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Sequential Monte Carlo methods, also known as particle filtering, have seen an explosion of development both in theory

and applications. The publication of [1], sparked huge interest in the area of sequential signal processing, and in particular

in sequential filtering. Ever since, the number of publications where particle filtering plays a prominent role has continued to

grow. An early reference of development is [2] and later tutorials include [3], [4], [5], [6], [7], [8], [9]. With particle filtering,

we estimate probability density functions (pdfs) of interest by probability mass functions (pmfs) whose masses are placed at

randomly chosen locations (particles) and weights assigned to the particles. The particle filter (PF) proposed in [1] is often

called the bootstrap particle filter (BPF), and although it is not optimal, it is the most often used filter by practitioners. A filter

that became also popular is known as the auxiliary particle filter (APF) and was proposed in [10]. With the APF, the objective

is to generate better particles at each time step than with the BPF and thereby improve the accuracy of the filtering. In these

notes, we derive the APF from a new perspective, one based on interpreting the APF from the multiple importance sampling

(MIS) paradigm. The derivation also shows its relationship with the BPF.

RELEVANCE

State-space models are ubiquitously used in many fields of science and engineering for modeling complex dynamical systems.

Once the models are formulated, the usual goal is to estimate the state of the model, which evolves over time, from observations

that are sequentially acquired and that are functions of the state. With the Bayesian approach, the estimation is carried out

through the posterior distribution of the state, which can be obtained analytically only for linear and Gaussian models (where



the Kalman filter is applied [11]). By contrast PFs allow for the approximation of the posterior for virtually any state-space

model, even models used for most complex systems. The BPF is a simple implementation of the PF but advanced filters such

as the APF are necessary to boost the performance in complex and higher dimensional scenarios. While APF often obtains

better results than the BPF, in some settings the performance is similar or even worse. The novel derivation presented in this

paper will help the reader to (1) get some new insights about the APF, and (2) better understand when it is advised to use the

APF. Note that the APF has been used in many real-world problems, such as mathematical finance [12], tracking applications

[13], sensor networks [14] or electronics [15], among many others.

PREREQUISITES

This article is designed for researchers and students with a basic knowledge in particle filtering and importance sampling

(IS). It aims at providing a new interpretation of the popular APF and a better understanding of this specific type of PF. The

reader is expected to be familiar with basic notions of PFs [4], including the basic derivations of the BPF [16], [17], and some

familiarity with the APF is preferable [10]. Finally, the novel perspective presented in this paper will be better understood with

some basic knowledge of the importance sampling (IS) methodology [18].

PROBLEM STATEMENT

Bayesian filtering in dynamical models

We consider the following Markovian state-space model in discrete time (t 2 N+):

x0 ⇠ p(x0), (1)

xt ⇠ p(xt|xt�1), (2)

yt ⇠ p(yt|xt), (3)

where xt 2 Rdx represents the hidden (and random) system state at time instant t; p(x0) is the a priori pdf of the state at t0;

p(xt|xt�1) denotes the transition kernel (i.e., the conditional density of the state xt given xt�1); yt 2 Rdy is the observation

vector at time instant t, and is assumed to be conditionally independent of all other observations given the state xt; and

p(yt|xt) is the conditional pdf of yt given xt, (i.e., the observation kernel) and is often referred as the likelihood of xt. The

model described by Eqs. (1)–(3) includes a broad class of systems, both linear and nonlinear, with Gaussian or non-Gaussian

perturbations.

The filtering problem consists of the probabilistic estimation of the hidden state xt conditioned on all the observations

available up to time instant t. For simplicity in the notation, we denote this set of observations y1:t = {y⌧}t⌧=1. Hence, the



goal is the computation of the filtering pdf p(xt|y1:t). When the observations are received sequentially, the additional goal is

to process the observations recursively. To this end, the filtering task requires two steps at each time instant t:

1) Propagation step. The predictive pdf of the state, p(xt|y1:t�1), is computed as

p(xt|y1:t�1) =

Z
p(xt|xt�1)p(xt�1|y1:t�1)dxt�1. (4)

2) Update step. According to Bayes’ theorem and from Eqs. (3) and (4), the filtering distribution is obtained by

p(xt|y1:t) / p(yt|xt)

Z
p(xt|xt�1)p(xt�1|y1:t�1)dxt�1. (5)

Unfortunately, these two steps require solving intractable integrals for most models of interest, and as a result, the filtering

distribution cannot be exactly obtained. Thus, one has to search for approximate solutions, and to that end, Monte Carlo-based

methods offer a rich trove of possibilities.

Particle filtering

Particle filtering is a Monte Carlo technique where the distributions are approximated by sets of weighted random samples

in a sequential manner. For simplicity, here we assume that all algorithms always have M particles at each time instant t,

although strategies for adapting the number of particles with time have been lately proposed [19].

Bootstrap particle filter: The BPF is arguably the most well known PF algorithm. It is often called sequential importance

resampling filter, or in brief SIR filter, since it implements a sequential importance sampling step followed by a resampling

step. The outline of the BPF is described in Algorithm 1. Note that the weights of Eq. (7) are normalized in the sense that

PM
m=1 w

(m)
t = 1.

The auxiliary particle filter: The APF aims at improving the “quality” of the samples that are generated at each time instant.

Here “quality” means how representative the drawn samples are of the target pdf. In principle, they are more representative if

they come from parts of Rdx that contain higher probability masses as measured by the target pdf. To get this improvement,

unlike the BPF, the APF uses the new observation yt in the prediction step, which is implemented by way of a delayed

resampling (avoided at the end of the previous time instant).

The outline of the APF is described in Algorithm 2. First, Eq. (10) is used to generate pre-particles (particle projections)

based on the expected value given the particles from the previous step. Note that the values x̄(m)
t , m = 1, 2, · · · ,M, represent

the centers of the kernels that compose the usual PF approximation of the predictive distribution of xt,

p(xt|y1:t�1) ⇡ pM (xt|y1:t�1) =
MX

m=1

w(m)
t�1p(xt|x(m)

t�1). (9)



Algorithm 1: Bootstrap Particle Filter

1) Initialization. At time instant t = 0, draw M i.i.d. samples, x(m)
0 , m = 1, . . . ,M , from the distribution p(x0).

2) Recursive step. Let {x̃(m)
t�1}Mm=1 be the particles (samples) resampled at time instant t� 1. At time instant t, proceed with the steps below.

a) Propagation step. Propagate the particles as

x
(m)
t ⇠ p(xt|x̃(m)

t�1), m = 1, ...,M. (6)

b) Update step. Compute the normalized weights as

w
(m)
t / p(yt|x

(m)
t ), m = 1, ...,M. (7)

c) Resampling step. Resample M times from the approximation of the filtering distribution as

x̃
(m)
t ⇠

MX

j=1

w
(j)
t �(xt � x

(j)
t ). (8)

Then, Eq. (11) is applied to compute the weights of x̄t
(m) using the current observation yt. In the literature, these weights

are called pre-weights. The pre-weights are employed to perform a delayed resampling in Step 2(b). Hence, the particles are

replicated taking into account not only the previous observation (like in BPF) but also using the information of the current

observation. The final set of particles at time t, x(m)
t , comes from the propagation described by Eq. (12). Finally, the particles

receive a weight computed according to Eq. (13). Note that this weight is proportional to the likelihood at time instant t, but

inversely proportional to p(yt|x̄
(i(m))
t ). One can interpret that the mth particle is replicated proportionally to w(m)

t�1p(yt|x̄
(m)
t )

instead of w(m)
t�1 (as in the BPF), and that the final IS weight “discounts” this augmentation of the pre-weight by dividing the

likelihood of the particle by the factor p(yt|x̄
(i(m))
t ). Note that as a result, the APF approximates the filtering distribution at

time instant t, p(xt|y1:t), with the random measure pM (xt|y1:t) =
PM

m=1 w
(m)
t �(xt � x(m)

t ).

SOLUTION

The usual description of the APF presented in Algorithm 1 does not allow for a clear comparison with the BPF, and in

particular, neither the full justification of the derivation of the pre-weights of Eq. (11), nor the demonstration of the validity of

the weights of Eq. (13). In the following, we develop a generic framework based on MIS that eases the derivation of several

existing PF algorithms. The MIS perspective also makes easier the understanding of some of the challenges of the APF and

the proposing of novel algorithms.



Algorithm 2: Auxiliary Particle Filter

1) Initialization. At time instant t = 0, draw M i.i.d. samples, x(m)
0 , m = 1, . . . ,M , from the distribution p(x0).

2) Recursive step. Let {x̃(m)
t�1, w̄t�1}Mm=1 be the set of weighted particles (samples) generated at time instant t� 1. At time instant t, proceed

with the steps below.

a) Pre-weights computation step.

i) Compute the mean of the pdf p(xt|x(m)
t�1) as

x̄
(m)
t = E

p(xt|x
(m)
t�1)

[xt], m = 1, ...,M. (10)

ii) Compute the normalized pre-weights of each kernel in the mixture as

�
(m)
t / p(yt|x̄

(m)
t )w̄

(m)
t�1 , m = 1, ...,M. (11)

b) Delayed resampling step. Sample the indexes i(m), m = 1, ...M , with probability mass function (pmf) given by P(i(m) = j) = �
(j)
t ,

j 2 {1, ...,M}.

c) Propagation step. Simulate

x
(m)
t ⇠ p(xt|x(i(m))

t�1 ), m = 1, ...M. (12)

d) Update step. Compute the normalized weights as

w
(m)
t /

p(yt|x
(m)
t )

p(yt|x̄
(i(m))
t )

, m = 1, ...,M. (13)

Common Framework

The novel generic framework is presented in Algorithm 3. Interestingly, it avoids the explicit use of the resampling step

which usually hinders the connection with IS.1 Therefore, the generic algorithm is presented in a simpler adaptation-sampling-

weighting manner. The initialization of the algorithm is performed as usual, and the recursive step also uses as basis the set

of available weighted particles {x(m)
t�1, wt�1}Mm=1 from time t� 1. In Eq. (14), a proposal  (xt) is selected/adapted. Note that

this proposal is composed of the transition kernels {p(xt|x(m)
t�1)}Mm=1, whose positions depend on each of the M particles at

t� 1. The different algorithms differ in the selection of the associated coefficients {�(m)
t }Mm=1 (see next section). In Eq. (18),

the M new particles are i.i.d. simulated from  . Finally, the normalized IS weights are proportionally computed as in Eq.

(22). Note that this weight is supported by simple IS arguments. The numerator is proportional to the filtering distribution

p(xt|y1:t�1) / p(yt|xt)p(xt|y1:t�1), where p(xt|y1:t�1) is substituted by the standard particle approximation of the predictive

distribution given by Eq. (9). The denominator is the proposal  (xt). Both numerator and denominator are evaluated at each

particle (i.e., the usual targeted-divided-by-proposal IS weight).

1However, note that sampling from a proposal mixture is equivalent to a resampling step followed by a propagation step.



Algorithm 3: MIS interpretation of particle filtering

1) Initialization. At time t = 0, draw M i.i.d. samples, x(m)
0 , m = 1, . . . ,M , from the distribution p(x0), and set �(m)

1 = 1/M .

2) Recursive step. Let {x(m)
t�1, wt�1}Mm=1 be the set of weighted particles (samples) generated at time t � 1. At time t, proceed with the steps

below.

a) Proposal adaptation/selection. Select the MIS proposal of the form

 t(xt) =
MX

m=1

�
(m)
t p(xt|x(m)

t�1), (14)

where {p(xt|x(m)
t�1)}Mm=1 are the transition kernels centered at each of the M particles of t�1, and {�(m)

t }Mm=1 are the associated coefficients

computed by

�
(m)
t =w

(m)
t�1 , m = 1, ...,M, if the applied filter is the BPF, (15)

�
(m)
t / p(yt|x̄

(m)
t )w

(m)
t�1 , m = 1, ...,M, if the applied filter is the APF, (16)

where

x̄
(m)
t = E

p(xt|x
(m)
t�1)

[xt], m = 1, ...,M. (17)

are the means of the kernels.

b) Sampling. Draw samples according to

x
(m)
t ⇠  t(xt), m = 1, ...,M. (18)

c) Weighting. Compute the normalized IS weights by

w
(m)
t /

p(x
(m)
t |y1:t)

 t(x
(m)
t )

(19)

=
p(yt|x

(m)
t )p(x

(m)
t |y1:t�1)

 t(x
(m)
t )

(20)

⇡
p(yt|x

(m)
t )

PM
j=1 w

(j)
t�1p(x

(m)
t |x(j)

t�1)

 t(x
(m)
t )

(21)

=
p(yt|x

(m)
t )

PM
j=1 w

(j)
t�1p(x

(m)
t |x(j)

t�1)
PM

j=1 �
(j)
t p(x

(m)
t |x(j)

t�1)
(22)

⇡
p(yt|x

(m)
t )w

(m)
t�1

�
(m)
t

, m = 1, ...,M. (23)

Multiple importance sampling perspective

In Alg. 3, we have described a generic PF from the MIS perspective where the traditional propagation-update-resampling

steps are now replaced by adaptation-sampling-weighting steps. The sampling in the generic PF framework is performed by

Eq. (18), where M samples are simulated from the mixture proposal.

Let us now focus on the adaptation/selection of the proposal, and its impact on the weighting step of Eq. (22). It is well



BPF APF IAPF

�
(m)
t w

(m)
t�1 / p(yt|x̄

(m)
t )w

(m)
t�1 /

p(yt|x̄
(m)
t )

PM
j=1 w

(j)
t�1p(x̄

(m)
t |x(j)

t�1)
PM

j=1 p(x̄
(m)
t |x(j)

t�1)

w
(m)
t / p(yt|x

(m)
t ) / p(yt|x

(m)
t )

p(yt|x̄
(im)
t )

/
p(yt|x

(m)
t )

PM
j=1 w

(j)
t�1p(x

(m)
t |x(j)

t�1)
PM

j=1 �
(j)
t p(x

(m)
t |x(j)

t�1)

TABLE I

THE COEFFICIENTS �
(m)
t OF THE PROPOSAL MIXTURE, AND THE IS WEIGHTS w̄

(m)
t FOR THE BPF, APF, AND IAPF. NOTE THAT IN ALL CASES, THE

WEIGHTS MUST BE NORMALIZED SUCH
PM

m=1 �
(m)
t = 1 AND

PM
m=1 w̄

(m)
t = 1.

known that in MIS, when we draw i.i.d. samples from a mixture, the performance improves when the discrepancy between

the proposal and the target density decreases [18]. In other words, it is important that the numerator of Eq. (21), p(xt|y1:t)

and the denominator,  (xt), are as similar as possible. Note that, in the IS weight, the numerator in (22) is the product of the

likelihood and a mixture of weighted kernels, while the denominator is another mixture with the same kernels. The fact that

both mixtures have the same kernels with (potentially) different coefficients is key in the derivation of the different algorithms,

and in the understanding of their performance under different models.

Table I summarizes the choice of pre-weights and weights of the BPF, APF, and the improved APF (IAPF) [20], a recent

algorithm that also fits in the MIS framework presented above. In the following, we provide details of the new interpretations

of each algorithm.

BPF from the MIS perspective

Let us interpret the BPF of Algorithm 1 from the generic Algorithm 3. First, set �(j)t =w(j)
t�1 in Eq. (14). Sampling M

times from this mixture  t(xt) =
PM

m=1 w
(m)
t�1p(xt|x(m)

t�1) is equivalent to the resampling step at time instant t� 1 from Eq.

(7) followed by the propagation of particles in Eq. (6). If we plug  t(xt) in the denominator of Eq. (22), since  (xt) =

p(x(m)
t |y1:t�1), it cancels out the right-hand-side of the numerator, and only the likelihood in the numerator remains. This

allows us to recover the traditional BPF weight w(m)
t / p(yt|x

(m)
t ) of Eq. (7), which is simply the likelihood evaluated at

the associated particle (cf. (23)). We point out that for the BPF, the approximation in (23) becomes an equality because the

summations in the numerator and denominator of (22) are identical, and before we implement the approximation in (23), they

cancel each other.

In BPF, the strategy in the choice of the coefficients �(m)
t = w(m)

t�1 in the proposal mixture is matching the mixture of the

numerator of Eq. (22), i.e., the likelihood in the numerator can be seen as the mismatch factor between the numerator and

denominator. This explains the challenges of BPF when there are very informative observations: the likelihood can amplify



severely some kernels w.r.t. others, increasing the mismatch between the target and the proposal distributions.

Figure 1 shows the traditional and the MIS perspective of the BFP. On the left side, we display the traditional propagation,

weighting, and resampling steps, which are repeated at each time step. On the right side, we display the MIS interpretation,

with the proposal selection, the sampling from a mixture, and the weighting. In the MIS perspective, the sampling step from the

mixture of proposals ( t in Eq. (14)) is equivalent to the resampling followed by the propagation of the kernels in the traditional

perspective. In the BPF, there is no proposal/selection adaptation, since the mixture proposal  t(xt) depends exclusively on

the kernels and the IS weights of the previous time step.

Propagation

Update

Resampling

t

Propagation

Resampling
t-1

t+1

Sampling	from	a	mixture

Weighting

Sampling	from	a	mixture

t

t+1

Traditional	particle	
filtering	perspective	

of	BPF

Multiple	importance	
sampling	(MIS)	

perspective	of	BPF

Fig. 1. Two different perspectives for explaining the BPF. On the left side, the traditional perspective with the propagation, update, and resampling steps. On

the right side, the MIS perspective with the sampling from a mixture and the weighting steps.

APF from the MIS perspective

From the MIS perspective, the choice of APF seems more adequate than that of the BPF. Even though the APF still contains

the same kernels in the proposal mixture, its coefficients �(m)
t /p(yt|x̄

(m)
t )w(m)

t�1 are those of the BPF but amplified by the

factor p(yt|x̄
(m)
t ). This factor is simply the likelihood evaluated at the mean of the mth kernel. For instance, for additive

Gaussian perturbations in the state model, the mixture proposal of APF is the same as the mixture proposal of the BPF where

each kernel has been amplified by the value of the function p(yt|xt) at its center. Interestingly, this approach now tries to

minimize the mismatch of  (xt) with the whole numerator in Eq. (22) and not only with a part of it, that is, with the factor



that corresponds to the predictive pdf p(xt|y1:t�1). In many state-space models of interest, the APF has improved performance

due to this better matching mixture proposal. Note that this approximation of the target is especially good when the kernels

are “far apart” (more precisely, when their distance is high w.r.t. their width).

Within the MIS perspective, we also derive the weights of APF from Eq. (22) under the assumption of well separated

kernels. Let us consider that the mth particle x(m)
t has been simulated from the kernel i(m). If the other kernels p(xt|x(j)

t�1),

with j = 1, ...,M and j 6= i(m), take small values when evaluated at x̄(i(m))
t (which is equivalent to our previous assumption

of the kernels being separated enough), one can approximate the weight as

w(m)
t / p(x(m)

t |y1:t)
 t(x

(m)
t )

(24)

⇡
p(yt|x

(m)
t )

PM
j=1 w

(j)
t�1p(x

(m)
t |x(j)

t�1)
PM

j=1 �
(j)
t p(x(m)

t |x(j)
t�1)

(25)

⇡
p(yt|x

(m)
t )w(i(m))

t�1 p(x(m)
t |x(i(m))

t�1 )

�(i
(m))

t p(x(m)
t |x(i(m))

t�1 )
(26)

/
p(yt|x

(m)
t )w(i(m))

t�1 p(x(m)
t |x(i(m))

t�1 )

p(yt|x̄
(im)
t )w(i(m))

t�1 p(x(m)
t |x(i(m))

t�1 )
(27)

=
p(yt|x

(m)
t )

p(yt|x̄
(im)
t )

, (28)

recovering the traditional APF of Eq. (13) (or Eq. (23)). The first approximation in (25) comes from approximating the

predictive distribution p(xt|y1:t). The second approximation in (27) assumes that the evaluation of a sample in the whole

mixture is equivalent to the evaluation in the kernel where the sample was simulated from. Hence, the latter approximation

assumes that the kernels have negligible overlaps, which can be a too strict assumption and would explain why for some

models, the APF can perform worse than the BPF.

Figure 2 displays the two interpretations of the APF described above. On the left side, we display the traditional pre-weights

computation, delayed resampling, propagation, and weight computation, which are repeated at each time step. On the right

side, we see the MIS approach, with the proposal selection, the (mixture) sampling, and the weighting steps. Again, the update

step in the former perspective is equivalent to the weighting step in the latter perspective. In the MIS perspective, the sampling

from the mixture of proposals is again equivalent to the resampling followed by the propagation of the kernels in the traditional

perspective. The difference now (w.r.t. the BPF), is that in the traditional perspective there is a pre-weighting step for modifying

the weights before the resampling step. This pre-weighting step is clearly equivalent to selecting the coefficients {�(j)t }Mj=1 of

the kernels in the mixture proposal  t(xt) in the MIS perspective.
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Fig. 2. Two different perspectives for explaining the APF. On the left side, the traditional interpretation with the pre-weighting, delayed resampling, propagation,

and weighting steps. On the right side, the MIS perspective with the proposal selection, the (mixture) sampling, and the weighting steps.

IAPF from the MIS perspective

The improved APF (IAPF) has been recently proposed in order to reduce the flaws of the APF that we have listed in

the previous section [20]. It takes into account the overlap of the kernels in order to both select the coefficients of the

mixture proposal, and approximate the IS weights. Algorithm 4 describes the IAPF within the novel MIS framework. First, the

coefficient of the mth kernel of the mixture in Eq. (30) is computed by evaluating the ratio between the target distribution and

the equally-weighted mixture of proposals at the center of the kernel. This allows for taking into account the position of the

rest of the kernels when computing the coefficient of a specific kernel (unlike in APF). Second, the weight in (32) is computed

as it is traditionally done in IS, i.e., it is simply the ratio between the target and the whole proposal mixture evaluated at the

sample.

Note that the IAPF becomes the APF when the overlap between the kernels decreases. In [20], BPF, APF, and IAPF, are

tested on a linear-Gaussian model, where the transition kernels are particularly wide, and the observations are very informative

(low observation variance). This scenario is in principle particularly adverse for the APF, since the assumptions on the selection

of the proposal do not hold and the approximation of the IS weights in Eq. (27) is poor. This explains why the IAPF can

obtain much smaller MSE than the APF. Note however that the computation of the weights of IAPF in Eq. (32) requires 2M2



Algorithm 4: Improved Auxiliary Particle Filter

1) Initialization. At time t = 0, draw M i.i.d. samples, x(m)
0 , m = 1, . . . ,M , from the distribution p(x0).

2) Recursive step. Let {x(m)
t�1, wt�1}Mm=1 be the set of weighted particles (samples) generated at time t � 1. At time t, proceed with the steps

below.

a) Compute the mean of the pdf p(xt|x(m)
t�1) as

x̄
(m)
t = E

p(xt|x
(m)
t�1)

[xt], m = 1, ...,M. (29)

b) Compute the normalized coefficient of each kernel in the mixture as

�
(m)
t /

p(yt|x̄
(m)
t )

PM
j=1 w

(j)
t�1p(x̄

(m)
t |x(j)

t�1)
PM

j=1 p(x̄
(m)
t |x(j)

t�1)
, (30)

and select the MIS proposal as

 IAPF(xt) =
MX

m=1

�
(m)
t p(xt|x(m)

t�1). (31)

c) Draw M i.i.d. samples from qIAPF(xt) in two steps:

i) select the indexes i(m), m = 1, ...M , with pmf given by P(i(m) = j) = �
(j)
t , j 2 {1, ...,M}.

ii) simulate x
(m)
t ⇠ p(xt|x(i(m))

t�1 ), m = 1, ...M .

d) Compute the normalized IS weights as

w
(m)
t /

p(yt|x
(m)
t )

PM
j=1 w

(j)
t�1p(x

(m)
t |x(j)

t�1)
PM

j=1 �
(j)
t p(x

(m)
t |x(j)

t�1)
. (32)

extra kernel evaluations unlike the IS weights of APF in Eq. (28). Similarly, the computation of the coefficients �(m)
t is also

more costly in IAPF. The IAPF can also be explained from the two perspectives (traditional and MIS) described in Fig. 2 for

the APF.

A NUMERICAL EXAMPLE

We now demonstrate the differences in the functions used for generation of new particles among the BPF, APF and IAPF.

We use a toy example, where the model is linear and Gaussian, and where we focus on the transition of a generic PF, with

M = 4 particles, from time instant t�1 to t. The transition kernels are Gaussian, p(xt|x(m)
t�1) = N (xt|x(m)

t�1,�
2
x), the likelihood

function p(yt|xt) = N (xt; yt,�2
y) is also Gaussian, and the weights at t� 1 are wt�1 = [0.03, 0.16, 0.16, 0.65].

Figure 3(a) displays the weighted kernels {w(m)
t�1p(xt|x(m)

t�1)}Mm=1, and the likelihood function. The green circles represent

the value of the likelihood at the center of each kernel, i.e., {p(yt|x̄(m)
t )}4m=1, where x̄(m)

t is defined in Eq. (17). Figure

3(b) shows the target distribution p(xt|y1:t) = p(yt|xt)p(xt|y1:t�1) ⇡ p(yt|xt)
P4

m=1 w
(m)
t p(xt|x(m)

t�1), and the resulting BPF

proposal, whereas Fig. 3(c) displays the same for the APF, and Fig. 3(d) depicts the IAPF proposal. We recall that in all cases,



the proposal  t(xt) has the form of Eq. (14), with �(m)
t defined in Table I for each algorithm. In this example, the proposal of

the BPF presents a large mismatch with the target distribution, while the IAPF mimics it very accurately. The APF achieves

an intermediate performance in terms of proposal adequacy. The MIS perspective helps to understand why a filter that fails at

replicating well the target with the proposal  t(xt) will have a poor performance. See for instance the numerical example in

[20, Section IV-A], where there is a sharp likelihood (because of the small noise variance), and a high width of the kernels

(due to large transition noise). This setup is particularly adverse for APF according to the MIS derivation in the previous

section, since the kernels will have a big overlap, and hence the assumption for the approximation in Eq. (27) does not hold.

Therefore, the proposal selection  t(xt) will not be close to the target, which explains the poor performance of APF in this

example.

CONCLUSIONS

In these notes, we derived the auxiliary particle filter (APF) from the perspective of multiple importance sampling. With the

new interpretation, we provided insights about the assumptions and approximations that are required to derive the APF. The

insights are of great use for understanding when the APF does not have a satisfactory performance. The derivation also shows

the relationship between the APF and the BPF.

ACKNOWLEDGMENTS

This work was carried out thanks to the support of the Agence Nationale de la Recherche of France under award ANR-17-

CE40-0031-01, and the National Science Foundation (NSF) under Award CCF-1617986.

REFERENCES

[1] N. Gordon, D. Salmond, and A. F. M. Smith, “Novel approach to nonlinear and non-Gaussian Bayesian state estimation,” IEE Proceedings-F Radar

and Signal Processing, vol. 140, pp. 107–113, 1993.

[2] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in Practice. New York (USA): Springer, 2001.

[3] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking,” Signal

Processing, IEEE Transactions on, vol. 50, no. 2, pp. 174–188, 2002.
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[19] V. Elvira, J. Mı́guez, and P. Djurić, “Adapting the number of particles in sequential monte carlo methods through an online scheme for convergence

assessment,” IEEE Transactions on Signal Processing, vol. 65, no. 7, pp. 1781–1794, 2017.
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