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Monte Carlo Methods through an Online Scheme
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Abstract

Particle filters are broadly used to approximate posterior distributions of hidden states in state-space models by means of sets

of weighted particles. While the convergence of the filter is guaranteed when the number of particles tends to infinity, the quality

of the approximation is usually unknown but strongly dependent on the number of particles. In this paper, we propose a novel

method for assessing the convergence of particle filters in an online manner, as well as a simple scheme for the online adaptation

of the number of particles based on the convergence assessment. The method is based on a sequential comparison between the

actual observations and their predictive probability distributions approximated by the filter. We provide a rigorous theoretical

analysis of the proposed methodology and, as an example of its practical use, we present simulations of a simple algorithm for

the dynamic and online adaption of the number of particles during the operation of a particle filter on a stochastic version of the

Lorenz system.

Index Terms

Particle filtering, sequential Monte Carlo, convergence assessment, predictive distribution, convergence analysis, computational

complexity, adaptive complexity.

I. INTRODUCTION

Many problems in science and engineering can be described by dynamical models where hidden states of the systems change

over time and observations that are functions of the states are available. Often, the observations are sequentially acquired and

the interest is in making recursive inference on the hidden states. In many applications, the Bayesian approach to the problem

is adopted because it allows for optimal inclusion of prior knowledge of the unknown state in the estimation process [1], [2].

In this case, the prior information and the likelihood function that relates the hidden state and the observation are combined

yielding a posterior distribution of the state.

Exact Bayesian inference, however, is only possible in a small number of scenarios, including linear Gaussian state-space

models (using the Kalman filter [3], [4]) and finite state-space hidden Markov models (HMM filters [5]). Therefore, in many

other practical problems, only approximate inference methods can be used. One class of suboptimal methods is particle filtering,

which is also known as sequential Monte Carlo sampling [6], [7], [8], [9], [10]. Since the publication of [11], where the sampling

importance resampling (SIR) filter was introduced, particle filtering has received outstanding attention in research and practice.
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Particle filters approximate posterior distributions of the hidden states sequentially and recursively. They do it by exploiting

the principle of importance sampling and by using sets of weighted particles [6], [7], [12].

The key parameter of particle filters is the number of particles. It can be proved that the rate of convergence of the approximate

probability distribution towards the true posterior is inversely proportional to the square root of the number of particles used

in the filter [13], [12]. This, too, entails that the filter “perfectly” approximates the posterior distribution when the number of

particles tends to infinity. However, since the computational cost grows with the number of particles, practitioners must choose

a specific number of particles in the design of their filters.

In many applications, the observations arrive sequentially, and there is a strict deadline for processing each new observation.

Then, one could argue that the best solution in terms of filter performance is to increase the number of particles as much as

possible and keep it fixed. Also, in some hardware implementations, the number of particles is a design parameter that cannot

be modified during implementation. Nevertheless, in many other applications where resources are scarce or are shared with a

dynamical allocation and/or with energy restrictions, one might be interested in adapting the number of particles in a smart

way. One would use enough particles to achieve a certain performance requirement but without wasting resources by using

many more particles if they do not translate into a significant improvement of the filter performance.

The selection of the number of particles, however, is often a delicate subject because, (1) the performance of the filter (the

quality of the approximation) cannot usually be described in advance as a function of the number of particles, and (2) the

mismatch between the approximation provided by the filter and the unknown posterior distribution is obviously also unknown.

Therefore, although there is a clear trade-off between performance and computational cost, this relation is not straightforward;

e.g., increasing the number of particles over a certain value may not significantly improve the quality of the approximation

while decreasing the number of particles below some other value can dramatically affect the performance of the filter.

Few papers in the wide literature have addressed the problem of online assessment of the filter convergence for the purpose

of adapting the number of particles. In [14], the number of particles is selected so that the bound on the approximation error

does not exceed a threshold with certain probability. The latter error is defined as the Kullback-Leibler divergence (KLD)

between the approximate filter distribution and a grid-discretized version of the true one (which is itself a potentially-costly

approximation with an unknown error). In [15], an adaptation of the number of particles is proposed, based on the KLD

approach of [14] and an estimate of the variance of the estimators computed via the particle filter, along with an improvement

of the proposal distributions. In [16], the adaptation of the number of particles is based on the effective sample size. To our

best knowledge, all existing methods are heuristic: they do not enjoy any theoretical guarantees (in the assessment of the

approximation errors made by the particle filter) and the allocation of particles, therefore, cannot be ensured to be optimal

according to any probabilistic criterion.

In this paper, we introduce a model–independent methodology for the online assessment of the convergence of particle filters

and carry out a rigorous analysis that ensures the consistency of the proposed scheme under fairly standard assumptions. The

method is an extension of our previous work presented in [17]. In the proposed scheme, the observations are processed one

at a time and the filter performance is assessed by measuring the discrepancy between the actual observation at each time

step and a number of fictitious data-points drawn from the particle approximation of the predictive probability distribution

of the observations. The method can be exploited to adjust the number of particles dynamically when the performance of

the filter degrades below a certain desired level. This would allow a practitioner to select the operation point by considering

performance-computational cost tradeoffs. Based on the method, we propose a simple and efficient algorithm that adjusts the

number of particles in real time. We demonstrate the performance of the algorithm numerically by running it for a stochastic
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version of the 3-dimensional Lorenz 63 system.

Let us point out that the adaptive procedure for the online selection of the number of particles described herein is only one

of many that can exploit the results of the convergence analysis. In other words, our analysis opens the door for development

of new family of algorithms for online adaptation of the number of particles by way of online convergence assessment.

The rest of the paper is organized as follows. In Section II we describe the class of state space Markov models and provide

a basic background on the well-known bootstrap particle filter of [11]. The theoretical results that enable the online assessment

of particle filters are stated in Section III, with full details and proofs contained in Appendix A. The proposed methodology

for online convergence assessment of the particle filter is introduced in Section IV. Furthermore, this section provides a simple

algorithm for the dynamic, online adaptation of the number of particles. In Section V, we illustrate the validity of the method

by means of computer simulations for a stochastic Lorenz 63 model. Finally, Section VI contains a summary of results and

some concluding remarks.

II. PARTICLE FILTERING

In this section we describe the class of state space models of interest and then present the standard particle filter (PF), which

is the basic building block for the methods to be introduced later.

A. State space models and stochastic filtering

Let us consider discrete-time, Markov dynamic systems in state-space form described by the triplet1

X0 ∼ p(x0), (1)

Xt ∼ p(xt|xt−1), (2)

Yt ∼ p(yt|xt), (3)

where

• t ∈ N denotes discrete time;

• Xt is the dx × 1-dimensional (random) system state at time t, which takes variables in the set X ⊆ Rdx ,

• p(x0) is the a priori pdf of the state, while

• p(xt|xt−1) denotes the conditional density of the state Xt given Xt−1 = xt−1;

• Yt is the dy × 1-dimensional observation vector at time t, which takes values in the set Y ⊆ Rdy and is assumed to be

conditionally independent of all other observations given the state Xt,

• p(yt|xt) is the conditional pdf of Yt given Xt = xt. It is often referred to as the likelihood of xt, when it is viewed as a

function of xt given yt.

The model described by Eqs. (1)–(3) includes a broad class of systems, both linear and nonlinear, with Gaussian or non-

Gaussian perturbations. Here we focus on the case where all the model parameters are known. However, the proposed method

can also be used for models with unknown parameters for which suitable particle filtering methods are available [18], [19],

[20]. We assume that the prior distribution of the state p(x0) is also known.

1In most of the paper we abide by a simplified notation where p(x) denotes the probability density function (pdf) of the random variables X . This notation

is argument-wise, hence if we have two random variables X and Y , then p(x) and p(y) denote the corresponding density functions, possibly different; p(x, y)

denotes the joint pdf and p(x|y) is the conditional pdf of X given Y = y. A more accurate notation, which avoids any ambiguities, is used for the analysis

and the statement of the theoretical results. Vectors are denoted by bold-face letters, e.g., x, while regular-face is used for scalars, e.g., x.
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The stochastic filtering problem consists in the computation of the sequence of posterior probability distributions given by

the so-called filtering densities p(xt|y1:t), t = 1, 2, · · · . The pdf p(xt|y1:t) is closely related to the one-step-ahead predictive

state density p(xt|y1:t−1), which is of major interest in many applications and can be written down by way of the Chapman-

Kolmogorov equation,

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (4)

Using Bayes’ theorem together with Eq. (4), we obtain the well-known recursive factorization of the filtering pdf

p(xt|y1:t) ∝ p(yt|xt)
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1.

For conciseness and notational accuracy, we use the measure-theoretic notation

πt(dxt) := p(xt|y1:t)dxt, ξt(dxt) := p(xt|y1:t−1)dxt

to represent the filtering and the predictive posterior probability distributions of the state, respectively. Note that πt and ξt

are probability measures, hence, given a Borel set A ⊂ X , πt(A) =
∫
A
π(dxt) and ξt(A) =

∫
A
ξt(dxt) denote the posterior

probability of the event Xt ∈ A conditional on Y1:t = y1:t and Y1:t−1 = y1:t−1, respectively.

However, the object of main interest for the convergence assessment method to be introduced in this paper is the predictive

pdf of the observations, namely the function p(yt|y1;t−1) and the associated probability measure

µt(dyt) := p(yt|y1:t−1)dyt.

The density p(yt|y1:t−1) is the normalization constant of the filtering density p(xt|y1:t), and it is related to the predictive state

pdf p(xt|y1:t−1) through the integral

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|y1:t−1)dxt. (5)

It also plays a key role in model assessment [17] and model inference problems [19], [20], [21].

B. The standard particle filter

A PF is an algorithm that processes the observations {yt}t≥1 sequentially in order to compute Monte Carlo approximations

of the sequence of probability measures {πt}t≥1. The simplest algorithm is the so-called bootstrap filter (BF) [11] (see also

[22]), which consists of a recursive importance sampling procedure and a resampling step. The term “particle” refers to a

Monte Carlo sample in the state space X , which is assigned an importance weight. Below, we outline the BF algorithm with

M particles.

Algorithm 1. Bootstrap filter.

1) Initialization. At time t = 0, draw M i.i.d. samples, x(m)
0 , m = 1, . . . ,M , from the prior p(x0).

2) Recursive step. Let {x(m)
t−1}Mm=1 be the particles at time t− 1. At time t, proceed with the two steps below.

a) For m = 1, ...,M , draw x̄(m)
t from the model transition pdf p(xt|x(m)

t−1). Then compute the normalized importance

weights

w
(m)
t =

p(yt|x̄(m)
t )∑M

k=1 p(yt|x̄
(k)
t )

, m = 1, ...,M. (6)

b) Resample M times with replacement: for m = 1, ...,M , let x(m)
t = x̄

(k)
t with probability w(k)

t , where k ∈ {1, ...,M}.
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For the sake of simplicity, in step 2.(b) above we assume that multinomial resampling [7] is carried out for every t ≥ 1. The

results and methods to be presented in subsequent sections remain valid when resampling is carried out periodically and/or

using alternative schemes such as residual [6], stratified [23] or minimum-variance [24] resampling (see also [25]).

The simple BF yields several useful approximations. After sampling at step 2.(a), the predictive state probability measure

ξt can be approximated as

ξMt (dxt) =
1

M

M∑
m=1

δx̄(m)
t

(dxt),

where δx denotes the Dirac delta measure located at x ∈ X . The filter measure πt can be similarly approximated, either using

the particles and weights computed at step 2.(a) or the resampled particles after step 2.(b), i.e.,

π̄Mt =

M∑
m=1

w
(m)
t δx̄(m)

t
and πMt =

1

M

M∑
m=1

δx(m)
t
,

respectively. In addition, the BF yields natural approximations of the predictive pdf’s of Xt and Yt given the earlier observations

Y1:t−1 = y1:t−1. If we specifically denote these functions as p̃t(xt) := p(xt|y1:t−1) and pt(yt) := p(yt|y1:t−1), then we readily

obtain their respective estimates as mixture distributions with M mixands, or,

p̃Mt (xt) :=

M∑
m=1

wMt−1p(xt|x(m)
t−1), and

pMt (yt) :=
1

M

M∑
m=1

p(yt|x̄
(m)
t ),

for any xt ∈ X and yt ∈ Y .

III. A NOVEL ASYMPTOTIC CONVERGENCE RESULT

The convergence of the approximate measures, e.g., ξMt , towards the true ones is usually assessed in terms of the estimates

of 1-dimensional statistics of the corresponding probability distribution. To be specific, let f : X → R be a real integrable

function in the state space and denote2

(f, ξt) :=

∫
f(xt)ξt(dxt).

Under mild assumptions on the state space model, it can be proved that

lim
M→∞

(f, ξMt ) = lim
M→∞

1

M

M∑
m=1

f(x(m)
t ) = (f, ξt) (7)

almost surely (a.s.) [26], [12].

According to (5), the predictive observation pdf pt(yt) is an integral w.r.t. ξt and, as a consequence, Eq. (7) implies that

limM→∞ pMt (y) = pt(y) a.s. and point-wise for every y ∈ Y under mild assumptions [26]. However, existing theoretical

results do not ensure that pMt (y) can converge uniformly on Y towards pt(y) and this fact prevents us from claiming that

limM→∞
∫
h(y)pMt (y)dy =

∫
h(y)pt(y)dy = (h, µt) in some proper sense for integrable real functions h(y).

The first contribution of this paper is to prove that, under mild regularity assumptions on the state space model, the continuous

random probability measure

µMt (dy) := pMt (y)dy

converges a.s. to µt and provide explicit error rates. To express this result rigorously, we need to introduce some notation:

2Let (Z,B(Z)) be a measurable space, where Z ⊂ Rd for some integer d ≥ 1 and B(Z) is the Borel σ-algebra of subsets of Z . If α is a measure on

B(Z) and the function h : Z → R is integrable with respect to (w.r.t.) α, then we use the shorthand notation (f, α) :=
∫
f(z)α(dz).
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• For each t ≥ 1, let us define the function gt(yt, xt) := p(yt|xt), i.e., the conditional pdf of yt given xt. When this function

is used as a likelihood, we write gyt
t (xt) := gt(yt, xt) to emphasize that it is a function of xt.

• Let f : Z → R be a real function on some set Z . We denote the absolute supremum of f as ‖f‖∞ := supz∈Z |f(z)|.

The set of bounded real functions on Z is B(Z) := {f : Z → R such that ‖f‖∞ <∞}.

• Let a = (a1, ..., ad) be a multi-index, where each ai, i = 1, 2, ..., d, is a non-negative integer. Let f : Z → R be a

real function on a d-dimensional set Z ⊆ Rd. We use Da
zf(z) to denote the partial derivative of f w.r.t. the variable z

determined by the entries of a, namely,

Da
zf(z) =

∂a1 · · · ∂adf
∂za11 · · · ∂z

ad
d

(z).

The order of the derivative operator Da
z is |a| =

∑d
i=1 ai.

• The minimum out of two scalar quantities, a, b ∈ R, is denoted a ∧ b.

We make the following assumptions on the likelihood function gt and the predictive observation measure µt(dyt) = pt(yt)dyt.

(L) For each t ≥ 1, the function gt is positive and bounded, i.e., gt(y, x) > 0 for any (y, x) ∈ Y × X and

‖gt‖∞ = sup(y,x)∈Y×X |gt(y, x)| <∞.

(D) For each t ≥ 1, the function gt(y, x) is differentiable with respect to y, with bounded derivatives up to order dy , i.e.,

D1
ygt(y, x) = ∂dy gt

∂y1···∂ydy
(y, x) exists and

‖D1
ygt‖∞ = sup

(y,x)∈Y×X
|D1

ygt(y, x)| <∞.

(C) For any 0 < β < 1 and any p ≥ 4, the sequence of hypercubes

CM :=

[
−M

β
p

2
,+

M
β
p

2

]
× · · · ×

[
−M

β
p

2
,+

M
β
p

2

]
⊂ Rdy

satisfies the inequality µt(CM ) ≤ bM−η for some constants b > 0 and η > 0 independent of M (yet possibly dependent

on β and p), where CM = Rdy\CM is the complement of CM .

Remark 1. Assumptions (L) and (D) refer to regularity conditions (differentiability and boundedness) that the likelihood

function of the state space model should satisfy. Models of observations, for example, of the form yt = f(xt) + ut, where f

is a (possibly nonlinear) transformation of the state xt and ut is noise with some differentiable, exponential-type pdf (e.g.,

Gaussian or mixture-Gaussian), readily satisfy these assumptions. Typical two-sided heavy-tailed distributions, such as Student’s

t distribution, also satisfy (L) and (D).

Assumption (C) states that the tails of the pdf pt(yt) = p(yt|y1:t−1) should not be too heavy. Being polynomial on M ,

this constraint is relatively weak and the assumption is satisfied for all exponential-type distributions as well as for many

heavy-tailed distributions. For example, when dy = 1, one can choose the constants b and η such that bM−η is an upper

bound for the tails of the (heavy-tailed) Pareto, Weibull, Burr or Levy distributions.

Theorem 1. Assume that (L), (D) and (C) hold and the observations y1:t−1 are fixed (and otherwise arbitrary). Then, for

every h ∈ B(Y) and any ε ∈ (0, 1
2 ) there exists an a.s. finite r.v. W ε

t , independent of M , such that∣∣(h, µMt )− (h, µt)
∣∣ ≤ W ε

t

M ( 1
2−ε)∧η

.

In particular,

lim
M→∞

(h, µMt ) = (h, µt) a.s.

See Appendix A for a proof.



7

IV. ONLINE SELECTION OF THE NUMBER OF PARTICLES

In the sequel we assume scalar observations, hence dy = 1 and yt = yt (while dx ≥ 1 is arbitrary). A discussion of how to

proceed when dy > 1 is provided in Section IV-E.

Our goal is to evaluate the convergence of the BF (namely, the accuracy of the approximation pMt (yt)) in real time and,

based on the convergence assessment, adapt the computational effort of the algorithm, i.e., the number of used particles M .

To that end, we run the BF in the usual way with a light addition of computations. At each iteration we generate K “fictitious

observations”, denoted ỹ(1)
t , . . . , ỹ

(K)
t , from the approximate predictive pdf pMt (yt). If the BF is operating with a small enough

level of error, then Theorem 1 states that these fictitious observations come approximately from the same distribution as the

acquired observation, i.e., µMt (dyt) ≈ µt(dyt). In that case, as we explain in Subsection IV-B, a statistic aKt can be constructed

using yt, ỹ
(1)
t , . . . , ỹ

(K)
t , which necessarily has an (approximately) uniform distribution independently of the specific form of

the state-space model (1)–(3). By collecting a sequence of such statistics, say aKt−W+1, . . . , a
K
t for some window size W , one

can easily test whether their empirical distribution is close to uniform using standard procedures. The better the approximation

µMt ≈ µt generated by the BF, the better fit with the uniform distribution can be expected.

If K << M and W is not too large, the cost of the added computations is negligible compared to the cost of running the

BF with M particles and, as we numerically show in Section V, the ability to adapt the number of particles online leads to a

very significant reduction of the running times without compromising the estimation accuracy.

Below we describe the method, justify its theoretical validity and discuss its computational complexity as well as its extension

to the case of multidimensional yt’s.

A. Generation of fictitious observations

The proposed method demands at each time t the generation of K fictitious observations (i.e., Monte Carlo samples), denoted

{ỹ(k)
t }Kk=1, from the approximate predictive observation pdf pMt (yt) = 1

M

∑M
m=1 p(yt|x̄

(m)
t ). Since the latter density is a finite

mixture, drawing from pMt (yt) is straightforward as long as the conditional density of the observations, p(yt|xt), is itself

amenable to sampling. In order to generate ỹ(k)
t , it is enough to draw a sample j(k) from the discrete uniform distribution on

{1, 2, ...,M} and then generate ỹ(k)
t ∼ p(yt|x̄(j(k))

t ).

B. Assessing convergence via invariant statistics

For simplicity, let us assume first that pMt (yt) = pt(yt) = p(yt|y1:t−1), i.e., there is no approximation error and,

therefore, the fictitious observations {ỹ(k)
t }Kk=1 have the same distribution as the true observation yt. We define the set

AK,t := {y ∈ {ỹ(k)
t }Kk=1 : y < yt} and the r.v. AK,t := |AK,t| ∈ {0, 1, ...,K}. Note that AK,t is the set of fictitious

observations which are smaller than the actual one, while AK,t is the number of such observations. If we let QK denote the

probability mass function (pmf) of AK , it is not hard to show that QK is uniform independently of the value and distribution

of yt. This is rigorously given by the Proposition below.

Proposition 1. If yt, ỹ
(1)
t , . . . , ỹ

(K)
t are i.i.d. samples from a common continuous (but otherwise arbitrary) probability

distribution, then the pmf of the r.v. AK,t is

QK(n) =
1

K + 1
, n = 0, ...,K. (8)

Proof : Since yt, ỹ
(1)
t , · · · , ỹ(K)

t are i.i.d., all possible orderings of the K + 1 samples are a priori equally probable, and

the value of the r.v. AK,t depends uniquely on the relative position of yt after the samples are sorted (e.g., if yt is the
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smallest sample, then AK,t = 0, if there is exactly one ỹ(i)
t < yt then AK,t = 1, etc.). There are (K + 1)! different ways

in which the samples yt, ỹ
(1)
t , · · · , ỹ(K)

t can be ordered, but AK,t can only take values from 0 to K. In particular, given the

relative position of yt, there are K! different ways in which the remaining samples ỹ(1)
t , · · · , ỹ(K)

t can be arranged. Therefore,

QK(AK = n) = K!
(K+1)! = 1

K+1 for every n ∈ {0, 1, ...,K}.

In practice, pMt (yt) is just an approximation of the predictive observation pdf pt(yt) and, therefore, the actual and fictitious

observations are not i.i.d. However, under the assumptions of Theorem 1, the a.s. convergence of the approximate measure

µMt (dyt) = pMt (yt)dyt enables us to obtain an “approximate version” of the uniform distribution in Proposition 1, with the

error vanishing as M →∞. To be specific, we introduce the set AK,M,t := {y ∈ {ỹ(k)
t }Kk=1 : y < yt}, which depends on M

because of the mismatch between pMt (yt) and pt(yt), and the associated r.v. AK,M,t = |AK,M,t| with pmf QK,M,t. We have

the following convergence result for QK,M,t.

Theorem 2. Let yt be a sample from pt(yt) and let {ỹ(k)
t }Kk=1 be i.i.d. samples from pMt (yt). If the observations y1:t−1

are fixed and Assumptions (L), (D) and (C) hold, then there exists a sequence of non-negative r.v.’s {εMt }M∈N such that

limM→∞ εMt = 0 a.s. and
1

K + 1
− εMt ≤ QK,M,t(n) ≤ 1

K + 1
+ εMt . (9)

In particular, limM→∞QK,M,t(n) = QK(n) = 1
K+1 a.s.

See Appendix B for a proof. Proposition 1 states that the statistic AK,t is distribution-invariant, since QK(n) = 1
K+1

independently of t and the state space model. Similarly, Theorem 2 implies that the statistic AK,M,t is asymptotically

distribution-invariant (independently of t and the model) since QK,M,t(n)→ 1
K+1 when M →∞, as the BF converges.3

C. BF algorithm with adaptive number of particles

We propose an algorithm that dynamically adjusts the number of particles of the filter based on the transformed r.v. AK,M,t.

Table II summarizes the proposed algorithm, that is embedded into a standard BF (see Section II-B) but can be applied to

virtually any other particle filter in a straightforward manner. The parameters of the algorithm are shown in Table I.

The BF is initialized in Step 1(a) with M0 initial particles. At each recursion, in Step 2(a), the filtered distribution

of the current state is approximated. In Step 2(b), K fictitious observations {ỹ(k)
t }Kk=1 are drawn and the statistic

AK,M,t = aK,M,t is computed. In Step 2(b), once a set of W consecutive statistics have been acquired, St =

{aK,M,t−W+1, aK,M,t−W+2, ..., aK,M,t−1, aK,M,t}, a statistical test is performed for checking whether St is a sequence of

i.i.d. samples from the pmf given by Eq. (8).

There are several approaches that can be used to exploit the information contained in St. Here we perform a Pearson’s

chi-squared test [27], where the χ2
t statistic is computed according to Eq. (10) (see Table II). Then, a p-value p∗K,t for testing

the hypothesis that the empirical distribution of St is uniform is computed. The value p∗K,t is obtained by comparing the χ2
t

statistic with the χ2 distribution with K degrees of freedom. Intuitively, a large p∗K,t suggests a good match of the sequence

St with an i.i.d. sample from the uniform distribution on {0, 1, ...,K}, while a small p∗K,t indicates a mismatch. Therefore,

the p-value p∗K,t is compared with two different significance levels: a low threshold p` and a high threshold ph. If p∗K,t ≤ p`,

the number of particles is increased according to the rule Mt = fup(Mt−1) whereas, if p∗K,t ≥ ph, the number of particles

is decreased according to the rule Mt = fdown(Mt−1). When p` < p∗K,t < ph, the number of particles remains fixed. These

3Specifically note that, under assumptions (L), (D) and (C), the convergence of the continuous random measure µMt computed via the BF (which is

sufficient to obtain (9); see Appendix B) is guaranteed by Theorem 1.
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TABLE I: Parameters of the algorithm

– M0, initial number of particles

– Mmin, minimum number of particles

– Mmax, maximum number of particles

– K, number of fictitious samples per iteration

– W , window length

– p`, lower significance level of p-values

– ph, higher significance level of p-values

– fup(·), rule for increasing M

– fdown(·), rule for decreasing M

two significance levels allow the practitioner to select the operation range by considering a performance-to-computational-cost

tradeoff. Note that we set Mmin and Mmax, maximum and minimum values for the number of particles, respectively.

A large window W yields a more accurate convergence assessment but increases the latency (or decreases the responsiveness)

of the algorithm. If the algorithm must be run online, this latency can be critical for detecting a malfunction of the filter and

adapting consequently the number of particles. Therefore there is a tradeoff between the accuracy of the convergence assessment

procedure and latency of the algorithm.

D. Computational cost

Compared to the BF, the additional computational cost of the method is mainly driven by the generation of the K fictitious

observations at each iteration as shown in Subsection IV-A. The generation of these fictitious observations is a two-step

procedure, where in the first step, we draw K discrete indices, say j1, ..., jK , from the set {1, ...,Mn} with uniform probabilities,

and in the second step, we draw K samples from p(yt|x̄(j1)
t ), . . . , p(yt|x̄(jK)

t ), respectively.

In the proposed algorithm, a Pearson’s χ2 test is performed with a sequence St of W samples, that is, it is carried out only

once every W consecutive time steps. Therefore, the computational cost will depend on the parameters K and W . We will

show in Section V that the algorithm can work very well with a low number of fictitious observations, which imposes a very

light extra computational load.

E. Multidimensional observations

Through this section, we have assumed scalar observations. In the multidimensional case, with yt = [y1,t, . . . , ydy,t]
>,

the same assessment scheme can be applied over each marginal p(yi,t|y1:t−1) of the predictive observation pdf. Theoretical

guarantees readily follow from the convergence of the marginal measures µMi,t(dyi,t) = pM (yi,t|y1:t−1)dyi,t under the same

assumptions as the joint measure µMt (see Appendix A).

Note that the convergence of the marginals does not imply the convergence of the joint approximation µMt . However, it can

be reasonably expected that when all marginals are approximated well over a period of time, the joint distribution is accurately

approximated as well.
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TABLE II: Algorithm for adapting the number of particles

1) [Initialization]

a) Initialize the particles and the weights of the filter as

x(m)
0 ∼ p(x0), m = 1, . . . ,M0,

w
(m)
0 = 1/M0, m = 1, . . . ,M0,

and set n = 1.

2) [For t = 1 : T ]

a) Bootstrap particle filter:

– Resample Mn samples of x̄(m)
t−1 with weights w(m)

t−1 to obtain x(m)
t−1.

– Propagate x̄(m)
t ∼ p(xt|x(m)

t−1), m = 1, . . . ,Mn.

– Compute the non-normalized weights w̄(m)
t = p(yt|x̄(m)

t ), m = 1, . . . ,Mn.

– Normalize the weights w̄(m)
t to obtain w(m)

t , m = 1, . . . ,Mn.

b) Fictitious observations:

– Draw ỹ
(k)
t ∼ pM (yt|yt−1), k = 1, . . . ,K.

– Compute aK,M,t = AK,M , i.e., the position of yt within the set of ordered fictitious observations {ỹ(k)t }Kk=1.

c) If t = nW , (assessment of convergence):

– Compute the χ2
t statistic over the empirical distribution of St = {aK,M,t, aK,M,t−1, ..., aK,M,t−W+1} as

χ2
t =

K∑
j=0

(Oj − Ej)2

Ej
, (10)

where Oj is the frequency of the observations in the window being in the jth relative position, i.e., Oj = |aK,M,τ ∈ St : aK,M,τ = j|,
and Ej is the expected frequency under the null hypothesis, i.e., Ej = W · QK(j) = W

K+1
(see Eq. (8)).

– Calculate the p-value p∗K,t by comparing the statistic χ2
t to the χ2-distribution with K degrees of freedom.

– If p∗K,t ≤ p`

increase Mn = min{fup(Mn−1),Mmax}.

– Else, if p∗K,t ≥ ph,

decrease Mn = max{fdown(Mn−1),Mmin}.

– Else,

Mn = Mn−1.

– Set n = n+ 1.

d) If t < Wn, set t = t+ 1 and go to 2. Otherwise, end.

V. NUMERICAL EXAMPLE

A. The three-dimensional Lorenz system

In this section we show computer simulation results that demonstrate the performance of the proposed method. We consider

the problem of tracking the state of a three-dimensional Lorenz system [28] with additive dynamical noise, partial observations

and additive measurement noise [29]. Namely, we consider a three-dimensional stochastic process {X(s)}s∈(0,∞) taking values

on R3, whose dynamics are described by the system of stochastic differential equations

dX1 = −s(X1 − Y1) + dW1,

dX2 = rX1 −X2 −X1X3 + dW2,

dX3 = X1X2 − bX3 + dW3,
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where {Wi(s)}s∈(0,∞), i = 1, 2, 3, are independent one-dimensional Wiener processes and

(s, r, b) =

(
10, 28,

8

3

)
are static model parameters broadly used in the literature since they lead to a chaotic behavior [28]. Here we use a discrete-time

version of the latter system using an Euler-Maruyama scheme with integration step ∆ = 10−3, which yields the model

X1,n = X1,n−1 −∆s(X1,n−1 −X2,n−1) +
√

∆U1,n, (11)

X2,n = X2,n−1 + ∆(rX1,n−1 −X2,n−1 −X1,n−1X3,n−1) +
√

∆U2,n, (12)

X3,n = X3,n−1 + ∆(X1,n−1X2,n−1 − bX3,n−1) +
√

∆U3,n, (13)

where {Ui,n}n=0,1,..., i = 1, 2, 3, are independent sequences of i.i.d. normal random variables with zero mean and unit

variance. The system (11)-(13) is partially observed every 200 discrete-time steps. Specifically, we collect a sequence of scalar

observations {Yt}t=1,2,..., of the form

Yt = X1,200t + Vt, (14)

where the observation noise {Vt}t=1,2,... is a sequence of i.i.d. normal random variables with zero mean and variance σ2 = 1
2 .

Let Xn = (X1,n, X2,n, X3,n) ∈ R3 be the state vector. The dynamic model given by Eqs. (11)–(13) defines the transition

kernel p(xn|xn−1) and the observation model of Eq. (14) is the likelihood function

p(yt|x1,200t) ∝ exp

{
− 1

2σ2
(yt − x1,200t)

2

}
.

The goal is on tracking the sequence of joint posterior probability measures πt, t = 1, 2, ..., for {X̂t}t=1,..., where X̂t = X200t.

Note that one can draw a sample X̂t = x̂t conditional on X̂t−1 = x̂t−1 by successively simulating

x̃n ∼ p(xn|x̃n−1), n = 200(t− 1) + 1, ..., 200t,

where x̃200(t−1) = x̂t−1 and x̂t = x̃200t. The prior measure for the state variables is normal, namely

X0 ∼ N (x∗, v2
0I3),

where x∗ = (−5.9165;−5.5233; 24.5723) is the mean and v2
0I3 is the covariance matrix of X0 , with v2

0 = 10 and I3 being

the three-dimensional identity matrix.

B. Simulation setup

With this example, we aim at showing how the proposed algorithm allows to operate the particle filter with a prescribed

performance-to-computational-budget tradeoff. With this purpose, we applied a standard BF for tracking the sequence of

posterior probability measures of the system system (11)-(13) generated by the three-dimensional Lorenz model described in

Section V-A. We generated a sequence of T = 2000 synthetic observations, {yt; t = 1, ..., 2000}, spread over an interval

of 400 seconds (in continuous time), corresponding to 4 × 105 discrete time steps in the Euler-Maruyama scheme (hence,

one observation every 200 steps). Since the time scale of the discrete time approximation of Eqs. (11)–(13) is n = 200t, a

resampling step is taken every 200 steps of the underlying discrete-time system.

We started running the PF with a sufficiently large number of particles, namely N = 5000, and then let the proposed

algorithm decrease the number of particles to attain a prescribed point in the performance-to-computation-cost range.

This point is controlled by the operation range of the p-value, which is in turn driven by the pair of significance
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levels [p` − ph]. We tested the algorithm for different ranges of p-values, namely, p` ∈ {0.5, 0.4, 0.3, 0.2, 0.1, 0.05} and

ph ∈ {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}. When the p-value is below p`, the algorithm doubles the number of particles

Mn+1 = fup(Mn) = 2Mn, and when the p-value is over ph, the number of particles is halved, Mn+1 = fdown(Mn) = Mn/2.

We used K = 7 fictitious observations and a window of size W = 20.

In order to assess the approximation errors, we computed the empirical MSEs of the approximation of the posterior mean,

E[X̂t|Y1:t = y1:t], by averaging the MSEs for the whole sequences. Note that, since the actual expectation cannot be computed

in closed form for this system, we used the true underlying sequence {X200t}t=1,2,... as the ground truth.

C. Numerical results

Table III shows results of the MSE of the approximation of the posterior mean, the average number of particles

M̄ =
2

T

T∑
k=T

2 +1

Mk, (15)

the p-values of the χ2 test, and the Hellinger distance [30] between the empirical distribution of St and the uniform distribution.

They were obtained by averaging over 100 runs and averaging over time steps for each run. The initial number of particles

M0 = 215, and the minimum and maximum number of particles are Mmin = 25 and Mmax = 215, respectively. The first half

of time steps were discarded for obtaining the displayed results in order to test the behavior of the algorithm for different sets

of parameters (see Eq. (15)). Regarding the relation between the MSE and M̄ and the p-values, it can be seen that selecting

a high operation range yields good performance (low MSE) at the cost of using a large number of particles (high M̄ ). When

we decrease the range of p-values, the algorithm decreases the number of particles, increasing also the approximation error.

Table III shows that this conclusion holds for any pair of [p` − ph].

Figure 1 shows the MSE, the number of particles M̄ , and the execution time for the different operation ranges (solid blue

line) compared to the particle filter with a fixed number of particles M = 215 (dashed red line). It can be seen that with a

moderate operation range ([p` − ph] = [0.3 − 0.7]), the algorithm can perform (in terms of MSE) similarly to the case with

fixed M , while reducing the execution time approximately by a factor of four. The execution time can be further reduced by

decreasing the operation range, although this worsens the performance.

Figure 2 displays the evolution of the number of particles over time (averaged over 100 runs) for [p` − ph] = [0.3 − 0.7]

both when M0 = 5000 and M0 = 10. In this case, the minimum and maximum number of particles are Mmin = 10 and

Mmax = 5000, respectively. We see that, after some time, the number of particles adjusted by the algorithm does not depend

on M0.

Figure 3 shows the same behavior for [p` − ph] = [0.2 − 0.6]. After some time, the filter uses less particles than the filter

with results in Fig. 2 because the selected range of thresholds employs smaller p-values.

Figure 4 shows histograms of averaged MSE and M for simulations performed with two different sets of thresholds:

[p` − ph] = [0.3 − 0.5] and [p` − ph] = [0.5 − 0.7]. In both cases, the initial number of particles is M0 = 5000. It can be

seen that a more demanding pair of thresholds ([p` − ph] = [0.5 − 0.7]) leads to better performance and a larger average

number of particles. This behavior can also be seen in Figure 5, where the MSE w.r.t. the number of particles is displayed for

three different sets of thresholds. Note that a filter with a too relaxed set of thresholds ([p` − ph] = [0.05 − 0.4]) uses very

few particles but obtains a poor performance, while a filter with the most stringent set of thresholds ([p` − ph] = [0.5− 0.9])

consistently yields a low MSE, at the expense of using a larger number of particles.
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[pl − ph] Fixed M = 215 [0.4− 0.8] [0.35− 0.7] [0.3− 0.7] [0.25− 0.65] [0.2− 0.6]

MSE 1.5193 1.5234 1.5240 1.5287 3.7552 4.6540

M̄ 32768 24951 14840 8729 2197 451

p-val 0.5108 0.5089 0.4902 0.4815 0.4872 0.4785

Hell. distance 0.2312 0.2355 0.2493 0.2462 0.2476 0.2521

exec. time (s) 6201 5617 3014 1532 131 67

time ratio 1 1.10 2.1 4.05 47.43 92.36

TABLE III: Lorenz Model (Section V-A): ∆ = 10−3, Tobs = 200∆, σ2 = 0.5. Algorithm details: W = 20, K = 7, Mmax = 215,

Mmin = 27. MSE in the approximation of the posterior mean, averaged number of particles M̄ , averaged p-value, and averaged

Hellinger distance.
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Fig. 1: Lorenz Model (Section V-A). MSE, number of particles M and execution time for different pairs of significance levels

[p` − ph] in solid blue line, and with a fixed number of particles M = 215 in dashed red line.
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Fig. 2: Lorenz Model (Section V-A). Evolution of the number of particles adapted by the proposed algorithm when the initial

number of particles M0 ∈ {10, 5000}. The significance levels were set to p` = 0.3 and ph = 0.7.
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Fig. 3: Lorenz Model (Section V-A). Evolution of the number of particles adapted by the proposed algorithm when the initial

number of particles M0 ∈ {10, 5000}. The significance levels were set to p` = 0.2 and ph = 0.6.
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In both cases, the initial number of particles M0 = 5000.
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VI. CONCLUSIONS

In practice, the number of particles needed in a particle filter is usually determined in an ad hoc manner. Furthermore,

this number is typically kept constant throughout tracking. In this paper, we have proposed a methodology for the online

determination of the number of particles needed by the filter. The approach is based on assessing the convergence of the

predictive distribution of the observations online. First we have proved, under standard assumptions, a novel convergence result

on the approximation of this distribution. Then, we have proposed a method for adapting the number of particles based on

the online assessment of the filter convergence. The proposed procedure is simple but not unique. One can develop a range of

algorithms for adapting the number of particles using the proposed methodology. We have illustrated the performance of the

suggested algorithm by computer simulations.

APPENDIX A

PROOF OF THEOREM 1

Recall that the likelihood of Xt = xt given the observation Yt = yt is denoted g
yt
t (xt), i.e., gyt

t (xt) = p(yt|xt). For the

sake of notational accuracy, we introduce the Markov transition kernel τt(dxt|xt−1) that determines the dynamics of the state

process. The correspondence with the notation in Section II is τt(dxt|xt−1) = p(xt|xt−1)dxt, however all the results in this

appendix (including Theorem 1) are proved for the general case in which τt does not necessarily have a density w.r.t. the

Lebesgue measure. For notational coherence, we denote τ0(dx0) = p(x0)dx0.

The same as in Section II, the integral of a function f : Z → R w.r.t. a measure α on the measurable space (B(Z),Z) is

denoted (f, α) and the absolute supremum of f is written ‖f‖∞ = supz∈Z |f(z)|. The class of bounded functions is denoted

B(Z) = {f : Z → R : ‖f‖∞ <∞}. For p ≥ 1, the Lp norm of a r.v. Z with associated probability measure γ(dz) is denoted

‖Z‖p := E [|Z|p]
1
p =

(∫
|z|pγ(dz)

) 1
p

,

where E[·] denotes expectation.

We start introducing some auxiliary results on the convergence of the approximate measure ξMt and integrals of the form

(D1
yg

yt
t , ξ

M
t ). This leads to the core result, which is the uniform convergence of pMt (yt)→ pt(yt) on a sequence of compact

sets. The proof of Theorem 1 follows readily from the latter result.

The analysis in this Appendix draws from methods developed in [31] for the estimation of the filter pdf p(xt|y1:t) using

kernel functions, which herein are suitably adapted to the problem of approximating the predictive density pt(yt).

Lemma 1. Assume that the sequence y0:T , for T < ∞, is arbitrary but fixed, and, for each t = 1, 2, ..., T , gyt
t ∈ B(X ) and

g
yt
t > 0. Then, there exist constants ct <∞, t = 0, 1, ..., T , independent of M such that

‖(f, ξMt )− (f, ξt)‖p ≤
ct‖f‖∞√

M
, t = 0, 1, 2, ...

for every f ∈ B(X ).

Proof : This is a particular case of [32, Lemma 1].

Lemma 2. Assume that the sequence y0:t−1, for t <∞, is arbitrary but fixed. If assumptions (L) and (D) hold, then for each

p ≥ 1 there exists a constant c̄t <∞ independent of M such that

E
[∣∣D1

yp
M
t (yt)−D1

ypt(yt)
∣∣p] ≤ c̄pt

M
p
2

. (16)
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Proof: We first note that D1
ypt(yt) = (D1

yg
yt
t , ξt) and D1

yp
M
t (yt) = (D1

yg
yt
t , ξ

M
t ), where function D1

yg
yt
t (xt) is bounded (for

any yt) because of assumption (D). Since (L) also holds, Lemma 1 yields

‖D1
yp
M
t (yt)−D1

ypt(yt)‖p = ‖(D1
yg

yt
t , ξ

M
t )− (D1

yg
yt
t , ξt)‖p

≤ c̄t√
M
, (17)

where the constant c̄t = ct‖D1
ygt‖∞ is finite (see (D)) and independent of M . If we raise both sides of (17) to power p, then

we obtain the desired result (16).

Lemma 3. Let {θM}M≥1 be a sequence of non-negative r.v.’s such that, for every p ≥ 4,

E
[(
θM
)p] ≤ c

M
p
2−ν

(18)

where c < ∞ and 0 ≤ ν < 1 are constants independent of M . Then, for every ε ∈ (0, 1
2 ) there exists an a.s. finite r.v. U ε

independent of M such that

θM ≤ U ε

M
1
2−ε

.

Proof: Let us choose an arbitrary constant ψ ∈ (ν, 1) and define the r.v. Uψ,p =
∑∞
M=1M

p
2−1−ψ(θM )p. If (18) holds, then

the expectation E[Uψ,p] is finite, as we prove in the sequel. Indeed, from Fatou’s lemma,

E
[
Uψ,p

]
≤

∞∑
M=1

M
p
2−1−ψE

[
(θM )p

]
(19)

≤
∞∑
M=1

Mν−ψ−1, (20)

where (20) follows from substituting (18) into (19). Since we have chosen ψ ∈ (ν, 1), then it follows that −1 < ν − ψ < 0

and ν − ψ − 1 < −1, which ensures that
∑∞
M=1M

ν−ψ−1 < ∞ and, therefore, E
[
Uψ,p

]
< ∞. Since E

[
Uψ,p

]
< ∞, then

Uψ,p <∞ a.s.

For any given value of M , it is apparent from the definition of Uψ,p that

M
p
2−1−ψ(θM )p ≤ Uψ,p

and, as a consequence,

θM ≤ (Uψ,p)
1
p

M
1
2−

1+ψ
p

=
U ε

M
1
2−ε

(21)

where the equality in (21) follows from defining ε := 1+ψ
p and U ε := (Uψ,p)

1
p . Since ψ < 1, it is sufficient to choose p ≥ 4

to ensure that ε = 1+ψ
p < 1

2 . Also, since p can actually be chosen as large as we wish, it follows that (21) holds for ε > 0 as

small as needed.

Lemma 4. Assume that the sequence y0:T , for T <∞, is arbitrary but fixed, and, for t = 1, 2, ..., T , gyt
t ∈ B(X ) and gyt

t > 0.

Then, for every 0 < ε < 1
2 (arbitrarily small) there exist a.s. finite r.v.’s U εt <∞, t = 0, 1, ..., T , independent of M such that

‖(f, ξMt )− (f, ξt)‖p ≤
U εt

M
1
2−ε

, t = 0, 1, 2, ... (22)

for every f ∈ B(X ).

Proof : From Lemma 1, for each t = 1, ..., T , there is a constant ct independent of M such that

E
[
|(f, ξMt )− (f, ξt)|p

]
≤ cpt ‖f‖p∞

M
p
2
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for any f ∈ B(X ). Therefore, we can apply Lemma 3 with c = cpt ‖f‖p∞ and ν = 0, to obtain the desired inequality (22).

For the statement of the next result, we need to recall the definition of the sequence of hypercubes

CM := [−M
β
dyp

2
,+

M
β
dyp

2
]× · · · × [−M

β
dyp

2
,+

M
β
dyp

2
] ⊂ Rdy

in assumption (C), where p ≥ 4 and 0 < β < 1 are constants w.r.t. M .

Lemma 5. Let the sequence y0:T , T <∞, be arbitrary but fixed and assume that (L) and (D) hold. Then, for any 0 < ε < 1
2

and each t = 1, 2, ..., T there exists an a.s. finite r.v. V εt independent of M such that

sup
y∈CM

|pMt (y)− pt(y)| ≤ V εt

M
1
2−ε

. (23)

In particular,

lim
M→∞

sup
y∈CM

|pMt (y)− pt(y)| = 0 a.s.

Proof : Let bM = 1
2M

β
dyp , in such a way that the hypercube CM can be written as CM = [−bM ,+bM ]dy ⊂ Rdy . For any

y = [y1, y2, . . . , ydy ]> ∈ CM and any function f : Rdy → R continuous, bounded and differentiable, one can write

f(y)− f(0) =

∫ y1

−bM
· · ·
∫ ydy

−bM
D1
z f(z)dz−

∫ 0

−bM
· · ·
∫ 0

−bM
D1
z f(z)dz.

In particular, if y ∈ [−bM , bM ]dy and assumption (D) holds, then we can write

pMt (y)− pt(y) =

∫ bM

−bM
· · ·
∫ bM

−bM

(
D1
yp
M
t (y)−D1

ypt(y)
)
dy +

(
pMt (0)− pt(0)

)
and, as a consequence,

|pMt (y)− pt(y)| ≤
∫ bM

−bM
· · ·
∫ bM

−bM

∣∣D1
yp
M
t (y)−D1

ypt(y)
∣∣ dy +

∣∣pMt (0)− pt(0)
∣∣

which, in turn, yields the inequality

sup
y∈CM

∣∣pMt (y)− pt(y)
∣∣ ≤ AM +

∣∣pMt (0)− pt(0)
∣∣ , (24)

where

AM =

∫ bM

−bM
· · ·
∫ bM

−bM

∣∣D1
yp
k
t (y)−D1

ypt(y)
∣∣ dy.

An application of Jensen’s inequality yields, for p ≥ 1,(
1

(2bM )dy
AM

)p
≤ 1

2dyb
dy
M

∫ bM

−bM
· · ·
∫ bM

−bM

∣∣D1
yp
M
t (y)−D1

ypt(y)
∣∣p dy,

which leads to (
AM

)p ≤ 2dy(p−1)b
dy(p−1)
M ×

∫ bM

−bM
· · ·
∫ bM

−bM

∣∣D1
yp
M
t (y)−D1

ypt(y)
∣∣p dy.

(25)

Since, from Lemma 2,

E
[∣∣D1

yp
M
t (y)−D1

ypt(y)
∣∣p] ≤ c̄pt

M
p
2

, (26)

we can combine (26) and (25) to arrive at

E
[
(AM )p

]
≤

2dypb
dyp
M c̄pt

M
p
2

=
c̄pt

M
p
2−β

,
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where the equality follows from the relationship bM = 1
2M

β
dyp . If we apply Lemma 3 with θM = AM , p ≥ 4, ν = β and

c = c̄pt , then we obtain a constant ε1 ∈
(

1+β
p , 1

2

)
(see (21)) and a non-negative and a.s. finite random variable V A,ε1 , both of

them independent of M , such that

AM ≤ V A,ε1

M
1
2−ε1

. (27)

Moreover, Lemma 2 yields

E
[∣∣pMt (y)− pt(y)

∣∣p] = E
[∣∣(gy

t , ξ
M
t )− (gy

t , ξt)
∣∣p]

≤ c̃pt ‖g
y
t‖p∞

M
p
2

,

where c̃t < ∞ is a constant independent of M and |gy
t‖∞ < ∞ independently of y from assumption (L). Therefore, we can

apply Lemma 3 again, with θM = |pkt (0)− pt(0)|, p ≥ 4, ν = 0 and c = c̃pt to obtain the inequality∣∣pMt (0)− pt(0)
∣∣ ≤ V pt(0),ε2

M
1
2−ε2

, (28)

where ε2 ∈
(

1
p ,

1
2

)
is a constant and V pt(0),ε2 is a non-negative and a.s. finite r.v., both of them independent of M .

If we choose ε = ε1 = ε2 ∈
(

1+β
p , 1

2

)
and define V εt = V A,ε1 + V pt(0),ε2 , then the combination of Eqs. (24), (27) and

(28) yields

sup
y∈CM

∣∣pMt (y)− pt(y)
∣∣ ≤ V εt

M
1
2−ε

,

where V εt is a.s. finite. Note that V εt and ε are independent of M . Moreover, we can choose p as large as we wish and β > 0

as small as needed, hence we can effectively select ε ∈ (0, 1
2 ).

Before stating the next partial result, let us recall assumption (C) again, namely the inequality µt(CM ) ≤ bM−η , where

b > 0 and η < 1 are constants w.r.t M and CM is the complement of CM .

Lemma 6. Let the sequence y0:T , T < ∞, be arbitrary but fixed and assume that (L), (D) and (C) hold. Then, for any

0 < ε < 1
2 and each t = 1, 2, ..., T there exists an a.s. finite r.v. W ε

t independent of M such that∫
|pMt (y)− pt(y)|dy ≤ W̃ ε

t

M( 1
2−ε)∧η

. (29)

Proof : We start with a trivial decomposition of the integrated absolute error,∫ ∣∣pMt (y)− pt(y)
∣∣ dy =

∫
CM

∣∣pMt (y)− pt(y)
∣∣ dy +

∫
CM

∣∣pMt (y)− pt(y)
∣∣ dy

≤
∫
CM

∣∣pMt (y)− pt(y)
∣∣ dy + 2

∫
CM

pt(y)dy
∫
CM

(
pMt (y)− pt(y)

)
dy,

where the equality follows from CM ∪CM = Rdy and the inequality is obtained from the fact that pt and pMt are non-negative,

hence |pMt (y)− pt(y)| ≤ pMt (y) + pt(y). Moreover, if we realize that∫
CM

(
pMt (y)− pt(y)

)
dy = 1−

∫
CM

pMt (y)dy− 1 +

∫
CM

pt(y)dy

=

∫
CM

(
pt(y)− pMt (y)

)
dy

then it is straightforward to see that ∫
CM

(
pMt (y)− pt(y)

)
dy ≤

∫
CM

∣∣pMt (y)− pt(y)
∣∣ dy (30)

and, as a consequence, substituting (30) into (30),∫ ∣∣pMt (y)− pt(y)
∣∣ dy ≤ 2

∫
CM

∣∣pMt (y)− pt(y)
∣∣ dy + 2

∫
CM

pt(y)dy (31)
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The first term on the right-hand side of (31) can be bounded easily because CM is compact, namely∫
CM

∣∣pMt (y)− pt(y)
∣∣ dx ≤ L(CM ) sup

y∈CM

∣∣pMt (y)− pt(y)
∣∣ , (32)

where L(CM ) = (2bM )dy = M
β
p is the Lebesgue measure of CM . From Lemma 5, the supremum in (32) can be bounded as

supy∈CM |p
M
t (y)−pt(y)| ≤ V ε1t /M

1
2−ε1 , where V ε1t ≥ 0 is an a.s. finite r.v. and 1+β

p < ε1 <
1
2 is a constant, both independent

of M . Therefore, the inequality (32) can be extended to yield∫
CM

∣∣pMt (y)− pt(y)
∣∣ dy ≤ V ε1t

M
1
2−ε1−

β
p

=
V εt

M
1
2−ε

, (33)

where ε = ε1 + β
p and V εt = V ε1t . If we choose ε1 <

1
2 −

β
p , then ε ∈

(
1+2β
p , 1

2

)
. Note that, for β < 1 and choosing p ≥ 6,

1
2 −

β
p −

1+β
p > 1

2 −
3
p > 0, hence both ε1 and ε are well defined. Now, taking p large enough we can effectively select

ε ∈ (0, 1
2 ).

For the second integral in Eq. (31), note that
∫
CM

pt(y)dy = µt(CM ) and, therefore, it can be bounded directly from the

assumptions in the present Lemma, i.e.,

2

∫
CM

pt(y)dy ≤ 2bM−η, (34)

where b > 0 and η > 0 are constant w.r.t. M . Putting together Eqs. (31), (33) and (34) yields the desired result, with

W̃ ε
t = 2(V εt + b) <∞ a.s.

Finally, the proof of Theorem 1 is a straightforward application of Lemma 6.

Proof of Theorem 1. We first note that, for any bounded function h,(
h, µMt

)
− (h, µt) =

∫
h(y)pMt (y)dy −

∫
h(y)pt(y)dy

=

∫
h(y)

(
pMt (y)− pt(y)

)
dy,

hence, trivially, ∣∣(h, µMt )− (h, µt)
∣∣ ≤ ‖h‖∞ ∫ ∣∣pMt (y)− pt(y)

∣∣ dy. (35)

If we apply Lemma 6 on the right hand side of (35) then we readily obtain∣∣(h, µMt )− (h, µt)
∣∣ ≤ ‖h‖∞ W̃ ε

t

M ( 1
2−ε)∧η

. (36)

where ε ∈ (0, 1
2 ) is an arbitrarily small constant independent of M and W ε

t = ‖h‖∞W̃ ε
t is an a.s. finite r.v., also independent

of M .

APPENDIX B

PROOF OF THEOREM 2

Let Yt denote the (random) observation at time t. Assume, without loss of generality, that Y = R. The probability measure

associated to Yt|Y1:t−1 = y1:t−1 is µt(dy) and, therefore, we can write the cumulative distribution function of Yt|Y1:t−1 = y1:t−1

as Ft(z) = (I(−∞,z], µt), where

IA(y) =

 1, if y ∈ A

0, otherwise

is the indicator function. Obviously, ‖IA‖∞ = 1 <∞ independently of the set A and, therefore, Theorem 1 yields

lim
M→∞

FMt (z) = Ft(z) a.s.
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for any z ∈ R, where FMt (z) = (I(−∞,z], µ
M
t ) is the approximation of the cdf of Yt|Y1:t−1 = y1:t−1 provided by the BF.

Assume the actual observation is Yt = yt and we draw K i.i.d. fictitious observations ỹ(1)
t , . . . , ỹ

(K)
t from the distribution

with cdf FMt . Given Yt = yt is fixed, the probability that exactly n out of K of these samples are lesser than yt coincides

with the probability to have n successes out of K trials for a binomial r.v. with parameter (i.e., success probability) FMt (yt),

which can be written as

hMn (yt) =

(
K

n

)(
FMt (yt)

)n (
1− FMt (yt)

)K−n
.

By integrating hMn (yt) over the predictive distribution of Yt, we obtain the probability to have exactly n fictitious observations,

out of K, which are less than the r.v. Yt, i.e., the probability that AK,M,t = n is

QK,M,t(n) = (hMn , µt). (37)

However, Theorem 1 yields limM→∞(hMn , µ
M
t ) = (hMn , µt) a.s.4 and, in particular, there exists a sequence of non-negative

r.v.’s {εM}M≥1 such that limM→∞ εM = 0 a.s. and

(hMn , µ
M
t )− εM ≤ (hMn , µt) ≤ (hMn , µ

M
t ) + εM (38)

for each M . Moreover, it is apparent that (hMn , µ
M
t ) = 1

K+1 (see Proposition 1) which, together with (37) and (38) yields the

desired relationship
1

K + 1
− εM ≤ QK,M,t(n) ≤ 1

K + 1
+ εM

for every n ∈ {0, ...,K}.
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