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Abstract

Importance sampling (IS) is a Monte Carlo technique for the approximation of intractable
distributions and integrals with respect to them. The origin of IS dates from the early 1950s.
In the last decades, the rise of the Bayesian paradigm and the increase of the available
computational resources have propelled the interest in this theoretically sound methodology.
In this paper, we first describe the basic IS algorithm and then revisit the recent advances in
this methodology. We pay particular attention to two sophisticated lines. First, we focus on
multiple IS (MIS), the case where more than one proposal is available. Second, we describe
adaptive IS (AIS), the generic methodology for adapting one or more proposals.
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1 Problem Statement

In many problems of science and engineering intractable integrals must be approximated. Let us
denote an integral of interest

1(f) = B:[f(x)] = / F(0)7(x)dx, 1)

where f : R% — R, and 7(x) is a distribution of the r.v. X € R%.} Note that although Eq. (1)
involves a distribution, more generic integrals could be targeted with the techniques described
below.

The integrals of this form appear often in the Bayesian framework, where a set of observations
are available in y € R%_ and the goal is in inferring some hidden parameters and/or latent
variables x € R% that are connected to the observations through a probabilistic model [61]. The
information provided by the observations is compacted in the likelihood function ¢(y|x) and the
prior knowledge on x is encoded in the prior distribution py(x). Both sources of information are
fused to create through the simple Bayes’ rule the posterior probability density function (pdf),
also called target distribution, given by

Uy x)po(x)
2y) @

'For the sake of easing the notation, from now on we use the same notation for denoting a random variable or
one realization of a random variable.

T(x) = p(x]y) =




Table 1: Summary of the notation.

d, dimension of the inference problem, x € R¢
d, | dimension of the observed data, y € RY

X r.v. of interest; parameter to be inferred
y observed data
y

|x) | likelihood function
po(x) | prior pdf
(x) | posterior pdf (target), 7(x) = p(x|y)
7(x) | posterior density function (unnormalized target) , 7(x) = {(y|x)g(x) x 7(x)
(x) | proposal density
Z normalizing constant or marginal likelihood, Z = Z(y)
I(f) | integral to be approximated, I(f) = Exz[f(x)].

where Z(y) = [{(y|x)po(x)dx is the marginal likelihood (a.k.a., partition function, Bayesian
evidence, model evidence, or normalizing constant) [7, 88]. In most models of interest Z(y)
is unknown and in many applications it must be approximated [7, 9, 88]. But even when its
approximation is not needed, the unavailability of Z(y) implies that the posterior can be evaluated
only up to that (unknown) constant, i.e., we can only evaluate

m(x) = £(y[x)po(x), (3)

2 Table 1 summarizes the notation of this

that we denote as unnormalized target distribution.
article.

The integral I(f) cannot be computed in a closed form in many practical scenarios and hence
must be approximated. The approximation methods can be divided into either deterministic
or stochastic. While many deterministic numerical methods are available in the literature
[1, 5, 11, 59, 87], it is in general accepted that they tend to become less efficient than stochastic

approximations when the problem dimension d, grows.

1.1 Standard Monte Carlo integration

The Monte Carlo approach consists in approximating the integral I(f) in Eq. (1) with random
samples [22, 51, 44, 58, 63, 78, 91]. In the standard Monte Carlo solution (often called instinctively
vanilla/raw/classical /direct Monte Carlo), N samples x,, are independently simulated from 7(x).
The standard Monte Carlo estimator is built as

() = 5 3 flx). ()

First, note that TN( f) is unbiased since Fx [TN( )] = I(f). Moreover, due to the weak law of large
numbers, it can be shown that [y is consistent and then converges in probability to the true value

2From now on, we drop y to ease the notation, e.g., Z = Z(y).
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I, ie., TN(f) L5 I(f), which is equivalent to stating that, for any positive number € > 0, we have
limy o0 Pr(IT" (f) = I(f)| > €) = 0. The variance of T" (f) is simply a2 = L (I(f2) — I(f)2). If
the second moment is finite, I(f?) < oo, then the central limit theorem (CLT) applies and the
estimator converges in distribution to a well-defined Gaussian when N grows to infinity i.e.,

VN (TV(h) - 1)) =5 N (0, 7). (5)

There exist multiple families of Monte Carlo methods [91, 89, 100]. We address the interested
reader to the articles in Markov chain Monte Carlo (including Metropolis-Hastings [90, 67] and
Gibbs sampling [15]) and previous articles in importance sampling [104, 55].

2 Importance sampling

2.1 Origins

The first use of the importance sampling (IS) methodology dates from 1950 for rare event
estimation in statistical physics, in particular for the approximation of the probability of nuclear
particles penetrating shields [52]. IS was later used as a variance reduction technique when
standard Monte Carlo integration was not possible and/or not efficient [48]. The renewed interest
in IS has run in parallel with the hectic activity in the community of Bayesian analysis and its
ever increasing computational demands. In most cases, the posterior in (2) is not available due to
the intractability of the normalizing constant. See [101] for a previous review in IS.

2.2 Basics

Let us start defining the proposal pdf, ¢(x), used to simulate the samples. It is widely accepted
that the proposal is supposed to have heavier tails than the target, i.e., the target m(x) decays
faster than ¢(x) when x is far from the region where most of the probability mass is concentrated.
However, this usual restriction is too vague and it will be clarified below. Here, we simply stick to
the restriction that ¢(x) > 0 for all x where 7(x)f(x) # 0. IS is constituted of two simple steps:

1. Sampling: N samples are simulated as

X, ~ q(z), n=1,..,N. (6)

2. Weighting: Each sample receives an associated importance weight given by

, n=1...,N. (7)

The importance weights describe how representative the samples simulated from ¢(x) are when
one is interested in computing integrals w.r.t. 7(x). The set of N weighted samples can be used
to approximate the generic integral I(f) of Eq. (1) by the two following IS estimators:
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e Unnormalized (or nonnormalized) IS (UIS) estimator:

V() = 57 D wnf ). )

Note that the UIS estimator can be used only when Z is known.

e Self-normalized IS (SNIS) estimator:

(f) = Waf(xa), (9)

where w
Ty = —n (10)
Zj:l wj

are the normalized weights.

The derivation of the SNIS estimator departs from the UIS estimator of Eq. (8), substituting
Z by its unbiased estimator [91]

1 X
Z:N;wn. (11)

After a few manipulations, one recovers Eq. (10). The normalized weights also allow to
approximate the target distribution by

A(x) = > W6(x —x,), (12)

where § represents the Dirac measure.

2.3 Theoretical analysis

The UIS estimator is unbiased since it can be easily proven that E, [IN(f)] = I(f). Tts variance
E,[IV(f)] = 22 is given by

X, (13)

q

QtﬂmmeM®m

%0~ q(x)

if g(x) > 0 for all x where 7(x)f(x) # 0, as we have stated above [84]. We remark that it is
not strictly necessary to have a proposal with heavier tails than the target distribution as long as
02 < 00. One counter example is a case where f(x) decays fast enough to compensate the heavier
tails of the target distribution. Another counter example is a case where f(x) takes non-zero and
finite values only in a bounded set.



Note that ¢(x) is chosen by the practitioner and a good choice is critical for the efficiency of
IS. Let us first suppose that sign (f(x)) is constant for all x and I(f) # 0. Let us also suppose
that it is possible to simulate from

f(x)7(x)
[ f(2)7(z)dz

Then, the UIS estimator, for any N > 1 number of samples, yields a zero-variance unbiased
estimator, since the numerator in (13) is zero, and hence 02 = 0. However, it is very unlikely to
have access to the proposal of (14). The main reason is that its normalizing constant is exactly the
intractable integral we are trying to approximate, I(f). However, ¢*(x) gives the useful intuition
that the proposal should have mass proportional to the targeted integrand in Eq. (1). More
precisely, inspecting (13), we see that the efficiency is penalized with the mismatch of f(x)7(x)
and ¢(x), with this penalization amplified inversely proportional to the density ¢(x). This explains
the usual safe practice of over-spreading the proposal. The case where sign (f(x)) alternates can
be easily modified by splitting the function as f(z) = fi(z) + f-(x), where f,(z) is non-negative
and f_(x) is non-positive. It is easy to show that with the use of two proposals and N = 2,
a zero-variance estimator is possible (see [84, Section 9.13]). In summary, the UIS estimator,
v (f) is unbiased, while the N (f) is only asymptotically unbiased, i.e., with a bias that goes to
0 when N grows to infinity. Both UIS and SNIS are consistent estimators of I with a variance
that depends on the discrepancy between 7(x)|f(x)| and ¢(x), although the variance of the SNIS
is more difficult to evaluate and its bias place also a central role when N is not large enough [84].

When several different moments f of the target must be estimated, a common strategy in IS is
to decrease the mismatch between the proposal ¢(x) and the target 7(x) [20]. This is equivalent
to minimizing the variance of the weights and consequently the variance of the estimator A , and
it is closely linked to the diagnostics of Section 2.4.

g (x) = (14)

2.4 Diagnostics

It is a legitimate question to wonder about the efficiency of the set of simulated weighted samples
in the task of approximating the target distribution and/or moments of it. Usual metrics of
efficiency involve the computation of the variance of the IS estimators. However, the computation
of those variances is intractable, and even more, their approximation is usually a harder problem
than computing Eq. (1) (see [84, Chapter 9.3] for a discussion). A classic diagnostic metric in the
IS literature [54] is

— 1

ESS ST (15)
Note that 1 < ESS < N, taking the value ESS = 1, when one w; = 1 and hence 1ce w; = 0, for all
© # j. Therefore, ESS =N only when w; = 1/N for all j = 1,...,N. Hence ESS measures the
discrepancy among normalized weights. This diagnostic is commonly called effective sample size,
although it is an approximation of the more reasonable but intractable diagnostic given by [37]

v Var(T]

ESS* = N—V .
MSE[I]

(16)
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Then, ESS* can be interpreted as the number of standard Monte Carlo that are necessary to
obtain the same performance (in terms of MSE) as with the SNIS estimator with N samples. The
interested reader can find the derivation from ESS* to ESS through a series of approximations
and assumptions that rarely hold (see [37] for a thorough analysis). In practice, a low ESS is a
symptom of malfunctioning, but a high ESS does not necessarily imply good behavior of the IS
method.

New ESS-like methods have been proposed in the last years. In [72; 70], novel discrepancy
measures with similar properties to ESS are proposed and discussed, mitigating some of the
deficiencies of the original diagnostic. For instance, an alternative to ESS* is using 1/ max(w,,)
instead, which preserves some of those properties (e.g., it takes values between 1 and N, being
1 if all the normalized weights are zero except one, and N if all weights are the same). Another
metric in the same spirit has been recently proposed in [49]. Finally, the use of the importance
trick within quadrature schemes has been recently proposed [38, 42]. Note that these importance
quadrature schemes are not stochastic but strongly inspired in IS and its variants.

2.5 Other IS schemes

The research in IS methods has been very active in the last decade not only in the development
of novel methodology but also for increasing the understanding and the theoretical behavior of
[S-based methods. For instance, [2] unifies different perspectives about how many samples are
necessary in IS for a given proposal and target densities, a problem that is usually related to some
notion of distance (more precisely divergence) between the two densities. With a similar aim,
in [14] it is shown that in a fairly general setting, IS requires a number of samples proportional
to the exponential of the KL divergence between the target and the proposal densities. The
notion of divergences between both densities is also explored in [92] through the Rényi generalized
divergence, and in [79] in terms of the Pearson y? divergence. Both divergences are connected
with the variance of the Z estimator in Eq. (11).

2.5.1 Transformation of the importance weights

As described in Section 2.4, a large variability in the importance weights is usually responsible
for a large variance in the IS estimators. One alternative is adapting the proposals in order
to diminish the mismatch with the target, as we describe in Section 4. However, this usually
means throwing away past weighted samples (or stick to large variance estimators from the early
iterations). Another alternative is the nonlinear transformation of the IS weights. The first work in
this line is the truncated importance sampling [50] where the standard unnormalized weights w,, are
truncated as w/, = min(w,, 7), where 7 is a maximum value allowed for the transformed /truncated
weights. The consistency of the method and a central limit theorem of the modified estimator
are proved. This transformation of the weights was also proposed in [53], and called nonlinear
importance sampling within an adaptive IS scheme (N-PMC algorithm). The convergence of this
method is analyzed in [53, 79, 80]. The underlying problem that those methods fight is the right
heavy tail in the distribution of the importance weights when the proposal is not well fit. In [103],
the authors go a step beyond by characterizing the distribution of the importance weights with



generalized Pareto distribution that fits the upper tail. Based on this fitting, a method is proposed
for the stabilization of the importance weights. The authors provide proofs for consistency, finite
variance, and asymptotic normality. See [76] for a review of the clipping methodologies.

2.5.2 Particle filtering (sequential Monte Carlo)

Particle filtering (also known as sequential Monte Carlo) is an IS-based methodology for performing
approximate Bayesian inference on a hidden state that evolves over the time in state-space models,
a class of probabilistic Markovian models. Due to the structure of the Bayesian network, it is
possible to process sequentially and efficiently the observations related to the hidden state for
building the sequence of filtering distributions (i.e., the posterior distribution of a given hidden
state conditioned to all available observations). Particle filters (PFs) are based on importance
sampling, incorporating in most cases a resampling step that helps to increase the diversity
of the particle approximation [18, 62]. Since the publication of the seminal paper [45] where
the bootstrap PF is developed (BPF), a plethora of PFs have been proposed in the literature
[21, 86, 57, 17, 36]. Advanced MIS and AIS techniques are often implicit in those algorithms,
but they are rarely explicit. In [39], a novel perspective of BPF and auxiliary PF (APF) based
on MIS is introduced. In these state-space models, the ESS and its approximations are also used
as diagnostics metrics for PF (see Section 2.4). Moreover, since the observations are dependent
in these models, other metrics have been recently developed, mostly based on the predictive
distribution of the observations [60, 8, 35, 41].

3 Multiple importance sampling (MIS)

The IS methodology can be easily extended when the samples are simulated from M proposals,
{gm(x)}M_, | instead of only one. In a generic setting, one can consider that n,, samples are
simulated from each proposal (27:17%‘ = 1) and weighted appropriately. This extension is
usually called multiple importance sampling (MIS), and it has strong connections with the case
of standard IS with a single mixture proposal with components that are distributions, which is
sometimes called mixture IS. Here we consider mixture IS as a subset of MIS methods when n,,
are not deterministic number of samples but r.v.’s instead.

3.1 Generalized MIS

A unifying framework of MIS has been recently proposed in [40]. The framework encompasses
most of existing IS methods with multiple proposals, proposes new schemes, and compares them
in terms of variance. For the sake of clarity, the framework is described in the case where (a) no
prior information about the adequateness of the proposals is available; and (b) M = N proposals
are available (i.e., exactly the same number of proposals than samples to be simulated). However,
straightforward extensions are possible to more generic settings. According to this framework, a
MIS is proper if it fulfills two conditions related to the sampling and weighting processes. A valid
sampling scheme for the simulation of N samples, {x,}"_,, can be agnostic to the dependence of
those samples but must fulfill the following statistically property: a sample x randomly picked



from the whole set of N simulated samples must be distributed as the mixture of proposals
Y(x) = + S gn(x). A valid weighting scheme must yield an unbiased and consistent UIS
estimator, IV, These properness conditions extend the standard properness in IS established by
[63], and have been also used to assign proper importance weights to resampled particles [71]. The
paper analyzes and ranks several resulting MIS schemes (different combination of valid sampling
and weighting procedures) in terms of variance. Due to space restrictions, here we show only two
MIS schemes commonly used in the literature. Let us simulate exactly one sample per proposal
(sampling scheme S3 in [40]) as

Xy ~ G (X), n=1,..,N. (17)

The next two weighting schemes are possible (among many others):

e Option 1: Standard MIS (s-MIS, also called N1 scheme):

e Option 2: Deterministic mixture MIS (DM-MIS, also called N3 scheme):

71-(Xn) o 71—(Xn)

- =1,.... N.
O EYN g T

Wy =

In both cases, it is possible to build the UIS and SNIS estimators. In [40], it is shown that
Var[Iy] < Var[I}}],

i.e., that using the second weighting option with the whole mixture in the denominator is always
better than using just the proposal that simulated the sample (the equality in the variance relation
happens only when all the proposals are the same). The result is relevant since N1 is widely used
in the literature but it should be avoided whenever possible. Note that both N1 and N3 require just
one target evaluation per sample. However, N3 requires N proposal evaluations per sample, while
N1 just one. For a small number of proposals, or when the target evaluation is very expensive
(and hence the bottleneck), this extra complexity in N3 may be not relevant, but it can become
cumbersome otherwise. Several MIS strategies have been proposed in the literature to alleviate
this problem. In [29], a partition of the proposals is done a priori, and then the N3 scheme is
applied within each cluster (i.e., small mixtures appear in the denominator of the weights). This
method is called partial deterministic mizture and in some examples is able a similar variance
reduction as in the N3 method, while reducing drastically the number of proposal evaluations (see
[29, Fig. 1]). The overlapped partial deterministic mizture method [32] extends the framework
to the case where the proposals can belong to more than one cluster. However, the way the
proposals are clustered remains an open problem and few attempts have been done for optimizing



the clustering (see [31] where the clusters are done after the sampling, using the information of
the samples, and hence biasing the estimators).

When the selection of the proposals is also random, unlike in the sampling in (17), there exist
options to evaluate only the proposals that have been used for sampling (scheme R2 in [40]) instead
of using all of them in the numerator (scheme R3 in [40]). A recent paper explores the R2 scheme
and some of its statistical properties [77].

3.1.1 MIS with different number of samples per proposal

Since the seminal works of [102, 48] in the computer graphics community, several works have
addressed the case where the number of samples (also called counts) per proposal (also called
techniques) can be different (see also [83] where the authors introduce control variates in MIS).
In particular, the so-called balance heuristic estimator, proposed in [102] and very related to the
scheme N3 in Section (3.1) has attracted attention due to its high performance. The UIS balance
heuristic estimator is given by

ZZ f le XJ Z) (19)

j=1 i=1 Zk lnqu(le)

where again {q,,(x)}¥_, is the set of available proposals, {n,,}*_, is the number of samples
associated to each proposal, N = 224:1 ny is the total number of samples, and x;,; ~ ¢;(x), for
i =1,..,n;, and for j = 1,...,M. Regarding the denominator in (19), it can be interpreted
that the N samples are simulated from the mixture S 0, nggr(x) via stratified sampling (a
similar interpretation can be done in the aforementioned N3 scheme). In [96], this estimator
is re-visited and novel bounds are obtained. In [93], the balance heuristic estimator of Eq. (19) is
generalized, introducing more degrees of freedom that detach the sampling and the denominator
of the importance weights, being able to obtain unbiased estimators that reduce the variance with
respect to the standard balance heuristic. In [47], control variates are introduced in an IS scheme
with a mixture proposal (similarly to [83]), and all parameters (including the mixture weights)
are optimized to minimize the variance of the UIS estimator (which is jointly convex w.r.t. the
mixture probabilities and the control variate regression coefficients). More works with a variable
number of samples per proposal (either fixed or optimized) include [95, 94, 98|.

3.2 Rare event estimation

Importance sampling is often considered as a variance reduction technique, not only in the case
when sampling from 7 is not possible, but also when it is possible but not efficient. A classical
example is the case of Eq. (1) when f(x) = s, where [ is the indicator function taking value 1 for
all x € §, and 0 otherwise. In rare event estimation, § is usually a set where the target 7 has few
probability mass, and hence [ is a small positive number. It is then not practical to simulate from
the target, since most of the samples will not contribute to the estimator due to their evaluation
in Is(x) being zero. IS allows for sampling from a different distribution that will increase the
efficiency of the method when ¢(x) is close to Is. A recent MIS method called ALOE (“At least



one sample”) is able to simulate from a mixture of proposals ensuring that all of them are in the
integration region S in the case where 7(x) is Gaussian and S is the union of half-spaces defined
by a set of hyperplanes (linear constraints) [85]. As an example, the authors show successful
results in a problem with 5772 constraints, in a 326-dimensional problem with a probability of
I ~ 10722, with just N = 10* samples. ALOE has been recently applied for characterizing wireless
communications systems through the estimation of the symbol error rate [27, 28].

3.3 Compressed and distributed IS

In the last years, several works have focused on alleviating the computational complexity,
communication, or storage in intensive IS methods. This computational burden appears often
when the inferential problem is challenging and requires a large amount of simulated samples.
This can happen because the adaptive schemes may require many iterations, because of the high-
dimensional nature of the tackled problem, and/or because a high precision (low variance) is
required in the estimate. In [75], several compressing schemes are proposed and theoretically
analyzed for assigned importance weights to groups of samples for distributed or decentralized
Bayesian inference. The framework is extended in [68], where a stronger theoretical support is
given, and new deterministic and random rules for compression are given. The approach in [56, 6]
considers the case of a single node that keeps simulating samples and assigning them an importance
weight. The bottleneck here is the storage of the samples so one needs to decide at each time if
the sample is stored or discarded. A compression algorithm is introduced for building a dictionary
based on greedy subspace projections and a kernel density estimator of the targeted distribution
with a limited number of samples. It is shown that asymptotic bias of this method is a tunable
constant depending on the kernel bandwidth parameter and a compression parameter. Finally,
some works have studied the combination of IS estimators in the distributed setting. For instance,
in [19, Section 4], independent estimators are linearly combined with the combination weights
being the inverse of the variance of each estimator. A similar approach is followed in [82], using
the ESS instead of the variance of the estimator (which is unknown in most practical problems).
A Bayesian combination of Monte Carlo estimators is considered in [65, 66]. Note that the MIS
approach is, due to its own nature, an implicit linear combination of multiple estimators (each of
them using samples from one or several proposals). This perspective is exploited for instance in
[46, 97].

4 Adaptive importance sampling (AIS)

Since choosing a good proposal (or set of proposals) in advance is in general impossible, a common
approach is the use of adaptive importance sampling (AIS) [10]. AIS algorithms are iterative
methods for a gradual learning of one or multiple proposals that aim at approximating the target
pdf. Algorithm 1 describes a generic AIS algorithm through three basic steps: the simulation of
samples from a one or several proposals (sampling), the computation of the importance weight of
each sample (weighting), and the update of the parameters that characterize the proposal(s) for
repeating the previous steps in the next iteration (adaptation).
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Most existing algorithms can be described in this framework that we describe with more detail.
The generic AIS algorithm initializes N proposals {q,(x|60,.1)}._,, parametrized each of them by a
vector @, 1. Then, K samples are simulated from each proposals, Xgﬂ, n=1,....Nk=1,...,K,
and weighted properly. Here again many ways of sampling and weighting are possible, as it is
described in Section 3.1. At the end of the weighting step, it is possible to approximate the
integral of Eq. (1) with either UIS and SNIS, and the target distribution with a discrete random
measure, by using the set of weighted samples {Xff}, wfﬂ , n=1....Nk=1,..., K. Finally,
the parameters of the n-th proposals are updated from 6,,; to 6, 2. This three-step process is
repeated until an iteration stoppage criterion is met (e.g., a maximum number of iterations, J, is
reached). Note that at the end, the estimators can either use all weighted samples from iterations
1 to J, or only the samples from the last iteration.

Algorithm 1 Generic AIS algorithm

1: Input: Choose K, N, J, and {0,,1}_,
2: fori=1,...,7T do

3:  Sampling: Draw K samples from each of the N proposal pdfs, {g, ;(x|0,;)}) 1, ng;-,k =
1,.... K, n=1,....N

4:  Weighting: Calculate the weights, wffj)-, for each of the generated K N samples.

5. Adaptation: Update the proposal parameters {0, ;}N | — {6, 1110 ,.

6: end for

7: Output: Return the K NJ pairs {ngj),wﬁfj)} foralk=1,..., K,n=1,....N,j=1,...,J.

The literature is vast in AIS methods and a detailed description of all of them goes beyond
the scope of this paper (see [10] for a thorough review). Most of the AIS algorithms can be
classified within three categories, depending on how the proposals are adapted. Figure 1 shows
graphically the three families of AIS algorithms, describing the dependencies for the adaptation
of the proposal parameters and the simulation of the samples. Each subplot corresponds to each
family, whose description and corresponding AIS algorithms of the literature are given below.

a) The proposal parameters are adapted using the last set of drawn samples (e.g., standard

PMC [12], DM-PMC [33, 34], N-PMC [53], M-PMC [13], APIS [69]).

b) The proposal parameters are adapted using all drawn samples up to the latest iteration (e.g.,
AMIS [16], CAIS [23], Daisee [64], EAMIS [25], RS-CAIS [24]).

¢) The proposal parameters are adapted using an independent process from the samples (LAIS
(74, 73], GAPIS [30], GIS [99], IMIS [43], SL-PMC [26]).

In Table 2, we describe some relevant AIS algorithms according to different features: the
number of proposals; the weighting scheme (nonlinear corresponds to the clipping strategies of
Section 2.5.1, standard is equivalent to Option 1 in Section 3.1, spatial mixture corresponds
to Option 2 with ¥(x) = Zfil ¢,(x|6;;), temporal mizture corresponds to Option 2 with
Y(x) = 37 Gnr(x]0,-)); and the parameters that are adapted (either location and scale, or
only location). In Table 3, we describe the computational complexity of the same algorithms
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(a) The proposal parameters
are adapted using the last set
of drawn samples (Standard
PMC, DM-PMC, N-PMC, M-

The

(b)
parameters are adapted using
all drawn samples up to the
latest iteration (AMIS, CAIS,

proposal

(¢) The proposal parameters
are adapted using an
independent process from the
samples (LAIS, GAPIS, GIS,

PMC, APIS).

Daisee, EAMIS, RS-CAIS).

IMIS, SL-PMC).

Figure 1: Graphical description of three possible dependencies between the adaptation of the
proposal parameters 6, ; and the samples. Note that ¢, = ¢,+(x|0,,+).

according to number of target evaluations, proposal evaluations, target evaluations per proposal,
and proposal evaluations per proposal. In some AIS algorithms, the proposals converge with the
number of iterations J, although proving this convergence (and the associated convergence rates)
is in general a tough problem (see a recent result in [3]). For many other AIS algorithms (e.g.,
DM-PMC, LAIS, APIS), the proposals do not converge to any limiting distribution. Converge
rates have been established only for simple classes of AIS algorithms which are based on optimized
parametric proposals [3]. Note that AIS-based algorithms have been also used for optimization
purposes [81, 4].

Table 2: Comparison of various AIS algorithms according to different features.

’ Algorithm \ # proposals \ Weighting \ Adaptation strategy \ Parameters adapted \
Standard PMC N>1 standard resampling location
M-PMC N>1 spatial mixture resampling location
N-PMC either nonlinear moment estimation location/scale
LAIS N>1 generic mixture MCMC location
DM-PMC N>1 spatial mixture resampling location
AMIS N=1 temporal mixture moment estimation location/scale
GAPIS N>1 spatial mixture gradient process location/scale
APIS N>1 spatial mixture moment estimation location
Acknowledgements

V.E. acknowledges support from the Agence Nationale de la Recherche of France under PISCES
project (ANR-17-CE40-0031-01).

12



Table 3: Comparison of various AIS algorithms according to the computational complexity.

] Algorithm \ # target eval \ # proposal eval \ # target eval/sample \ # proposal eval/sample ‘

Standard PMC NJ NJ 1 1
N-PMC NJ NJ 1 1
M-PMC KJ KNJ 1 N

LAIS KN +1)7 KNZJ 1+ 1/N N
DM-PMC KNJ KNZ?2J 1 N
AMIS KJ KJ? 1 J
GAPIS KNJ KNZ?2J 1 N
APIS KNJ KNZ2J 1 N
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