the sequence of
indexes, j1:N : two random schemes (with and without replacement) and a deter-
ministic procedure. The resulting sampling methods will be labeled as S1, S2,
and S3, respectively. All the mechanisms share the property that

(3.4)
1

N

N∑
n=1

P (Jn = k) =
1

N
, ∀k ∈ {1, . . . , N},

i.e., all the indexes have the same probability of being selected.

S1: Random index selection with replacement: This is the standard sampling
scheme, where N indexes are independently drawn from the set {1, . . . , N}
with equal probability. Thus, we have

(3.5) P (jn|j1:n−1) = P (jn) =
1

N
.

With this type of index sampling, there may be more than one sample
drawn from some proposals and proposal pdfs that are not used at all.

S2: Random index selection without replacement: In this case, when an index is
selected from the set of available values, that particular index is removed
from the urn. This means that indexes are uniformly and sequentially drawn
from different sets, i.e., j1 ∈ I1 = {1, . . . , N} and jn ∈ In = {1, . . . , N} \
{j1:n−1} for n = 2, . . . , N . Hence, the conditional probability mass function
(pmf) of the n-th index given the previous ones is now

P (Jn = k|j1:n−1) =


1

N − n+ 1
if k ∈ In,

0 if k /∈ In,
(3.6)

where |In| = N − n + 1. Note that the marginal pmf of the j-th index is
still given by (3.5).4 However, exactly one sample is drawn from each of the
proposal pdfs by following this strategy.

S3: Deterministic index selection without replacement: This sampling is a par-
ticular case of sampling S2, where a fixed deterministic sequence of in-
dexes is drawn. For instance, and without loss of generality: j1 = 1, j2 =
2, . . . , jn = n, . . . , jN = N . Therefore, xn ∼ qjn(xn) = qn(xn), and the
conditional pmf of the n-th index given the n− 1 previous ones becomes

(3.7) P (jn|j1:n−1) = P (jn) = 1jn=n,

4There are N ! equiprobable configurations (permutations) of the sequence {j1, . . . , jN}, and
in (N − 1)! the k-th index is drawn at the n-th position ∀k, n = 1, . . . , N . Therefore, P (Jn =

k) = (N−1)!
N !

= 1
N
∀k, n = 1, . . . , N .
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where 1 denotes the indicator function. Again, each of the N proposal
pdfs is used to generate exactly one sample of the set {xn}Nn=1. This index
selection procedure has been used by several MIS algorithms (e.g., APIS
[Martino et al., 2015a]), and it is also implicitly used in some particle filters
(PFs), such as the bootstrap PF [Gordon et al., 1993].

3.3 Connections with resampling methods

Resampling methods are used in PFs to replace a set of weighted particles with
another set of equally weighted particles. The way we address the sampling pro-
cess in MIS has clear connections with the resampling step in PFs (e.g., see [Douc
and Cappé, 2005]). An important difference of the proposed framework is that
the MIS proposals are equally weighted in the mixture. The sampling method S1

is then equivalent to the multinomial resampling, whereas the sampling methods
S2 and S3 correspond to residual resampling (note that, since M = N and all
the proposals are equally weighted, exactly one sample per proposal is drawn).
In future works, it would be interesting to analyze sampling schemes related to
residual, stratified and systematic resamplings, which can be incorporated quite
naturally in MIS schemes, when the weights of the proposals are different (see
for instance [He and Owen, 2014]).

3.4 Running example

Let us consider N = 3 Gaussian proposal pdfs q1(x) = N (x;µ1, σ
2
1), q2(x) =

N (x;µ2, σ
2
2) and q3(x) = N (x;µ3, σ

2
3) with predefined means and variances. In

S1, a possible realization of the indexes is the sequence {j1, j2, j3} = {3, 3, 1}.
Therefore, in this situation, x1 ∼ q3, x2 ∼ q3, and x3 ∼ q1. In S2, the realization
could result from the permutation {j1, j2, j3} = {3, 1, 2}. In S3, the sequence is
deterministically obtained as {j1, j2, j3} = {1, 2, 3}.

3.5 Distributions of interest of the n-th sample, xn

In the following, we discuss some important distributions related to the set of
samples drawn. These distributions are of utmost importance to understand the
different methods for weighting the samples discussed in the following section.

Firstly, note that the distribution of the n-th sample given all the knowledge
of the process up to that point is p(xn|j1:n−1,x1:n−1) = p(xn|j1:n−1). In the
random index selection with replacement (S1), this distribution corresponds to
p(xn|j1:n−1) = ψ(xn). For the random index selection without replacement (S2),
we have p(xn|j1:n−1) = 1

|In|
∑
∀k∈In qk(x). Finally, under the deterministic index

selection scheme (S3), p(xn|j1:n−1) = qn(xn).
Once the n-th index jn has been selected, the n-th sample, xn, is distributed

as p(xn|jn) = qjn(xn) in any sampling method within the proposed framework.
The marginal distribution of this n-th sample, xn, is then given by

(3.8) p(xn) =
N∑
k=1

qk(xn)P (Jn = k),

where we have used the fact that p(xn|Jn = k) = qk(xn), and the marginal distri-
bution, P (Jn = k), depends on the sampling method. When randomly selecting
the indexes (with (S1) or without (S2) replacement), P (Jn = k) = 1

N ,∀n, k, and

thus p(xn) = 1
N

∑N
k=1 qk(xn) = ψ(xn). In the case of the deterministic index
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selection (S3), P (Jn = k) = 1k=n, and thus p(xn) = qn(xn), i.e., the distribution
of the r.v. Xn is the n-th proposal pdf, and not the whole mixture as in the other
two sampling schemes with random index selection.

3.6 Distributions of interest beyond xn

The traditional IS approach focuses just on the distribution of the r.v. Xn,
whereas we are also interested in the distribution of the samples regardless of
their index n. The reason is that, in MIS schemes, the N samples can be used
jointly regardless of their order of appearance. Hence, we introduce a generic r.v.,

(3.9) X = Xn with n ∼ U{1, 2, . . . , N},
where U{1, 2, . . . , N} is the discrete uniform distribution on the set {1, 2, . . . , N}.
The density of X is then given by

(3.10) f(x) =
1

N

N∑
n=1

pxn(x) = ψ(x),

where pxn(x) denotes the marginal pdf of Xn, given by Eq. (3.8), evaluated at
x, and ψ(x) is the mixture pdf.5 Moreover, one can also obtain the conditional
pdf of X given the sequence of indexes as

(3.11) f(x|j1:N ) =
1

N

N∑
k=1

pxk(x|j1:N ) =
1

N

N∑
k=1

qjk(x).

Note that, in this case, f(x|j1:N ) = ψ(x) for the schemes without replacement at
the index selection (S2 and S3), but f(x|j1:N ) = 1

N

∑N
n=1 qjn(x) for the case with

replacement (S1), i.e., conditioned to the selection of the indexes, some proposal
pdfs may not appear while others may appear repeated.

Remark 3.1. (Sampling): In the proposed framework, we consider valid, any
sequential sampling scheme for generating the set {X1, . . . ,XN} such that the pdf
of the r.v. X defined in Eq. (3.9) is given by ψ(x). Further considerations about
the r.v. X and connections with variance reduction methods [Robert and Casella,
2004; Owen, 2013] are given in Appendix A.

Table 5 (in the Appendix) summarizes all the distributions of interest. Note
that, the pdf of the r.v. X is always the mixture ψ(x), but different sampling
procedures yield different conditional and marginal distributions that will be
exploited to justify different strategies for calculation of the importance weights
in the next section. Finally, the last row of the table shows the joint distribution
p(x1:N ) of the variables X1, . . . ,XN , i.e., p(x1:N ) =

∏N
n=1 ψ(xn) and p(x1:N ) =∏N

n=1 qn(xn) for the sampling with replacement (S1) and deterministic selection
(S3), respectively. For the sampling without replacement and random selection
this joint distribution is

(3.12) p(x1:N ) = ψ(x1)
N∏
n=2

1

|In|
∑
`∈In

q`(xn),

with In = {1, . . . , N} \ {j1:n−1}.
5For the sake of clarity, in Eq. (3.10) we have used the notation pxn(x), instead of p(x) as in

Eq. (3.8) and the rest of the paper, to denote the marginal pdf of Xn evaluated at x.
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4. WEIGHTING IN MULTIPLE IMPORTANCE SAMPLING

Let us consider the integral I =
∫
g(x)π(x)dx, where π(x) is the target dis-

tribution and g is any square integrable function w.r.t. π(x). The generic IS
estimator of I is given by

(4.1) Î =
1

NZ

N∑
n=1

wng(xn)

where wn is the importance weight of the n-th sample, xn, and Z =
∫
π(x)dx

is the normalizing constant. In standard IS, when Z is known, Î is an unbiased
estimator of I. Otherwise, if the target distribution is only known up to the
normalizing constant, Z, then one can estimate it as

Ẑ =
1

N

N∑
n=1

wn,(4.2)

which is an unbiased estimator and asymptotically consistent with the number
of samples under some mild assumptions regarding the tails of the proposal and
target distributions [Robert and Casella, 2004]. Therefore, Î is also asymptotically
consistent, even when Z is unknown and is replaced with Ẑ instead [Robert and
Casella, 2004].

The weight assigned to the n-th sample is proportional to the ratio between the
target pdf evaluated at the sample value, π(xn), and the proposal pdf evaluated
at the sample value, i.e.,

(4.3) wn =
π(xn)

ϕPn(xn)
,

where the generic function ϕPn represents the proposal pdf from which it is
interpreted that the n-th sample is drawn. This function may be parameterized
by a subset or the entire sequence of indexes j1:N , i.e., Pn ⊆ {j1, ..., jN} (further
details are given below).

It is on this interpretation of what the proposal pdf used for the generation of
the sample is (the evaluation of the denominator in the weight calculation) that
different weighting strategies can be devised.

4.1 Mathematical justification

Our approach is based on analyzing which weighting functions yield proper
MIS estimators. We propose a generalized properness condition in the MIS sce-
nario over the whole estimator. This perspective has some connections with the
definition of properly weighted sampled proposed in [Liu, 2004, Section 2.5] (see
Section 4.3) for further details).

In particular, we consider that the set of weighting functions {wn}Nn=1 is proper
if

Ep(x1:N ,j1:N )

[
1
N

∑N
n=1wng(xn)

]
Ep(x1:N ,j1:N )

[
1
N

∑N
n=1wn

] = Eπ[g(x)].(4.4)
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This is equivalent to impose the restriction

Ep(x1:N ,j1:N )

[
ZÎ
]

Ep(x1:N ,j1:N )

[
Ẑ
] = I,(4.5)

which is fulfilled if E[Î] = I and E[Ẑ] = Z. Note that the MIS properness
is fulfilled by any set of weighting functions {wn}Nn=1 that yield an unbiased

generic estimator Î, i.e., E[Î] = I. At this point, in order to narrow down the
set of all possible proper functions, we impose the weight function to have the

(deterministic) structure wn = π(xn)
ϕPn (xn) , where π(xn) is the target density and

ϕn(xn) is a generic function parametrized by a set of parameters Pn, and both

terms are evaluated at xn.6 The expectation of the generic estimator Î of Eq.
(4.1) can be computed as

E[Î] =
1

ZN

N∑
n=1

∑
j1:N

∫
π(xn)g(xn)

ϕPn(xn)
P (j1:N )p(xn|jn)dxn,(4.6)

where we use the joint distribution of indexes and samples from Eq. (3.2).

Remark 4.1. (Weighting): In the proposed framework, we consider valid any
weighting scheme (i.e., any function ϕPn at the denominator of the weight) that
yields E[Î] ≡ I in Eq. (4.6).

In the following, we show that various distributions related to the generation
of the samples (discussed in Section 3) can be used as the denominator of the
weight ϕPn , yielding valid estimators.

4.2 Weighting functions

Here we present several possible functions ϕPn , that yield an unbiased esti-
mator of I according to Eq. (4.6). The different choices for ϕPn come naturally
from the sampling densities discussed in the previous section. More precisely, they
correspond to the appropriate evaluation at xn of the five different functions in
Table 5 related to the distributions of the generated samples. From now on, p(·)
and f(·), which correspond to the pdfs of Xn and X respectively, are used as
functions and the argument represents a functional evaluation.

W1: ϕPn(xn) = ϕj1:n−1(xn) = p(xn|j1:n−1)
Since the sampling process is sequential, this option is of particular interest.
It interprets the proposal pdf as the conditional density of xn given all the
previous proposal indexes of the sampling process.

W2: ϕPn(xn) = ϕjn(xn) = p(xn|jn) = qjn(xn)
It interprets that if the index jn is known, ϕ is the proposal qjn .

W3: ϕPn(xn) = p(xn)
It interprets that xn is a realization of the marginal p(xn). This is probably
the most “natural” option (as it does not assume any further knowledge in
the generation of xn) and is a usual choice for the calculation of the weights
in some of the existing MIS schemes (see Section 5).

6Note that, in an even more generalized framework, the n-th weight wn could hypothetically
depend on more than one sample of the set x1:N if one could properly design the function ϕn
that yields valid estimators.
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Table 1
Summary of the different generic functions ϕPn . The distributions depend on the specific

sampling scheme used for drawing the samples as shown in Table 6.

ϕPn

W1 W2 W3 W4 W5

p(xn|j1:n−1) p(xn|jn) p(xn) f(x|j1:N ) f(x)

wn = π(xn)
ϕPn (xn)

π(xn)
p(xn|j1:n−1)

π(xn)
p(xn|jn)

π(xn)
p(xn)

π(xn)
f(xn|j1:N )

π(xn)
f(xn)

W4: ϕPn(xn) = ϕj1:N (xn) = f(xn|j1:N ) = 1
N

∑N
k=1 qjk(xn)

This interpretation makes use of the distribution of the r.v. X conditioned
on the whole set of indexes (defined in Section 3.6).

W5: ϕPn(xn) = ϕ(xn) = f(xn) = 1
N

∑N
k=1 qk(xn)

This option considers that all the xn are realizations of the r.v. X defined
in Section 3.6 (see Appendix A for a thorough discussion of this interpre-
tation).

Although some of the selected functions ϕPn may seem more natural than
others, all of them yield valid estimators. The proofs can be found in Appendix
B. Table 1 summarizes the discussed functions ϕPn that can be used to evaluate

the denominator for the weight calculation, wn = π(xn)
ϕPn (xn) . Other proper weighting

functions are described in Section 7.2.

4.3 Connection with Liu-properness of single IS

We consider the definition of properness by Liu [Liu, 2004, Section 2.5] and we
extend (or relax) it to the MIS scenario. Namely, Liu-properness in standard IS
states that a weighted sample {xn, wn} drawn from a single proposal q is proper
if, for any square integrable function g,

Eq[g(x)w(x)]

Eq[π(x)]
= Eπ[g(x)],(4.7)

i.e., w can be in any form as long as the condition of Eq. (4.7) is fulfilled. Note
that, for a deterministic weight assignment, the only proper weights are the ones
considered by the standard IS approach. Note also that the MIS properness is a
relaxation of the one proposed by Liu, i.e., any Liu-proper weighting scheme is
also proper a according to our definition, but not vice versa.

4.4 Running example

Here we follow the running example of Section 3.4. For instance, let us consider
the sampling method S1 and let the realization of the indexes be the sequence
{j1, j2, j3} = {3, 3, 1}. Under the weighting scheme W2, the weights would be

computed as w1 = π(x1)
q3(x1) , w2 = π(x2)

q3(x2) , and w3 = π(x3)
q1(x3) . However, under W4,

w1 = π(x1)
1
3

(q1(x1)+2q3(x1))
, w2 = π(x2)

1
3

(q1(x2)+2q3(x2)
, and w3 = π(x3)

1
3

(q1(x3)+2q3(x3))
.

5. MULTIPLE IMPORTANCE SAMPLING SCHEMES

In this section, we describe the different possible combinations of the sampling
strategies considered in Section 3 and the weighting functions devised in Sec-
tion 4. We note that, even though we have discussed three sampling procedures
and five alternatives for weight calculation, once combined the fifteen possibili-
ties only lead to six unique MIS methods. Three of the methods are associated
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to the sampling scheme with replacement (S1), while the other three methods
correspond to the sampling schemes without replacement (S2 and S3). Note that
for each specific sampling (i.e., with or without replacement), different weighting
options can yield the same function in the denominator (e.g. for the deterministic
sampling without replacement, S3, the denominators for weighting options 1, 2
and 3 are identical, always yielding wn = π(xn)

qn(xn)). Table 6 summarizes the possi-

ble combinations of sampling/weighting and indicates the resulting MIS method
within brackets. The six MIS methods are labeled either by an R indicating that
the method uses sampling with replacement or with an N to denote that the
method corresponds to a sampling scheme with no replacement. We remark that
these schemes are examples of proper MIS techniques fulfilling Remarks 3.1 and
4.1.

5.1 MIS schemes with replacement

In all R schemes, the n-th sample is drawn with replacement (i.e., S1) from the
whole mixture ψ:

[R1]: Sampling with replacement, S1, and weight denominator W2:
For the weight calculation of the n-th sample, only the mixand selected for
generating the sample is evaluated in the denominator.

[R2]: Sampling with replacement, S1, and weight denominator W4:
With the N selected indexes jn, for n = 1, ..., N , one forms a mixture
composed by all the corresponding proposal pdfs. The weight calculation
of the n-th sample considers this a posteriori mixture evaluated at the n-th
sample in the denominator, i.e., some proposals might be used more than
once while other proposals might not be used.

[R3]: Sampling with replacement, S1, and weight denominator W1, W3, or W5:
For the weight calculation of the n-th sample, the denominator applies the
value of the n-th sample to the whole mixture ψ composed of the set of
initial proposal pdfs (i.e., the function in the denominator of the weight
does not depend on the sampling process). This is the approach followed
by the so called mixture PMC method [Cappé et al., 2008].

5.2 MIS schemes without replacement

In all N schemes, exactly one sample is generated from each proposal pdf. This
corresponds to having a sampling strategy without replacement.

[N1]: Sampling without replacement (random or deterministic), S2 or S3, and
weight denominator W2 (for S2) or W1, W2, or W3 (for S3):
For calculating the denominator of the n-th weight, the specific mixand used
for the generation of the sample is used. This is the approach frequently
used in particle filtering [Gordon et al., 1993] and in the standard PMC
method [Cappé et al., 2004].

[N2]: Sampling without replacement (random), S2, and weight denominator W1:
This MIS implementation draws one sample from each mixand, but the
order matters (it must be random) since the calculation of the n-th weight
uses for the evaluation of the denominator the mixture pdf formed by the
proposal pdfs that were still available at the generation of the n-th sample.

[N3]: Sampling without replacement (random or deterministic), S2 or S3, and
weight denominator W3, W4, or W5 (for S2), or W4 or W5 (for S3):
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Table 2
Summary of the sampling procedure and the weighting function of each MIS scheme.

MIS scheme Sampling w(xn) Used in

R1 S1 π(xn)
qjn (xn)

Novel

R2 S1 π(xn)
1
N

∑N
k=1

qjk
(xn)

Novel

R3 S1 π(xn)
ψ(xn)

[Cappé et al., 2008]

N1 S3 π(xn)
qn(xn)

[Cappé et al., 2004]

N2 S2 π(xn)
1
|In|

∑
∀k∈In qk(xn)

Novel

N3 S3 π(xn)
ψ(xn)

[Martino et al., 2015a; Cornuet et al., 2012]

In the calculation of the n-th weight, one uses for the denominator the whole
mixture. This is the approach, for instance, of [Martino et al., 2015a; Cor-
nuet et al., 2012]. As showed in Section 6, this scheme has several benefits
over the others.

Table 2 summarizes the six resulting MIS schemes and their references in liter-
ature, indicating the sampling procedure and weighting function that are applied
to obtain the n-th weighted sample xn. We consider N1 and N3 associated to S3

(they can also be obtained with S2) since it is a simpler sampler than S2.
Within the proposed framework, we have considered three sampling procedures

and five general weighting functions. All the different algorithms in the literature
(that we are aware of) correspond to one of the MIS schemes described above.
Section 7.3 provides more details about the MIS schemes used by the different
algorithms available in literature. Several new valid schemes have also appeared
naturally. Namely, schemes R1, R2, and N2 are novel, and their advantages and
drawbacks are analyzed in the following sections. Furthermore, following the sam-
pling and weighting remarks provided above, new proper MIS schemes can easily
be proposed within this framework.

5.3 Running example

Let us consider the example from Section 3.4 where the realizations of the
sequence of indexes for the samplings schemes S1, S2, and S3 are respectively
{j1, j2, j3} = {3, 3, 1}, {j1, j2, j3} = {3, 1, 2}, and {j1, j2, j3} = {1, 2, 3}. Figure 3
shows the three first schemes of Table 2 related to the sampling with replacement,
S1. The figure shows a possible realization of all MIS schemes with M = N = 3
samples and pdfs. For the n-th sample, we show the set of available proposals,
the index jn of the proposal pdf that was actually selected to draw the sample,
the function ϕn, and the importance weight. Similarly, Fig. 4 depicts the three
schemes of Table 2 related to the sampling without replacement, S2 and S3, where
exactly one sample is drawn from each of the proposal pdfs of the available set.
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Available proposals:

jn (index sampling):

xn (sampling):

ϕn(x) (denominator):

wn (weights):

1 2 3 1 2 3 1 2 3

3 3 1

x1 ∼ q3 x2 ∼ q3 x3 ∼ q1

q3(x) q3(x) q1(x)

π(x1)
q3(x1)

π(x2)
q3(x2)

π(x3)
q1(x3)

(a) Scheme R1

Available proposals:

jn (index sampling):

xn (sampling):

ϕn(x) (denominator):

wn (weights):

1 2 3 1 2 3 1 2 3

3 3 1

x1 ∼ q3 x2 ∼ q3 x3 ∼ q1

1
3

(
q3(x)+q3(x)+q1(x)

)
1
3

(
q3(x)+q3(x)+q1(x)

)
1
3

(
q3(x)+q3(x)+q1(x)

)
π(x1)

1
3
(q3(x1)+q3(x1)+q1(x1))

π(x2)
1
3
(q3(x2)+q3(x2)+q1(x2))

π(x3)
1
3
(q3(x3)+q3(x3)+q1(x3))

(b) Scheme R2

Available proposals:

jn (index sampling):

xn (sampling):

ϕn(x) (denominator):

wn (weights):

1 2 3 1 2 3 1 2 3

3 3 1

x1 ∼ q3 x2 ∼ q3 x3 ∼ q1

1
3

(
q1(x)+q2(x)+q3(x)

)
1
3

(
q1(x)+q2(x)+q3(x)

)
1
3

(
q1(x)+q2(x)+q3(x)

)
π(x1)

1
3
(q1(x1)+q2(x1)+q3(x1))

π(x2)
1
3
(q1(x2)+q2(x2)+q3(x2))

π(x3)
1
3
(q1(x3)+q2(x3)+q3(x3))

(c) Scheme R3

Fig 3. Example of a realization of the indexes selection (N = 3) with the procedure S1 (with
replacement), and the corresponding possible denominators for weighting: (a) [R1]: ϕn(xn) =
qjn(xn); (b) [R2]: ϕn(xn) = 1

N

∑N
k=1 qjk (xn); (c) [R3]: ϕn(xn) = ψ(xn) = 1

N

∑N
k=1 qk(xn).
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Available proposals:

jn (index sampling):

xn (sampling):

ϕn(x) (denominator):

wn (weights):

1 2 3

1 2 3

x1 ∼ q1 x2 ∼ q2 x3 ∼ q3

q1(x) q2(x) q3(x)

π(x1)
q1(x1)

π(x2)
q2(x2)

π(x3)
q3(x3)

(a) Scheme N1

Available proposals:

jn (index sampling):

xn (sampling):

ϕn(x) (denominator):

wn (weights):

1 2 3 1 2 2

3 1 2

x1 ∼ q3 x2 ∼ q1 x3 ∼ q2

1
3

(
q1(x)+q2(x)+q3(x)

)
1
2

(
q1(x)+q2(x)

)
q2(x)

π(x1)
1
3
(q1(x1)+q2(x1)+q3(x1))

π(x2)
1
2
(q1(x2)+q2(x2))

π(x3)
q2(x3)

(b) Scheme N2

Available proposals:

jn (index sampling):

xn (sampling):

ϕn(x) (denominator):

wn (weights):

1 2 3

1 2 3

x1 ∼ q1 x2 ∼ q2 x3 ∼ q3

1
3

(
q1(x)+q2(x)+q3(x)

)
1
3

(
q1(x)+q2(x)+q3(x)

)
1
3

(
q1(x)+q2(x)+q3(x)

)
π(x1)

1
3
(q1(x1)+q2(x1)+q3(x1))

π(x2)
1
3
(q1(x2)+q2(x2)+q3(x2))

π(x3)
1
3
(q1(x3)+q2(x3)+q3(x3))

(c) Scheme N3

Fig 4. Example of a realization of the indexes selection (N = 3) with the procedure S1 and
S2 (without replacement), and the corresponding possible denominators for weighting: (a) [N1]:
ϕn(xn) = qn(xn); (b) [N2]: ϕn(xn) = 1

|In|
∑
∀k∈In qk(xn); (c) [N3]: ϕn(xn) = 1

N

∑N
k=1 qk(xn).
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6. VARIANCE ANALYSIS OF THE SCHEMES

In this section we provide an exhaustive variance analysis of the MIS schemes
presented in the previous section. A central objective in importance sampling
entails the computation of a particular moment of r.v. with pdf π̃(x) = π(x)

Z .
For sake of completeness of this section, let us revisit the general forms of the
estimators. We recall that the goal is approximating

(6.1) I =
1

Z

∫
g(x)π(x)dx,

where g can be any square integrable function of x [Liu, 2004].
In standard importance sampling, the moment in Eq. (6.1) can be estimated

by drawing N independent samples xn from a single proposal density q(x) and
building the estimator

(6.2) Ĩ =
1

NẐ

N∑
n=1

wng(xn),

where wn = π(xn)
q(xn) for n = 1, ..., N , and Ẑ = 1

N

∑N
j=1wj . Under mild assumptions

about the tails of the distributions, Î provides a consistent estimator of I [Robert
and Casella, 2004]. If the normalizing constant Z of the target π(x) is known,
the estimator

(6.3) Î =
1

NZ

N∑
n=1

wng(xn),

is also unbiased [Robert and Casella, 2004; Liu, 2004]. Furthermore, it is well
known that the variance of both estimators is directly related to the discrepancy
between π̃(x)|g(x)| and q(x) (for a specific choice of g) [Robert and Casella, 2004;
Kahn and Marshall, 1953]. For a general g, a common strategy is decreasing the
mismatch between the proposal q(x) and the target π̃(x).

In MIS, a set of N proposal pdfs {qn(x)}Nn=1 is used to draw the N samples.
While the MIS estimators preserve the same structure as in Eqs. (6.2) and (6.3),
the way the samples are drawn (see the sampling procedures in Section 3) and the
function used for the weight calculation (see Section 4) can make a substantial
difference in the performance. In fact, although the six different MIS schemes
that appear in Section 5 yield an unbiased estimator (see Appendix B), the
performance of that estimator can be dramatically different. In the following, we
focus on the variance of the unbiased estimator Î of Eq. (6.3) in all the studied
schemes. The details of the derivations are in Appendix C.2. In particular, the
estimators of the three methods with replacement present the following variances

Var(ÎR1) =
1

Z2N2

N∑
k=1

∫
π2(x)g2(x)

qk(x)
dx− I2

N
,(6.4)

Var(ÎR2) =
1

Z2N

1

NN

∑
j1:N

∫
π2(x)g2(x)

f(x|j1:N )
dx

− 1

Z2N2

1

NN

∑
j1:N

N∑
n=1

(∫
π(xn)g(xn)

f(xn|j1:N )
qjn(xn)dxn

)2

,(6.5)
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and

Var(ÎR3) =
1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx− I2

N
.(6.6)

On the other hand, the variances associated to the estimators of the three meth-
ods without replacement are

Var(ÎN1) =
1

Z2N2

N∑
n=1

∫
π2(xn)g2(xn)

qn(xn)
dxn −

I2

N
,(6.7)

Var(ÎN2) =

 1

Z2N2

N∑
n=1

∑
j1:n−1

∫
π2(xn)g2(xn)

p(xn|j1:n−1)
P (j1:n−1)dxn


−

 1

Z2N2

N∑
n=1

∑
j1:n

(∫
π(xn)g(xn)

p(xn|j1:n−1)
qjndxn

)2
P (j1:n),

(6.8)

and

Var(ÎN3) =
1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx− 1

Z2N2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

.(6.9)

One of the goals of this paper is to provide the practitioner with solid theoret-
ical results about the superiority of some specific MIS schemes. In the following,
we state two theorems that relate the variance of the estimator with these six
methods, establishing a hierarchy among them. Note that obtaining an IS esti-
mator with finite variance essentially amounts to having a proposal with heavier
tails than the target. See [Robert and Casella, 2004; Geweke, 1989] for sufficient
conditions that guarantee this finite variance.

Theorem 6.1. For any target distribution π(x), any square integrable func-
tion g, and any set of proposal densities {qn(x)}Nn=1 such that the variance of the
corresponding MIS estimators is finite,

V ar(ÎR1) = V ar(ÎN1) ≥ V ar(ÎR3) ≥ V ar(ÎN3)

Proof: See Appendix C.2.

Theorem 6.2. For any target distribution π(x), any square integrable func-
tion g, and any set of proposal densities {qn(x)}2n=1 such that the variance of the
corresponding MIS estimators is finite,

(6.10) V ar(ÎR1) = V ar(ÎN1) ≥ V ar(ÎR2) = V ar(ÎN2) ≥ V ar(ÎN3)

Proof: See Appendix C.3.
First, let us note that the scheme N3 outperforms (in terms of the variance) any

other MIS scheme in the literature that we are aware of. Moreover, for N = 2,
it also outperforms the other novel schemes R2 and N2. While the MIS schemes
R2 and N2 do not appear in Theorem 6.1, we hypothesize that the conclusions of
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Theorem 6.2 might be extended to N > 2. The intuitive reason is that, regardless
of N , both methods partially reduce the variance of the estimators by placing
more than one proposal at the denominator of some or all the weights.

The variance analysis of Ĩ in Eq. (6.2) implies a ratio of dependent r.v.’s, and
therefore, it cannot be performed without resorting to an approximation, e.g., by
means of a Taylor expansion as it is performed in [Kong, 1992; Kong et al., 1994;
Owen, 2013]. In this case, the bias of Ĩ is usually considered negligible compared
to the variance for large N . With this approximation, the variance depends on the
variances of the numerator (which is a scaled version of Î), the variance of Ẑ, and
the covariance of both. Therefore, although we prove several relations in terms
of the variance for Î and Ẑ, the same conclusions for the normalized estimator
ÎMIS cannot strictly be proved in the general case. However, it is reasonable to
assume that methods that reduce the variance of Î and Ẑ, in general will also
reduce the variance of Ĩ. In Section 8, this hypothesis is reinforced by means of
numerical simulations.

6.1 Running example: Estimation of the normalizing constant in MIS

Here we focus on computing the exact variances of estimators related to the
running example. We simplify the case study to N = 2 proposals, for the sake for
conciseness in the proofs. The proposal pdfs are then q1(x) = N (x;µ1, σ

2) and
q2(x) = N (x;µ, σ2) with means µ1 = −3 and µ2 = 3, and variance σ2 = 1. We
consider a normalized bimodal target pdf π(x) = 1

2N (x; ν1, c
2
1)+ 1

2N (x; ν2, c
2
2) and

set ν1 = µ1, ν2 = µ2, and c2
1 = c2

2 = σ2. Then, both proposal pdfs can be seen as
a whole mixture that exactly replicates the target, i.e., π(x) = 1

2q1(x) + 1
2q2(x).

This is the desired situation pursued by an AIS algorithm: Each proposal is
centered at each target mode, and the scale parameters perfectly match the scale
of the modes. The goal consists in estimating the normalizing constant with the
six schemes described in Section 5. We use the Ẑ estimator of Eq. (4.2) and the
estimator Î of (4.1) when g = x, both with N = 2 samples. The closed-form
variance expressions of the six schemes are presented in the following:

The variances of the estimators of the normalizing constant (true value Z =∫
π(x)dx = 1) are given by

Var(ẐR1) = Var(ẐN1) =
3 + exp

(
4µ2

σ2

)
8

− 1

2
=

exp (36)− 1

8
≈ 5.4 · 1014,

Var(ẐR2) = Var(ẐN2) =
3 + exp

(
4µ2

σ2

)
16

− 1

4
=

exp (36)− 1

16
≈ 2.7 · 1014,

and

Var(ẐR3) = Var(ẐN3) = 0.

The variances of the estimators of the target mean (true value I =
∫
xπ(x)dx =
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0) are given by

Var(ÎR1) = Var(ÎN1) =
3(σ2 + µ2)

8
+
σ2 + 9µ2

8
exp

(
4µ2

σ2

)
=

30

8
+

82

8
exp (36) ≈ 4.42 · 1016,

Var(ÎR2) = Var(ÎN2) =
3(σ2 + µ2)

16
+
σ2 + 9µ2

16
exp

(
4µ2

σ2

)
+
σ2

4

=
30

16
+

82

16
exp (36) +

1

4
≈ 2.21 · 1016,

Var(ÎR3) =
σ2 + µ2

2
= 5,

and

Var(ÎN3) =
σ2

2
=

1

2

The derivations can be found in Appendix C.4. We observe that, for a very sim-
ple bimodal scenario where the proposals are perfectly placed in the target modes,
the schemes R3 and N3 present a good performance while the other schemes do
not work.

7. APPLYING THE MIS SCHEMES

7.1 Computational complexity

In previous section, we have compared the MIS schemes in terms of perfor-
mance, whereas here we discuss their computational complexity. Table 3 com-
pares the total number of target and proposal evaluations in each MIS scheme.
First, note that the estimators of any MIS scheme within the proposed general
framework use N weighted samples where the general weight is given by Eq.
(4.3).7 Therefore, all of them perform N target evaluations in total. However,
depending on the function ϕPn used by each specific scheme at the weight de-
nominator, a different number of proposal evaluations is performed. We see that
R3, and N3 always yield the largest number of proposal evaluations. In R2, the
number of proposal evaluations is variable: although each weight evaluates N
proposals, some proposals may be repeated, whereas others may not be used.

In many relevant scenarios, the cost of evaluating the proposal densities is
negligible compared to the cost of evaluating the target function. In this scenario,
the MIS scheme N3 should always be chosen, since it yields a lower variance with a
negligible increase in computational cost. For instance, this is the case in the Big
Data Bayesian framework, where the target function is a posterior distribution
with many data in the likelihood function. However, in some other scenarios, e.g.
when the number of proposals N is too large and/or the target evaluations are
not very expensive, limiting the number of proposal evaluations can result in a
better cost-performance trade off.

Unlike most of MCMC methods, different strategies of parallelization can be
applied in IS-based techniques. In the adaptive context, the adaptation of all pro-
posals usually depends on the performance of all previous proposals, and therefore

7We recall that, in general, one can draw M = kN samples, with k ≥ 1 and k ∈ N.
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the adaptivity is the bottleneck of the parallelization. The different six schemes
discussed above can be parallelized to some extent. Once all the proposals are
available, the schemes R1, N1, R3, and N3 can draw and weight the N samples in
parallel, which represents a large advantage w.r.t. MCMC methods. In the scheme
R2 and N2, the samples can be drawn independently, but the denominator of the
weight cannot be computed in a parallel way. However, since the target evalua-
tion in the numerator of the weights is fully parallelizable, the drawback of these
schemes can be considered negligible for a small/medium number of proposals.

7.2 A priori partition approach

The extra computational cost of some MIS schemes occurs because each sample
must be evaluated in more than one proposal qn, or even in all of the available
proposals (e.g. the MIS scheme N3). In order to propose a framework that limits
the number of proposal evaluations, let us first define a partition of the set of
the indexes of all proposals, {1, . . . , N}, into P disjoint subsets of L elements
(indexes), Jp with p = 1, . . . , P , s.t.

(7.1) J1 ∪ J2 ∪ . . . ∪ JP = {1, . . . , N},

where Jk ∩ Jq = ∅ for all k, q = 1, . . . , P and k 6= q.8 Therefore, each subset,
Jp = {jp,1, jp,2, . . . , jp,L}, contains L indexes, jp,` ∈ {1, . . . , N} for ` = 1, . . . , L
and p = 1, . . . , P .

After this a priori partition, one could apply any MIS scheme in each (par-
tial) subset of proposals, and then perform a suitable convex combination of the
partial estimators. This general strategy is inspired by a specific scheme, partial
deterministic mixture MIS (p-DM-MIS), which was recently proposed in [Elvira
et al., 2015a]. That work applies the idea of the partitions just for the MIS scheme
N3, denoted there as full deterministic mixture MIS (f-DM-MIS). The sampling
procedure is then S3, i.e., exactly one sample is drawn from each proposal. The
weight of each sample in p-DM-MIS, instead of evaluating the whole set of propos-
als (as in N3), evaluates only the proposals within the subset that the generating
proposal belongs to. Mathematically, the weights of the samples corresponding
to the p-th mixture are computed as

(7.2) wn =
π(xn)

ψp(xn)
=

π(xn)
1
L

∑
j∈Jp qj(xn)

, n ∈ Jp.

Note that the number of proposal evaluations is N ≤ N2

P ≤ N2. Specifically, we
have the particular cases P = 1 and P = N corresponding to the MIS schemes
N3 (best performance) and N1 (worst performance), respectively. In [Elvira et al.,
2015a], it is proved that for a specific partition with P subsets of proposals,
merging any pair of subsets decreases the variance of the estimator Î of Eq. (6.3).

The previous idea can be applied to the other MIS schemes presented in Section
5 (not only N3). In particular, one can make an a priori partition of the proposals
as in Eq. (7.1), and apply independently any different MIS scheme in each set. For
instance, and based on some knowledge about the performance of the different

8Note that, for sake of simplifying the notation, we assume that all P subsets have the
same number of elements. However this is not necessary, and it is straightforward to extend the
conclusions of this section to the case where each subset has different number of elements
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MIS Scheme R1 N1 R2 N2 R3 N3

Target Evaluations N N N N N N
Proposal Evaluations N N ≤ N2 N(N + 1)/2 N2 N2

Table 3
Number of target and proposal evaluations for the different MIS schemes. Note that the number

of proposal evaluations for R2 is a random variable with a range from N to N2.

proposals, one could make two disjoint sets of proposals, applying the MIS scheme
N1 in the first set, and the MIS scheme N3 in the second set. Recently, a novel
partition approach has been proposed in [Elvira et al., 2016]. In this case, the
sets of proposals are performed a posteriori, once the samples have been drawn.
The variance of the estimators is reduced at the price of introducing a bias.

7.3 Generalized Adaptive Multiple Importance Sampling

Adaptive importance sampling (AIS) methods iteratively update the param-
eters of the proposal pdfs using the information of the past samples. In that
way, they decrease the mismatch between the proposal and the target, and thus
improve the performance of the MIS scheme [Cappé et al., 2004; Bugallo et al.,
2015]. The sampling and weighting options, described in this work within a static
framework for sake of simplicity, can be straightforwardly applied in the adaptive
context.

More specifically, let us consider a set of proposal pdfs {qj,t(x)}, with j =
1, . . . , J and t = 1, . . . , T , where the subscript t indicates the iteration index of
the adaptive algorithm, T is the total number of adaptation steps, J is the num-
ber of proposals per iteration, and N = JT is the total number of proposal pdfs.
A general adaptation procedure takes into account, at the t-th iteration, statis-
tical information about the target pdf gathered in all of the previous iterations,
1, . . . , t − 1, using one of the many algorithms that have been proposed in the
literature [Cappé et al., 2008, 2004; Cornuet et al., 2012; Martino et al., 2015a;
Elvira et al., 2017].

Hence, the sampling and the weighting procedures described in previous sec-
tions (and therefore the six MIS schemes considered in Section 5) can be directly
applied to the whole set of N proposal pdfs. Moreover, in the adaptive context,
when many proposals are considered (the number of proposals grow over the
time), the a priori partition approach of Section 7.2 can be useful to limit the
computational cost of the different MIS schemes.
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Fig 5. Graphical representation of the N = JT proposal pdfs used in the generalized adaptive MIS
scheme, spread through the state space Rdx (j = 1, . . . , J) and adapted over time (t = 1, . . . , T ).
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Let us assume that, at the t-th iteration, one sample is drawn from each pro-
posal qj,t (sampling S3), i.e.,

Xj,t ∼ qj,t(xj,t),

j = 1, . . . , J and t = 1, . . . , T . Then, an importance weight wj,t is assigned to
each sample xj,t. As described exhaustively in Section 4, several strategies can be
applied to build wj,t considering the different MIS approaches. Fig. 5 provides a
graphical representation of this scenario, by showing both the spatial and tem-
poral evolution of the J = NT proposal pdfs. In a generic AIS algorithm, one
weight

(7.3) wj,t =
π(xj,t)

ϕj,t(xj,t)
,

is associated to each sample xj,t. In the MIS scheme N1, the function employed
in the denominator is

(7.4) ϕj,t(x) = qj,t(x).

In the following, we focus on the MIS scheme N3 in the adaptive framework,
considering several choices of the partitioning of the set of proposals, since this
scheme attains the best performance, as shown in Section 6.2. This method, with
different choices of the partitioning of the set of proposals, implicitly appears in
several methodologies that have been proposed independently in the literature of
adaptive MIS algorithms. In the full N3 scheme, the function ϕj,t is

(7.5) ϕj,t(x) = ψ(x) =
1

JT

J∑
k=1

T∑
r=1

qk,r(x),

where ψ(x) is now the mixture of all the spatial and temporal proposal pdfs.
This case corresponds to the blue rectangle in Fig. 5. However, note that the
computational complexity can become prohibitive if the product JT is increased.
Furthermore, two natural alternatives of partial N3 schemes appear in this sce-
nario. The first one uses the following partial mixture

(7.6) ϕj,t(x) = ξj(x) =
1

T

T∑
r=1

qj,r(x),

with j = 1, . . . , J , as mixture-proposal pdf in the IS weight denominator, i.e. using
the temporal evolution of the j-th single proposal qj,t at the weight denominator.
In this case, there are P = J mixtures, each one formed by L = T components
(red rectangle in Fig. 5). Another possibility is considering the mixture of all the
qj,t’s at the t-th iteration, i.e.,

(7.7) ϕj,t(x) = φt(x) =
1

J

J∑
k=1

qk,t(x),

with t = 1, . . . , T , so that we have P = T mixtures, each one formed by L = J
components (green rectangle in Fig. 5). The function ϕj,t in Eq. (7.4) is used
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in the standard PMC scheme [Cappé et al., 2004]; Eq. (7.6), in the particular
case of J = 1, has been considered in the adaptive multiple importance sampling
(AMIS) algorithm [Cornuet et al., 2012]. The choice in Eq. (7.7) has been applied
in the adaptive population importance sampling (APIS) [Martino et al., 2015a],
the layered adaptive importance sampling (LAIS) [Martino et al., 2015b], and the
deterministic mixture population Monte Carlo (DM-PMC) [Elvira et al., 2017]
algorithms. In other techniques, such as mixture PMC (M-PMC) [Douc et al.,
2007a,b; Cappé et al., 2008], a similar strategy is employed, but using sampling
S1 in the mixture φt(x), i.e., with the MIS scheme R3.

Table 7 summarizes all the possible cases discussed above. The last row cor-
responds to a generic grouping strategy of the proposal pdfs qj,t. As previ-
ously described, we can also divide the N = JT proposals into P = JT

L dis-
joint groups of P mixtures with L components. Namely, we denote the set of
L pairs of indexes corresponding to the p-th mixture (p = 1, . . . , P ) as Jp =
{(kp,1, rp,1), . . . , (kp,L, rp,L)}, where kp,` ∈ {1, . . . , J}, r`,p ∈ {1, . . . , T} (i.e., |Jp| =
L, with each element being a pair of indexes), and Jp ∩ Jq = ∅ for any pair
p, q = 1, . . . , P, and p 6= q. In this scenario, we have

(7.8) ϕj,t(x) =
1

L

∑
(k,r)∈Jp

qk,r(x), with (j, t) ∈ Jp.

Note that using ψ(x) and ξj(x) the computational cost per iteration increases
as the total number of iterations T grows. Indeed, at the t-th iteration all the pre-
vious proposals qj,1, . . . , qj,t−1 (for all j) must be evaluated at all the new samples
xj,t. Hence, algorithms based on these proposals quickly become unfeasible as the
number of iterations grows. On the other hand, using φt(x) the computational
cost per iteration is controlled by J , remaining constant regardless of the number
of adaptive steps performed.

Through this subsection, we have shown that some of the most relevant adap-
tive MIS algorithms can be cast within the proposed generalized MIS framework.
Besides this unifying perspective, new adaptive algorithms can be naturally pro-
posed by modifying the sampling or the weighting schemes of the existing algo-
rithms in the literature.

7.4 Guidelines for applying MIS

The superiority of N3 is theoretically proved for the unnormalized estimator
in Theorems 6.1 and 6.2, and practically shown by means of several numerical
simulations for the self-normalized estimator (see next section). However, the as-
sociated computational complexity is also increased w.r.t. the other MIS schemes
in terms of proposal evaluations. If N is small or the target evaluations are ex-
pensive (w.r.t. the cost of the proposal evaluations), N3 should be used. However,
when the target evaluation is cheap and/or the number of proposals is large, the
use of N3 increases notably the computational complexity. In this case, the novel
schemes R2 or N2 seem to provide very good results, and their theoretical proper-
ties are superior to N1 and R1. However, future studies will be required to charac-
terize these novel schemes and investigate efficient parallelization techniques. We
also recommend to combine adaptive schemes with the partition approach pro-
posed in [Elvira et al., 2015a] and [Elvira et al., 2016], and summarized in Section
7.2. Note that further investigation is also needed for efficiently constructing the
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partitions of the proposals that allow to reduce the computational complexity
while retaining most of the variance reduction associated to the N3 scheme.

In the adaptive context, there is a big potential for the MIS schemes where all
spatial and temporal proposals are used at the denominator of all weights (blue
square in Fig. 5). However, the computational complexity for large number of
proposals is prohibitive, and further theoretical analysis about the bias of the
estimators is need (see [Cornuet et al., 2012, Section 5]). The adaptivity of MIS
algorithms is essential in challenging high-dimensional setups. The N3 scheme has
exhibited a very good performance when used within adaptive MIS algorithms
due to two main reasons. First, the variance of the estimators at each iteration is
reduced as proved in Theorems 6.1 and 6.2, which explains part of the variance
reduction attained in AMIS [Cornuet et al., 2012], LAIS [Martino et al., 2015b],
or GAPIS [Elvira et al., 2015b]. Second, when the IS weights are used for adaptive
purposes (e.g. in APIS [Martino et al., 2015a] or DM-PMC [Elvira et al., 2017]),
the use of the whole mixture of proposals in the denominator of the weights can
be seen as a cooperative adaptive procedure (see [Elvira et al., 2017] for further
details).

Finally, one of the strengths of the N3 scheme is its performance in multimodal
scenarios, where N1 should always be avoided. If N is comparable to the num-
ber of modes, an adaptive N3 scheme should be employed; the aforementioned
cooperation in the proposals adaptation has an implicit repulsive behavior that
promotes the adaptation to different modes. However, if N is much larger, the
adaptive algorithm may use R2 or N2 with potentially similar performance but
less computational complexity.

8. NUMERICAL EXAMPLES

In the previous sections, we have provided several theoretical results for com-
paring different MIS schemes according to different quality measures, e.g., ranking
them in terms of the variance of the corresponding estimators. In this section,
we provide different numerical results in order to quantify numerically the gap
among these methods. In the following, we show that even in the case where
the different proposals are well tuned (in the sense of a small or no mismatch
with a multimodal target), the choice of sampling and the weighting procedure
dramatically affects the performance of the MIS estimator.

8.1 Running exmple: Estimation of the target mean

Let us consider again the target pdf of the running example

π(x) =
1

3
N (x; ν1, c

2
1) +

1

3
N (x; ν2, c

2
2) +

1

3
N (x; ν3, c

2
3),

with means ν1 = −3, ν2 = 0, and ν3 = 3, and variances c2
1 = c2

2 = c2
3 = 1.

As proposal functions we use qi(x) = N (x;µi, σ), with µi = νi and i = 1, 2, 3
and σ2 = 1, i.e., the proposal pdfs can be seen as a whole mixture that exactly
replicates the target, i.e., π(x) = ψ(x) = 1

3q1(x) + 1
3q2(x) + 1

3q3(x).
The goal is estimating the mean of the target pdf with the six MIS schemes.

Fig. 6(a) shows the MSE of the estimator Î for all the methods w.r.t. the number
of total samples (note that some schemes require that the total number of samples
is multiple of M = 3). The results have been averaged over 5 ·106 runs. The solid
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black line shows the variance of the natural estimator, i.e. sampling directly from
the target pdf (since this is possible in this easy example). Note that the method
ÎR3 exactly replicates the performance of Ī: this method samples from the mixture
of Gaussians in the traditional way and the weights, due to the perfect match,
are always w = 1, i.e., ÎR3 and Ī are equivalent. We can see that ÎN3 is the best
estimator in terms of variance, while ÎR1 and ÎN1 present a high variance. Note
that, surprisingly, ÎN3 has better performance than sampling from the target, i.e.,
estimator Ī. This is because the sampling S3 can be seen as a sampling from
the mixture of proposals ψ(x) (which coincides with the target in this example)
with a variance reduction technique, as we discuss in Appendix A. Note also that
the inequality proved in Theorem 6.1 holds since all methods are unbiased and
therefore the MSE is due only to the variance. We can see that ÎR2 and ÎN2 behave
also bad in terms of variance.

Figure 6(b) shows the variance of the estimator Ĩ of Eq. (6.2) for all methods.
First, note that the MSE of R3 and N3 is the same as in Fig. 6 (b), since the
estimators Î and Ĩ are equivalent in this scenario (since they perfectly estimate
the normalizing constant, i.e., Ẑ = Z). Note that the relations observed and
proved for the different MIS schemes in terms of the variance of the estimator
Î, are also kept here when we increase the number of samples. The MSE curves
are compared with the same number of samples M , i.e. the same number of
target evaluations. Note that each MIS scheme requires a different number of
proposal evaluations per sample (see Table 3). However, a fair comparison is
fully target dependent, and with few number of proposals we can consider that
the computational complexity is similar in all schemes.
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Fig 6. (Ex. of Section. 8.1) Performance of the estimators of the target mean for the different
MIS schemes.

8.2 Multidimensional mixture of generalized Gaussian distributions

Let us consider a mixture of multivariate generalized Gaussian distributions
(GGD) as a target pdf. In particular

(8.1) π(x) =
1

3

3∑
k=1

GG(x;µk,αk,βk), x ∈ Rdx ,



26

where µk = [µk,1, ..., µk,dx ]>, αk = [αk,1, ..., αk,dx ]>, and βk = [βk,1, ..., βk,dx ]>

are respectively the mean, scale, and shape parameters of each component of the
mixture. Each component of the mixture factorizes in all dimensions, i.e., the
multivariate GGD pdf is the product of N unidimensional GGD pdfs. Namely,

GG(x;µk,αk,βk) =

dx∏
d=1

κk,d exp

(
−
(
|xd − µk,d|

αk,d

)βk,d
)
,

where κk,d =
βk,d

2αk,dΓ

(
1

βk,d

) , Γ(·) is the gamma function, and xd is the d-th di-

mension of x. This family of distributions includes both Gaussian and Laplace
distributions with β = 2 and β = 1, respectively.

In this example, µ1,d = −3, µ2,d = 1, µ3,d = 5, β1,d = 1.1, β2,d = 1.8, β3,d = 5,
α1,d = α2,d = α3,d = 1 for all d = 1, ..., dx. The expected value of the target
π(x) is then Eπ[Xd] = 1 for d = 1, ..., dx. In order to study the performance of
the different MIS schemes, we vary the dimension of the state space in Eq. (8.1)
testing different values of dx (with 2 ≤ dx ≤ 10).

We consider the problem of approximating via Monte Carlo the expected value
of the target density, and we compare the performance of all MIS schemes. In
this example, we use N = 500 non-standardized t-student densities as proposal
functions, where each location parameter has been selected uniformly within the
[−6, 6]dx square, and the scale parameters and the degree of freedom parameters
have been selected as σn,d = 5 and νn,d = 5, respectively, for n = 1, ..., N and
d = 1, ..., dx. For each method, we draw M = kN samples, with k = 32, and we
average all the results over 200 runs.

Fig. 7 shows the MSE in the estimation of the mean of the target (averaged
over all dimensions) when we increase the dimension dx. Note that the hierarchy
established in Section 6 also holds in this example regardless the dimension. In
this case, methods R1 and N1 behave poorly even at lower dimensions, while the
other MIS schemes have a similar behavior. When we increase the dimension, all
the methods degrade, and, at certain point (dx ≥ 6), the performance of all of
them is similar. Note that in this example, the proposal pdfs are fixed in random
locations of the space, which can be considered covered at low dimensions (since
we are using N = 500 pdfs), but this coverage becomes worse as the dimension
increases. This can probably explain the similar performance of all the methods
in higher dimensions. If we performed adaptive MIS algorithms in order to adapt
the proposal pdfs, we would expect that the MIS scheme N3 outperformed the
other methods substantially as in previous examples.

8.3 Applying the MIS schemes in adaptive IS (AIS)

We apply the different MIS schemes within an adaptive IS (AIS) context. In
particular, we focus on the layered adaptive importance sampling (LAIS) algo-
rithm, recently proposed in [Martino et al., 2015b]. The method consists of an
upper layer with a MCMC that draws samples from the target, while a lower layer
uses those samples as location parameters (means) of some proposal pdfs for ap-
plying IS. In its basic version, J Metropolis-Hastings chains independently run
at the upper layer, and hence MIS is applied in the lower layer with J proposals
at each iteration. In the following, we implement the six adaptive MIS schemes
in a spatial manner for two different target pdfs. For instance, the N3 scheme is
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Fig 7. (Ex. of Section. 8.2) MSE of the MIS estimator Ĩ (normalized weights) for the different
MIS schemes when we increase the dimension dx of the state space.

implemented by sampling exactly one sample from each of the J proposals at
the t-th iteration, and applying at the denominator of the IS weight the whole
mixture of J proposals as in Eq. (7.7) (see the green square of Fig. 5).

8.3.1 Mixture of bivariate Gaussians. Let us first consider a mixture of five
bivariate Gaussians,

(8.2) π(x) =
1

5

5∑
i=1

N (x;νi,Σi), x ∈ R2,

where N (x;µ,C) denotes a Gaussian pdf with mean vector µ and covariance
matrix C, ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 = [13, 8]>, ν4 = [−9, 7]>, ν5 =
[14,−14]>, Σ1 = [2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2], Σ3 = [2, 0.8; 0.8, 2],
Σ4 = [3, 0; 0, 0.5], and Σ5 = [2, −0.1;−0.1, 2]. We run the LAIS algorithm
with J = 100 spatial proposals that are adapted over T = 200 iterations. The
proposals of the upper and lower layers are isotropic Gaussians with σupper =
5 and σlower = 2, respectively. We also run the standard PMC algorithm of
[Cappé et al., 2004], computing at each iteration the weights according to N1,
which represents the standard PMC, and N3 which corresponds to the DM-PMC
algorithm recently proposed in [Elvira et al., 2017]. The means of the proposals
are randomly and uniformly initialized within the [−4, 4]× [−4, 4] square. Table
4 shows the MSE of the self-normalized estimator of the target mean, Ĩ, and the
estimator of the normalizing constant (the true values are E[X] = [1.6, 1.4]> and
Z = 1, respectively). The scheme N3 presents again the best performance in the
adaptive setup, both in LAIS and PMC. Note that the novel schemes R2 and N2

show again a satisfactory performance.

8.3.2 Multidimensional banana-shaped distribution. We consider the banana
shape target example used in [Haario et al., 1999, 2001] which “can be be cal-
ibrated to become extremely challenging” [Cornuet et al., 2012]. The target is
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Alg. R1-LAIS N1-LAIS R2-LAIS N2-LAIS R3-LAIS N3-LAIS N1-PMC N3-PMC

Var(Ẑ) 0.6471 0.6380 0.0004 0.0024 0.0005 0.0001 0.1528 0.0006

Var(Ĩ) 1.4509 2.0466 0.0335 0.0295 0.0423 0.0088 0.3847 0.0363

Table 4
(Ex. of Section 8.3.1) MSE of the LAIS and PMC algorithms with the different MIS

schemes at the lower layer. J = 100 proposals and T = 200 iterations.

based on a dx-dimensional multivariate Gaussian x ∼ N (x; 0dx ,Σ) with Σ =
diag(σ2, 1, ..., 1), where the second variable is nonlinearly transformed from x2 to
x2 − b(x2

1 − σ2). This transformation leads to a banana-shaped distribution with
zero mean and uncorrelated components (note that the target dimension dx ≥ 2).

A preliminary attempt to apply static MIS schemes in this challenging example
has shown that they cannot directly work without an adaptive procedure on top
of them. We implement the MIS schemes within the LAIS algorithm as described
in previous example. We set J = 200 proposals that are adapted over T = 1000
iterations, and isotropic Gaussian proposals with σupper = 0.2 and σlower = 0.5.
The means of the proposals are randomly and uniformly initialized within the
[−4, 4]×[−5, 5] square. In Fig. 8, we vary the dimension of the state space dx with,
2 ≤ dx ≤ 40, and we show the MSE of the self-normalized estimator Ĩ of the target
mean. The results have been averaged over 300 runs. We observe that N3 and R3

schemes provide a similar good performance as in previous examples. Note that, if
N were smaller, N3 would clearly outperform R3. When the dimensions increases,
the performance of all schemes decays, but the same hierarchy in performance
holds for all schemes. Note that N2 presents a similar performance than N3 in
high dimensions.
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Fig 8. (Ex. of Section 8.3.2) LAIS algorithm with different MIS schemes in a multidimen-
sional banana-shaped target. J = 100 proposals and T = 200 iterations.

8.4 Discussion on the experimental results

First of all, note that the numerical simulations provided in this section cor-
roborate the variance analysis of Section 6. More specifically, the hierarchy shown
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in Fig. 6, based on MSE of Î, corresponds to the hierarchy in terms of variance of
Î given in Theorems 6.1 and 6.2 (the latter for the case of N = 2 proposals). The
same hierarchy is represented graphically in Fig. 7. Furthermore, Fig. 6 depicts
the MSE of the self-normalized estimator Ĩ: for large enough values of M (so that
a good approximation of Z is attained), the MIS schemes are ordered exactly as
in Fig. 6 (as discussed in Section 6).

The numerical experiments confirm that N3 provides the best performance.
The scheme R3 also presents a good performance in most cases. A possible inter-
pretation is the following: N3 and R3 apply the whole mixture at the denominator
of each weight, thus providing an exchange of information between all the pro-
posals. This exchange of information is essential in multimodal scenarios, where
the whole set of proposals, seen as a mixture, should mimic the whole target,
but each proposal should adapt locally to the target. Since the variance of the IS
weight depends on the mismatch of the target (numerator) w.r.t. proposal (de-
nominator), the use of the whole mixture in the denominator reduces the variance
of the weight in general, and therefore, also the variance of the estimator (see the
variance analysis in Appendix C). The scheme N3 goes a step further w.r.t. R3,
drawing deterministically one sample from each mixand of ψ(x), which can be
seen as drawing N samples from the mixture ψ(x) with a modified version of
stratified sampling, a well-known variance reduction technique (see Appendix A
and [Owen, 2013, Section 9.12]), which is also related to the residual resampling.

The performance of R1 and N1 is, in general, much worse than the performance
of the other schemes. Both schemes account at the weight denominator only for
the proposal from which the sample is drawn, which in a multimodal scenario
can be problematic. While R1 is a novel scheme that has naturally arisen in this
work, and it probably has little interest from a practical point of view, N1 has
been applied in different adaptive MIS algorithms, such as the original version of
PMC [Cappé et al., 2004].

The novel schemes R2 and N2 have appeared in this new framework and de-
serve a further analysis. The hierarchy theoretically proved for N = 2 proposals
in Theorem 6.2 still holds in the numerical examples for N > 2, e.g. in Figs.
6(a) and 6(b). In some scenarios, for instance where there is a big number of
proposals compared to the modes of the target, these schemes can attain most
of the variance reduction of N1 and N3 while reducing the number of proposal
evaluations w.r.t. N3. In the example with AIS methods, both R2 and N2 present
a very competitive performance w.r.t. to N3.

Finally, observe that in Fig. 6, when a small number of samples M is employed,
the schemes N1, N2 and N3, i.e., those with index selection without replacement (S2

and S3), behave better. This occurs because, in this case, the variance associated
to the index selection is reduced by guaranteeing that all proposal pdfs are always
used.

9. CONCLUSIONS

In this work, we have introduced a unified framework for sampling and weight-
ing in the context of multiple importance sampling (MIS). This approach extends
the concept of a proper weighted sample, enabling the design of a wide range of
sampling/weighting combinations. In particular, we have considered three specific
sampling procedures and we have proposed five types of generic weighting func-
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tions (related to different conditional and marginal distributions which depend on
the sampling scheme). As a result of the combinations of sampling and weighting
procedures, we have analyzed the six unique resulting schemes (three of them are
not present in the literature to the best of our knowledge). We have provided a
theoretical comparison of these schemes in terms of variance, establishing a rank-
ing of the different methods in terms of performance and computational com-
plexity. Moreover, we have discussed the application of the MIS schemes within
adaptive procedures. In addition, we have provided the practitioner with several
useful and easy-to-follow guidelines for applying the MIS schemes in different
scenarios. We have analyzed the behavior of the MIS schemes in three different
numerical examples which corroborate the previous theoretical analysis.
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O. Cappé, R. Douc, A. Guillin, J. M. Marin, and C. P. Robert. Adaptive importance sampling

in general mixture classes. Statistics and Computing, 18:447–459, 2008.
L. Martino, V. Elvira, D. Luengo, and J. Corander. An adaptive population importance sampler:

Learning from the uncertanity. IEEE Transactions on Signal Processing, 63(16):4422–4437,
2015a.

J. M. Cornuet, J. M. Marin, A. Mira, and C. P. Robert. Adaptive multiple importance sampling.
Scandinavian Journal of Statistics, 39(4):798–812, December 2012.

M. F. Bugallo, L. Martino, and J. Corander. Adaptive importance sampling in signal processing.
(To appear) Digital Signal Processing, 2015.

A Kong, P McCullagh, X-L Meng, D Nicolae, and Z Tan. A theory of statistical models for monte
carlo integration. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
65(3):585–604, 2003.

N. Gordon, D. Salmond, and A. F. M. Smith. Novel approach to nonlinear and non-Gaussian
Bayesian state estimation. IEE Proceedings-F Radar and Signal Processing, 140:107–113,
1993.
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APPENDIX A: FURTHER OBSERVATIONS ABOUT THE SAMPLING S3

Let us recall again the sampling procedure S3 (i.e., with deterministic selection
of the index): Xn ∼ qn(x) for n = 1, . . . , N . Note that the realizations (samples)
x1, . . . ,xN are used in the importance sampling estimators regardless of their
order. Then, we can interpret that the N samples are drawn from the mixture
ψ(x) = 1

N

∑N
n=1 qn(x) via Rao-Blackewillization (see [Owen, 2013, Section 9.12]

for more details). More formally, if we define the r.v. Z equal to a r.v. uniformly
chosen from the set {Xn}Nn=1, then Z ∼ ψ(x). The procedure S3 follows a simi-
lar principle as a well-known variance reduction method, known as the stratified
sampling [Robert and Casella, 2004; Liu, 2004], where the domain of X is divided
into different regions that, in the case of sampling S3, are unbounded and over-
lapped [Owen, 2013, Section 9.12]. Finally, note that the approach S3 can also
be seen as the application of a quasi-Monte Carlo technique [Niederreiter, 1992]
for generating the deterministic sequence of indexes j1 = 1, j2 = 2, . . . , jN = N
(uniform, in the sense of low-discrepancy sequence [Niederreiter, 1992]) and then
drawing xn ∼ qjn(x) = qn(x) for n = 1, . . . , N . Note also, that S3 can be seen
as a residual resampling step of the indexes of the proposals. Since all weights of
the proposals are the same, the resampling is fully deterministic, which explains
part the variance reduction of the MIS schemes with sampling S3.

APPENDIX B: PROOFS OF UNBIASEDNESS OF THE MIS
ESTIMATORS

In this appendix we prove the unbiasedness of the estimator Î of Eq. (4.1)
for the five weighting options described in Section 4. We recall that the general
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expression for the expectation of Î within the proposed framework is

E[Î] =
1

ZN

N∑
n=1

∑
j1:N

∫
π(xn)g(xn)

ϕPn(xn)
P (j1:N )p(xn|jn)dxn.(B.1)

Option 1 (W1): ϕPn(xn) = ϕj1:n−1(xn) = p(xn|j1:n−1). We first marginalize in
Eq. (B.1) over all indexes that do not affect the n-th weight (jn:N ):

E[Î] =
1

ZN

N∑
n=1

∑
j1:n−1

∫
π(xn)g(xn)

ϕj1:n−1(xn)
p(xn, j1:n−1)dxn

=
1

ZN

N∑
n=1

∑
j1:n−1

∫
π(xn)g(xn)

ϕj1:n−1(xn)
p(xn|j1:n−1)P (j1:n−1)dxn.

(B.2)

Then, substituting ϕj1:n−1(xn) = p(xn|j1:n−1) into Eq. (B.2), canceling terms and
marginalizing j1:n−1, we have:

E[Î] =
1

ZN

N∑
n=1

∫
π(xn)g(xn)dxn

=
1

Z

∫
π(x)g(x)dx = I.

Option 2 (W2): ϕPn(xn) = ϕjn(xn) = p(xn|jn). We substitute ϕjn(xn) =
p(xn|jn) into Eq. (B.1), which cancels the denominator:

E[Î] =
1

ZN

N∑
n=1

∑
j1:N

∫
π(xn)g(xn)P (j1:N )dxn

=
1

ZN

N∑
n=1

∫
π(xn)g(xn)dxn

=
1

Z

∫
π(x)g(x)dx = I.

Option 3 (W3): ϕPn(xn) = ϕn(xn) = p(xn). Since ϕn does not depend on any
index, we can first marginalize over the whole set of indexes j1:N in Eq. (B.1):

E[Î] =
1

ZN

N∑
n=1

∫
π(xn)g(xn)

ϕn(xn)
p(xn)dxn.(B.3)

Then, substituting ϕn = p(xn) in Eq. (B.3):

E[Î] =
1

ZN

N∑
n=1

∫
π(xn)g(xn)dxn

=
1

Z

∫
π(x)g(x)dx = I.
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Option 4 (W4): ϕPn(x) = ϕj1:N (x) = f(x|j1:N ) = 1
N

∑N
n=1 qjn(x). In this case,

the expectation of Î can be expressed as:

E[Î] =
1

ZN

∑
j1:N

P (j1:N )

∫
π(x)g(x)

ϕj1:N (x)

N∑
n=1

qjn(x)dx.(B.4)

Substituting ϕj1:N (x) = f(x|j1:N ) = 1
N

∑N
n=1 qjn(x) in Eq. (B.4), and cancelling

the denominator:

E[Î] =
1

Z

∑
j1:N

∫
π(x)g(x)P (j1:N )dx

=
1

Z

∫
π(x)g(x)dx = I.

Option 5 (W5): ϕPn(x) = ϕ(x) = f(x) = 1
N

∑N
n=1 qn(x) = ψ(x). Now, the

expectation of Î becomes

E[Î] =
1

Z

∫
π(x)g(x)

ϕ(x)

∑
j1:N

[
1

N

N∑
n=1

qjn(x)

]
P (j1:N )dx

=
1

Z

∫
π(x)g(x)

ϕ(x)
ψ(x)dx,(B.5)

where, in the last step, we have used the identity

∑
j1:N

[
1

N

N∑
n=1

qjn(x)

]
P (j1:N ) = f(x) = ψ(x)

for any valid sampling procedure within this framework (see Remark 3.1 and
Section 3.6 for more details). Substituting ϕ(x) = ψ(x) in Eq. (B.5)

E[Î] =
1

Z

∫
π(x)g(x)

ψ(x)
ψ(x)dx

=
1

Z

∫
π(x)g(x)dx = I.(B.6)

APPENDIX C: VARIANCE ANALYSIS OF THE MIS ESTIMATORS

Let us consider the unbiased estimator,

Î =
1

ZN

N∑
n=1

wn(xn)g(xn),(C.1)

that approximates I. Then, the variance of Î can be expressed in the general form
as

Var(Î) = Ep(x1:N ,j1:N )

[(
Î − Ep(x1:N ,j1:N )[Î]

)2
]

= Ep(x1:N ,j1:N )[Î
2]− E2

p(x1:N ,j1:N )[Î].(C.2)
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In the general case of Eq. (C.2), the N terms of the sum of the estimator in

Î are dependent. However, in the specific cases where they are independent, the
variance of a sum of r.v.’s can be simplified as the sum of the variances, i.e.,

Var(Î) =
1

Z2N2

[
N∑
n=1

Ep(xn,jn)[w
2
n(xn)g2(xn)]−

N∑
n=1

E2
p(xn,jn)[wn(xn)g(xn)]

]

=
1

Z2N2

[
N∑
n=1

N∑
jn=1

∫
π2(xn)g2(xn)

ϕ2
Pn

(xn)
p(xn|jn)P (jn)dxn

−
N∑
n=1

 N∑
jn=1

∫
π(xn)g(xn)

ϕPn (xn)
p(xn|jn)P (jn)dxn

2 ]
.

(C.3)

In some MIS schemes, the N terms are dependent (due to a sampling without
replacement or because the n-th weight depends on several indexes jk, with at
least one k 6= n). Nevertheless, conditioned to the whole set of indexes j1:N , the
terms of the sum in Eq. (C.1) are always conditionally independent, so we can
apply

Var(Î) =
1

Z2N2

∑
j1:N

[
N∑
n=1

Ep(xn|jn)[w
2
n(xn)g2(xn)]−

N∑
n=1

E2
p(xn|jn)[wn(xn)g(xn)]

]
P (j1:N )

=
1

Z2N2

∑
j1:N

[
N∑
n=1

∫
π2(xn)g2(xn)

ϕ2
Pn

(xn)
p(xn|jn)dxn −

N∑
n=1

(∫
π(xn)g(xn)

ϕPn (xn)
p(xn|jn)dxn

)2
]
P (j1:N ).

(C.4)

C.1 Variance of the estimators of the MIS schemes

In the following, we analyze the variance of the six MIS schemes discussed
through this paper under the assumptions described in Theorem 6.1 (see Sec-
tion 6 for more details). Since some schemes arise under more than one sam-
pling/weighting combination (see Table 6), here we always use the combination
that facilitates the analysis.
1. [R1] Sampling 1 / Weighting 2: In this scheme, all the terms of the sum
in Eq. (C.1) are independent, so we can use Eq. (C.3) for computing the variance

of Î. Substituting ϕjn(xn) = p(xn|jn) = qjn(xn) in C.3,

Var(ÎR1) =
1

Z2N2

N∑
n=1

N∑
jn=1

[∫
π2(xn)g2(xn)

p2(xn|jn)
p(xn|jn)P (jn)dxn

]
−
I2

N

=
1

Z2N2

N∑
n=1

∫ N∑
jn=1

π2(xn)g2(xn)

qjn (xn)
P (jn)dxn

− I2

N

=
1

Z2N2

N∑
n=1

[∫
1

N

N∑
k=1

π2(xn)g2(xn)

qk(xn)
dxn

]
−
I2

N

=
1

Z2N2

N∑
k=1

∫
π2(x)g2(x)

qk(x)
dx−

I2

N
,(C.5)

were we have used that P (jn) = 1
N , ∀jn ∈ {1, ..., N}.

2. [R2] Sampling 1 / Weighting 4: The expression for the conditional in-
dependence of Eq. (C.4) is now used substituting ϕj1:N (xn) = f(xn|j1:N ) =
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1
N

∑N
k=1 qjk(xn) and averaging it over the NN equiprobable sequences of indexes

j1:N :

Var(ÎR2) =
1

Z2N2

[ ∑
j1:N

[ N∑
n=1

∫
π2(xn)g2(xn)

ϕ2
j1:N

(xn)
p(xn|jn)dxn −

N∑
n=1

(∫
π(xn)g(xn)

ϕj1:N (xn)
p(xn|jn)dxn

)2 ]
P (j1:N )

]

=
1

Z2N2

1

NN

[ ∑
j1:N

N∑
n=1

∫
π2(xn)g2(xn)

f2(xn|j1:N )
qjn (xn)dxn −

∑
j1:N

N∑
n=1

(∫
π(xn)g(xn)

f(xn|j1:N )
qjn (xn)dxn

)2
]

=
1

Z2N

1

NN

[ ∑
j1:N

∫
π2(x)g2(x)

f2(x|j1:N )

(
1

N

N∑
n=1

qjn (x)

)
dx−

1

N

∑
j1:N

N∑
n=1

(∫
π(xn)g(xn)

f(xn|j1:N )
qjn (xn)dxn

)2
]

=
1

Z2N

1

NN

[ ∑
j1:N

∫
π2(x)g2(x)

f(x|j1:N )
dx−

1

N

∑
j1:N

N∑
n=1

(∫
π(xn)g(xn)

f(xn|j1:N )
qjn (xn)dxn

)2
]
.

(C.6)

where we have used the identity f(x|j1:N ) = 1
N

∑N
n=1 qjn(xn). This expression

for the variance resembles that of scheme [N3], averaged over the NN possible
mixtures (combinations) that can arise with sampling S1.
3. [R3] Sampling 1 / Weighting 3: All the elements are independent in the
sum, and the weights do not depend on any index of the set j1:N . Therefore, we
can start with Eq. (C.3), marginalize over the indexes, and substitute ϕn(xn) =
p(xn) = ψ(xn),

Var(ÎR3) =
1

Z2N2

N∑
n=1

∫
π2(xn)g2(xn)

ϕ2
n(xn)

p(xn)dxn −
1

Z2N2

N∑
n=1

(∫
π(xn)g(xn)

ϕn(xn)
p(xn)dxn

)2

=
1

Z2N2

N∑
n=1

∫
π2(xn)g2(xn)

ψ2(xn)
ψ(xn)dxn −

1

Z2N2

N∑
n=1

(∫
π(xn)g(xn)

ψ(xn)
ψ(xn)dxn

)2

=
1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx−

I2

N
.(C.7)

4. [N1] Sampling 3 / Weighting 3: The methods that use sampling without
replacement introduce correlation at the selection of the proposals. However,
under the perspective of the deterministic sampling (S3), the n-th sample xn
is a realization of the r.v. Xn ∼ qn and is independent of the other samples.
Marginalizing first Eq. (C.3) over the indexes, and substituting ϕn(xn) = p(xn) =
qn(xn):

Var(ÎN1) =
1

Z2N2

N∑
n=1

∫
π2(xn)g2(xn)

ϕ2
n(xn)

p(xn)dxn −
1

Z2N2

N∑
n=1

(∫
π(xn)g(xn)

ϕn(xn)
p(xn)dxn

)2

=
1

Z2N2

N∑
n=1

∫
π2(xn)g2(xn)

q2n(xn)
qn(xn)dxn −

1

Z2N2

N∑
n=1

(∫
π(xn)g(xn)

qn(xn)
qn(xn)dxn

)2

=
1

Z2N2

N∑
n=1

∫
π2(xn)g2(xn)

qn(xn)
dxn −

I2

N
.(C.8)

5. [N2] Sampling 2 / Weighting 1: In this scheme, we use again the expression
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for conditional independence of Eq. (C.4). Substituting ϕj1:n−1 = p(xn|j1:n−1),

Var(ÎN2) =
1

Z2N2

∑
j1:N

[
N∑
n=1

∫
π2(xn)g2(xn)

ϕ2
j1:n−1

(xn)
p(xn|jn)dxn −

N∑
n=1

(∫
π(xn)g(xn)

ϕj1:n−1 (xn)
p(xn|jn)dxn

)2 ]
P (j1:N )

=
1

Z2N2

N∑
n=1

∑
j1:n

[∫
π2(xn)g2(xn)

p2(xn|j1:n−1)
p(xn|jn)dxn −

(∫
π(xn)g(xn)

p(xn|j1:n−1)
p(xn|jn)dxn

)2
]
P (j1:n)

=
1

Z2N2

N∑
n=1

∑
j1:n−1

∫
π2(xn)g2(xn)

p(xn|j1:n−1)
P (j1:n−1)dxn −

1

Z2N2

N∑
n=1

∑
j1:n

(∫
π(xn)g(xn)

p(xn|j1:n−1)
qjndxn

)2

P (j1:n)

(C.9)

Since the the integrals only depend on the set of indexes j1:n, each term of
the sum has been first marginalized over jn+1:N . The first term in the sum can
then be further marginalized over jn to obtain the final expression. Note that the
variance is the average of the variance of all the N ! possible sequences of indexes
in the sampling without replacement.
6. [N3] Sampling 3 / Weighting 5: We have followed the same arguments of
scheme N1. Marginalizing Eq. (C.3) over all the set of indexes j1:N , and substi-
tuting ϕn(xn) = f(xn) = ψ(xn):

Var(ÎN3) =
1

Z2N2

N∑
n=1

∫
π2(xn)g2(xn)

ψ2(xn)
qn(xn)dxn −

1

Z2N2

N∑
n=1

(∫
π(xn)g(xn)

ψ(xn)
qn(xn)dxn

)2

=
1

Z2N

∫
π2(x)g2(x)

ψ2(x)

(
1

N

N∑
n=1

qn(x)

)
dx−

1

Z2N2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

=
1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx−

1

Z2N2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

,(C.10)

where we have used the identity ψ(x) = 1
N

∑N
n=1 qn(x)dx.

C.2 Proof of Theorem 6.1

The proof of Theorem 6.1 is split in the next three propositions.

Proposition C.1. Var(ÎR1) = Var(ÎN1)

Proof: See that Eqs. (C.5) and (C.8) are equivalent.

Proposition C.2. V ar(ÎN1) ≥ V ar(ÎR3).

Proof: Subtracting Eqs. (C.7) and (C.8), we get

Var(ÎR3)−Var(ÎN1) =

=
1

Z2N2

∫ (
N

1
N

∑N
j=1 qj(x)

−
N∑
i=1

1

qi(x)

)
g2(x)π2(x)dx.

Since g2(x)π2(x) ≥ 0 ∀x ∈ Rdx , it is sufficient to show that

(C.11)
1

1
N

∑N
j=1 qj(x)

≤ 1

N

N∑
i=1

1

qi(x)
.
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Now, let us note that the left-hand side of Eq. (C.11) is the inverse of the arith-
metic mean of q1(x), . . . , qN (x),

AN =
1

N

N∑
j=1

qj(x),

whereas the right hand side of Eq. (C.11) is the inverse of the harmonic mean of
q1(x), . . . , qN (x),

1

HN
=

1

N

N∑
i=1

1

qi(x)
.

Therefore, the inequality in Eq. (C.11) is equivalent to stating that 1
AN
≤ 1

HN
,

or equivalently AN ≥ HN , which is the well-known arithmetic mean–harmonic
mean inequality for positive real numbers [Hardy et al., 1952; Abramowitz and
Stegun, 1972; Gwanyama, 2004].

Proposition C.3. V ar(ÎR3) ≥ V ar(ÎN3).

Proof: Subtracting (C.7) and (C.10), we get

Var(ÎN3)−Var(ÎR3) = −I
2

N
+

1

Z2N2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

Therefore, the proposition is proved if

1

Z2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

≥ NI2

If we substitute I with the expression of Eq. (6.1), multiplying both numerator
and denominator by ψ(x) in the integral of the right-hand side,

1

Z2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

≥ N

(
1

Z

∫
π(x)g(x)

ψ(x)
ψ(x)dx

)2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

≥ N

(∫
π(x)g(x)

ψ(x)

(
1

N

N∑
n=1

qn(x)

)
dx

)2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

≥
1

N

(
N∑
n=1

∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

N

N∑
n=1

a2n ≥
(

N∑
n=1

an

)2

(C.12)

with an =
∫ π(x)g(x)

ψ(x) qn(x)dx. The inequality of Eq. (C.12) holds, since it is the

definition of the Cauchy-Schwarz inequality [Hardy et al., 1952],(
N∑
n=1

a2
n

)(
N∑
n=1

b2n

)
≥

(
N∑
n=1

anbn

)2

,(C.13)

with bn = 1 for n = 1, ..., N . �
Proof of Theorem 6.1. The proof is obtained by applying Propositions C.1,
C.2, and C.3.
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C.3 Proof of Theorem 6.2

Let us first particularize the variance expression for N = 2. From Eq. (C.8),

Var(ÎN1) = Var(ÎR1)

=
1

4Z2

(∫
π2(x)g2(x)

q1(x)
dx +

∫
π2(x)g2(x)

q2(x)
dx

)
− I2

2
.

(C.14)

From Eq. (C.7),

(C.15) Var(ÎR3) =
1

2Z2

∫
π2(x)g2(x)
q1(x)+q2(x)

2

dx− I2

2
.

From Eq. (C.10),

Var(ÎN3) =
1

2Z2

∫
π2(x)g2(x)
q1(x)+q2(x)

2

dx−
1

4Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q1(x)dx

)2

−
1

4Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q2(x)dx

)2

.

(C.16)

From Eq. (C.6),

Var(ÎR2) =
1

8Z2

(∫
π2(x)g2(x)

q1(x)
dx +

∫
π2(x)g2(x)

q2(x)
dx

)
−
I2

4
+

1

4Z2

∫
π2(x)g2(x)
q1(x)+q2(x)

2

dx

−
1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q1(x)dx

)2

−
1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q2(x)dx

)2

.(C.17)

From Eq. (C.9),

Var(ÎN2) =
1

4Z2

∫
π2(x)g2(x)
q1(x)+q2(x)

2

dx +
1

8Z2

∫
π2(x)g2(x)

q1(x)
dx +

1

8Z2

∫
π2(x)g2(x)

q2(x)
dx

−
1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q1(x)dx

)2

−
1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q2(x)dx

)2

−
I2

4
.(C.18)

Proposition C.4. For N = 2, Var(ÎR2) = Var(ÎN2)

Proof: See that Eqs. (C.17) and (C.18) are equivalent.

Proposition C.5. For N = 2, Var(ÎN1) ≥ Var(ÎR2) ≥ Var(ÎN3)

Proof: Analyzing Eqs. (C.14) and (C.16), we see that Eq. (C.17) can be rewritten
as

Var(ÎR2) =
1

2
Var(ÎN1) +

1

2
Var(ÎN3).(C.19)

Since in Theorem 6.1 it is proved that Var(ÎN1) ≥ Var(ÎN3) for any N , the
proposition holds at least for N = 2.
Proof of Theorem 6.2. The proof is obtained by applying Propositions C.4
and C.5.

Remark C.1. We hypothesize that Theorem 6.2 might also hold for N > 2.
The MIS schemes R2 and N2 seem to average estimators with variance reduction
(related to N3) with estimators with worse variance (related to N1).
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Remark C.2. Note that the scheme R3 does not appear in Theorem 6.2. Eq.
(C.17) can be rewritten as

Var(ÎR2) =
1

2
Var(ÎR3) +

1

8Z2

(∫
π2(x)g2(x)

q1(x)
dx +

∫
π2(x)g2(x)

q2(x)
dx

)

−
1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q1(x)dx

)2

−
1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q2(x)dx

)2

.

The question is then whether the last four terms are larger than 1
2Var(ÎR3). We

hypothesize that no inequality can be established in a general case, i.e., whether
the scheme R3 would outperform R2 or not for a given π(x) and g(x), might
depend on the proposals q1(x) and q2(x).

C.4 Example with closed-form variances

Let us derive the expressions of the example of Section 6.1 by considering the
targeted distribution

π(x) =
1

2

[
N
(
x| − µ, σ2

)
+N

(
x|µ, σ2

) ]
.(C.20)

We consider N = 2 proposal densities, q1(x) = N (x| − µ, σ2) and q2(x) =
N (x|µ, σ2). Note that the mixture of proposals is exactly the targeted distribu-
tion, i.e. ψ(x) = π(x). We address the case where we want to estimate a specific
moment g of π with the M = 2 samples. In the following, we provide explicit
variances of the unnormalized estimator of Eq. (4.1) for the six MIS schemes.
From Eq. (C.5),

Var(ÎN1) =
1

4

[∫
π2(x)g2(x)

q1(x)
dx +

∫
π2(x)g2(x)

q2(x)
dx

]
− I

2

=
1

4
[S1 + S2]− I

2
.

Let us first compute

S1 =

∫
g2(x) 1

2
(q1(x) + q2(x))

q1(x)
π(x)dx

=
1

2

[∫
g2(x)π(x)dx +

∫
q2(x)

q1(x)
g2(x)π(x)dx

]
=

1

4

[∫
g2(x)q1(x)dx +

∫
g2(x)q2(x)dx +

∫
g2(x)

q1(x) + q2(x)

q1(x)
q2(x)dx

]
=

1

4

[∫
g2(x)q1(x)dx + 2

∫
g2(x)q2(x)dx +

∫
g2(x)

q2(x)

q1(x)
q2(x)dx

]
.

Since the proposals are Gaussian,

q2(x)

q1(x)
q2(x) =

1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
1√

2πσ2
exp

(
− (x+µ)2

2σ2

) 1
√

2πσ2
exp

(
−

(x− µ)2

2σ2

)

= exp

(
4µx

2σ2

)
1

√
2πσ2

exp−
(x− µ)2

2σ2

=
1

√
2πσ2

exp

(
−
x2 + µ2 − 2µx− 4µx

2σ2

)
=

1
√

2πσ2
exp

(
−

(x− 3µ)

2σ2

)
exp

(
−

8µ2

2σ2

)
.
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Then,

S1 =
1

4

[∫
g2(x)q1(x)dx + 2

∫
g2(x)q2(x)dx + exp

(
−

8µ2

2σ2

)∫
g2(x)

1
√

2πσ2
exp

(
−

(x− 3µ)

2σ2

)
dx

]
=

1

4

[∫
g2(x)q1(x)dx + 2

∫
g2(x)q2(x)dx + exp

(
−

8µ2

2σ2

)∫
g2(x)N (3µ, σ2)dx

]
.

Similarly,

S2 =
1

4

[∫
g2(x)q2(x)dx + 2

∫
g2(x)q1(x)dx +

∫
g2(x)

q1(x)

q2(x)
q1(x)dx

]
,

where

q1(x)

q2(x)
q1(x) =

1
√

2πσ2
exp

(
−
x2 + µ2 + 2µx + 4µx

2σ2

)
=

1
√

2πσ2
exp

(
−

(x + 3µ)

2σ2

)
exp

(
8µ2

2σ2

)
.

Finally, from Eq. (C.21),

Var(ÎN1) =
1

16

[
3

∫
g2(x)q1(x)dx + 3

∫
g2(x)q2(x)dx

+

(∫
g2(x)N (x|3µ, σ2)dx +

∫
g2(x)N (x| − 3µ, σ2)dx

)
exp

(
4µ2

σ2

)]
−
I

2
.

Note that Var(ÎR1) = Var(ÎN1). From Eq. (C.7),

Var(ÎR3) =
1

2

∫
g2(x)π(x)

π(x)
π(x)dx−

I

2

=
1

2

∫
g2(x)π(x)dx−

1

2

∫
g(x)π(x)dx

=
1

2

∫
g(x)(g(x)− 1)π(x)dx.(C.21)

From Eq. (C.10),

Var(ÎN3) =
1

2

∫
g2(x)π(x)dx−

1

4

[(∫
g(x)q1(x)dx

)2

+

(∫
g(x)q2(x)dx

)2
]
.

From Eq. (C.19), Var(ÎR2) = Var(ÎN1)+Var(ÎN3)
2 . Therefore,

Var(ÎR2) =
1

32

[
3

∫
g2(x)q1(x)dx + 3

∫
g2(x)q2(x)dx

+

(∫
g2(x)N (x|3µ, σ2)dx +

∫
g2(x)N (x| − 3µ, σ2)dx

)
exp

(
4µ2

σ2

)]
−
I

4

+
1

4

∫
g2(x)π(x)dx−

1

8

[(∫
g(x)q1(x)dx

)2

+

(∫
g(x)q2(x)dx

)2
]
.

Moreover, from Proposition C.4, ÎN2 = ÎR2.
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Table 5
Summary of the distributions of the r.v.’s Jn, Xn and X, for the three different sampling procedures.

Selection of the indexes

Distributions With replacement
Without Replacement

Text referencesrandom selection deterministic selection
S1 S2 S3

Jn ∼ P (jn) 1
N

1
N

1jn=n Eqs. (3.5) and (3.7)

Jn|J1:n−1 ∼ P (jn|j1:n−1) 1
N

1
|In|1jn∈In 1jn=n Eqs. (3.5)-(3.6)-(3.7)

Xn|J1:n−1 ∼ p(xn|j1:n−1) ψ(xn) 1
|In|

∑
∀k∈In qk(xn) qn(xn) Sect. 3.5

Xn|Jn ∼ p(xn|jn) qjn(xn) qjn(xn) qjn(xn) = qn(xn) Sect. 3.1

Xn ∼ p(xn) ψ(xn) ψ(xn) qn(xn) Eq. (3.8)

X|J1:N ∼ f(x|j1:N ) 1
N

∑N
n=1 qjn(x) ψ(x) ψ(x) Eq. (3.11)

X ∼ f(x) ψ(x) ψ(x) ψ(x) Eq. (3.10)

X1:N ∼ p(x1:N )
∏N
n=1 ψ(xn) ψ(x1)

∏N
n=2

1
|In|

∑
`∈In q`(xn)

∏N
n=1 qn(xn) Sect. 3.6; Eq. (3.12)

Table 6
Specific function, ϕPn , at the denominator of weight, wn = π(xn)

ϕPn (xn)
, resulting from the combination of the different sampling schemes (Section 3.6) and weighting

functions (Section 4.2).

ϕPn

W1 W2 W3 W4 W5

p(xn|j1:n−1) p(xn|jn) p(xn) f(x|j1:N ) f(x)

S1: with replacement ψ(xn) [R3] qjn(xn) [R1] ψ(xn) [R3] 1
N

∑N
k=1 qjk (xn) [R2] ψ(xn) [R3]

S2: w/o (random) 1
|In|

∑
∀k∈In qk(xn) [N2] qjn(xn) [N1] ψ(xn) [N3] ψ(xn) [N3] ψ(xn) [N3]

S3: w/o (deterministic) qn(xn) [N1] qn(xn) [N1] qn(xn) [N1] ψ(xn) [N3] ψ(xn) [N3]
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Table 7
Summary of possible MIS strategies in an adaptive framework.

MIS scheme Function ϕj,t(x) N
P L

Corresponding Algorithm
LP = N

N1 qj,t(x) JT 1 PMC [Cappé et al., 2004]

Full N3 ψ(x) = 1
JT

∑J
j=1

∑T
t=1 qj,t(x) 1 JT suggested in [Elvira et al., 2015a]

Partial (temporal) N3 ξj(x) = 1
T

∑T
t=1 qj,t(x) JT J T AMIS [Cornuet et al., 2012], with J = 1

Partial (spatial) N3 φt(x) = 1
J

∑J
j=1 qj,t(x) T J APIS [Martino et al., 2015a]

Partial (spatial) R3 φt(x) = 1
J

∑J
j=1 qj,t(x) T J [Cappé et al., 2008; Douc et al., 2007a,b]

Partial (generic) N3 generic ϕj,t(x) in Eq. (7.8) P L suggested in [Elvira et al., 2015a]
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