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ABSTRACT 

Multi-channel intracardiac electrocardiograms (electrograms) 
are sequentially acquired, at the electrophysiology laboratory, 
in order to guide radio frequency catheter ablation during 
heart surgery performed on patients with sustained atrial 
fibrillation (AF). These electrograms are used by cardiolo­
gists to determine candidate areas for ablation (e.g., areas 
corresponding to high dominant frequencies or complex frac­
tionated electrograms). In this paper, we introduce a novel 
hierarchical algorithm for causality discovery among these 
multi-output sequentially acquired electrograms. The causal 
model obtained provides important information about the 
propagation of the electrical signals inside the heart, uncov­
ering wavefronts and activation patterns that will serve to 
increase our knowledge about AF and guide cardiologists to­
wards candidate areas for catheter ablation. Numerical results 
on synthetic signals, generated using the FitzHugh-Nagumo 
model, show the good performance of the proposed approach. 

Index Terms— electrocardiography, atrial fibrillation, 
Granger causality 

1. INTRODUCTION 

Atrial fibrillation (AF), which is a family of cardiac diseases 
characterized by a rapid and unsynchronized contraction of 
the atria, is the most common cardiac arrhythmia. Indeed, AF 
has reached epidemic proportions [1], with one out of four 
people over 40 years old predicted to suffer from AF in the 
future [2]. However, its underlying mechanisms are still not 
fully understood, and several theories for the initiation and 
maintenance of AF have been proposed [3, 4, 5]. One of the 
leading hypotheses (rotor theory) states that specific areas of 
the myocardium are responsible for AF initiation and mainte­
nance. RF catheter ablation, where an RF catheter placed in­
side the heart is used to ablate the areas causing AF, is increas-
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ingly used, but requires identifying arrhythmogenetic areas. 
Sites with high dominant frequencies or complex fractionated 
electrograms have been proposed as candidates for ablation, 
but the performance of these approaches is still unsatisfactory. 

Several authors have investigated the inference of causal­
ity relationships among different biomedical signals [6, 7]. 
In particular, causality discovery tools have been extensively 
used in neurology [8]. In cardiology, on the one hand Granger 
causality has been used to investigate the relationship between 
several physiological time series [9, 10]. On the other hand, 
the use of partial directed coherence to investigate propaga­
tion patterns in intra-cardiac signals was considered in [11], 
whereas Granger causality maps were built in [12, 13]. How­
ever, all of these approaches are based on the standard full 
conditional approach to causality discovery. 

In this paper, we propose a novel hierarchical causal­
ity approach for causality discovery among AF electrograms. 
The algorithm initially selects the node with the highest num­
ber of potential causal links as the root node. The candidate 
sons of the root node are then explored (starting by the closest 
node), accepting them as true sons only if they provide rele­
vant information conditioned on all previously accepted sons. 
This process is repeated until there are no more nodes left to 
process. The causality maps inferred contain important infor­
mation about the propagation of the electrical signals inside 
the heart, allowing us to uncover wavefronts and activation 
patterns that will serve to increase our knowledge about AF 
and guide cardiologists towards candidate areas for ablation. 

The paper is organized as follows. Firstly, Section 2 in­
troduces Granger causality, describing both the pairwise and 
conditional approaches. Then, Section 3 details the proposed 
hierarchical causality algorithm, Section 4 shows the numeri­
cal results, and Section 5 provides the conclusions. 

2. GRANGER CAUSALITY (G-CAUSALITY) 

Let us assume that we have N samples of a multi-variate time 
series composed of Q signals, xq[n] for q = 1, . . . , Q and 
n = 0, 1, . . . , N — 1, which correspond to unipolar intra­
cardiac ECGs (electrograms) recorded at a single heart site 



during RF catheter ablation therapy. In the sequel, we de­
scribe two standard approaches for causality inference. 

2.1. Standard Pairwise Causality 

In its standard (pairwise) formulation, Granger causality (G-
causality) measures the increase in predictability on the future 
outcome of a given signal, xq[n] with 1 < q < Q, given the 
past values of another signal, X(\a] with 1 < £ < Q, w.r.t. 
the predictability achieved by taking into account only past 
values of xq[n] [14]. The linear autoregressive (AR) predictor 
for xq [n] given its past samples (i.e., the q-th self-predictor) 
is given by 

M qq 

xq[n] = y aqq[m]xq[n — m] = a xq[n], (1) 
m = l 

where Mqq is the order of the predictor (obtained typ­
ically using some penalization for model complexity to 
avoid overfitting [15]), aqq[m] are the coefficients of the 
model, otqq = [aqq[l], . . . , a M [ M m | ] , and xq[n] = 
[xq[n — 1], . . . , xq[n — Mqq]]

T. Similarly, let us define 
the linear AR predictor for xq[n] given the past samples of 
both xq[n] and X(\a] (i.e., the cross-predictor from the ^-th 
signal to the q-th signal) as 

2^->-gM = aggXq[n] + a£gX^[nL (2) 

where M^q is the order of the predictor from the ^-th signal 
to the </-th output (different from Mqq in general), a£q [m] its 
coefficients, ci£q = [a£q[l], ..., a£q[M£q]]T and Xi[n] = 
\xg\n — 1], . . . , x^\n — M£q]] . The residual errors of the 
two predictors in (1) and (2) are £q[n] = xq[n] — xq[n] and 

££ = xq[n] X£ [n] respectively. The pairwise G-

causality strength is then measured by the logarithm of the 
ratio of these two variances [16]: 

Var(eq[n]) 

Var{££^q [n\) 
(3) 

Using these pairwise values, we can build a pairwise G-
causality strength matrix, G, whose (£, q)-th entry is1 

^ ~ ^ x . Q 

^£^q: 

0, 

£ ^ q; 

£ = q. 
(4) 

Finally, note that we should add a causality link from £ 
to q only when the decrease in the residual’s noise vari­
ance from (1) to (2) is statistically significant. In order to 
construct this causality graph, we may define the pairwise 
G-causality connection matrix, C, whose (£, q)-th element is 
Ce^q = Ip(Gi^ q ) , where Ip(-) is an indicator function such 
that Ip(Gi^q) = 1 when the causal link from £ to q is sta­
tistically significant (as indicated by its p-value for example) 
andIp(Gi^q) = 0 otherwise. 

1 Note that Var(eq^q[r i ] ) = Var(eq[«,]), since xq^q[ An\ = x„\n\, so 

2.2. Conditional G-Causality 

Pairwise causality is unable to discriminate between direct 
causal relationships (i.e., between parents and sons) and indi­
rect relationships (e.g., between grandparents and grandchil­
dren). In order to avoid the undesired extra edges introduced 
by these indirect relationships, [16] proposed the use of con­
ditional G-causality. Let us define as I the set containing the 
indexes of the conditioning variables. Now we can define the 
conditional self-predictor as 

X q | i [ n ] = (X Xq[n] + \_. M-rq^r 

rel 

(5) 

where otrq = [arq[l], . . . , arq[Mrq]] andx r [n] = [xr[n — 
1], . . . , xr[n — Mrq]] for all r G I , and the conditional 
cross-predictor from the ^-th signal (with £ <£ I ) to the q-th 
output as 

X£^q\z[n] = OtX.q[n] + \ _ . (XrqX-r\n\ + a £ o X £ [ n ] - (6) 

Now, by defining the residual errors as eq|i[n] = xq[n] — 
Xq<x[n] and £e^q\i[n] = xq[n] — x£^q<x[n], the conditional 
G-causality strength can be defined as 

Var(eg|x[n]) 
Ge^q\i = In 

Var(e^ q i I [n ] ) 
(7) 

Just like in the case of the pairwise causality, we may de­
fine two conditional connection/strength G-causality matri­
ces, G j and C j , whose (£, q)-th elements are respectively 

3. HIERARCHICAL GRANGER CAUSALITY 

On the one hand, pairwise G-causality may provide mislead­
ing results, as it includes both direct and indirect causal rela­
tionships. On the other hand, the “brute-force approach” to 
conditional causality (i.e., applying conditional causality on 
the whole data set all at once) is much more demanding from 
a computational point of view and may obscure some of the 
existing relationships. Hence, in this paper we propose a hier­
archical approach that is able to exploit the advantages of both 
approaches while minimizing their drawbacks. The algorithm 
starts by searching for the node with the highest number of G-
causality links to the other nodes and selecting it as the root 
node. Then, the sons of the root node are processed sequen­
tially according to their proximity, adding new causality links 
i f they are significant conditioned on the previously added 

Gq^q[n] = In 1 = 0 and the definition in (4) is consistent with (3). 

2Note that the pairwise G-causality connection/strength matrices are 
unique, whereas many conditional G-causality connection/strength matri­
ces can be constructed. The most usual situation in the literature is setting 
X = S¬£ = { 1 , . . . , I — 1, I -\- 1, . . . , Q} = { 1 , . . . , Q} \ {£} and 
constructing the full conditional G-causality connection/strength matrices as 

^£,q\s¬^ = ^ £ ^ q | 5 ¬ £ and ^£^q\s¬£ = I p ( ^ £ ^ q | s ¬ £ ) respectively. 
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links. This process is repeated iteratively (on the grandsons 
of the root node and so on) until there are no more nodes to 
process and a poly-tree has been constructed. The following 
two assumptions are made in building this poly-tree: 

1. No feedback links can exist from lower nodes to higher 
nodes in the hierarchy. 

2. The causal interaction is given by neighbouring nodes. 

In the sequel, we describe the steps of the algorithm in detail. 

3.1. Initialization: Selecting the Root Node 

The initialization stage seeks to find the optimal root node 
for the causal graph. This is done by calculating the pairwise 
G-causality among all nodes and selecting the one with the 
highest number of G-causality links to the other nodes. As a 
result, this stage returns the root node, i\, and the set of its 
candidate sons, C\ = cand{«i}. The detailed steps taken are: 

1. Set G = 0 and C = 0. Initialize the sets of sons and 
parents as empty sets: Vq = pa{</} = 0 and Sq = 
son{</} = 0 for q = 1, . . . , Q. 

2. FOR q = 1, . . . , Q — 1 and £ = q + 1, . . . , Q: Calcu­
late Gq^£ and Gn^q, and set the corresponding entries 
in G and C. 

3. Calculate the G-causality strength of the </-th node 
(q = 1, . . . , Q — 1) as the sum of the strength 
of its causal links to the remaining nodes, gq = 

e, and the number of links for 

Cq,e = Yle=iIp (Gq^i). 

Q 
l Gq 

each node as Kq = YleLi 

4. Determine the node with the highest number of causal 
links stemming from it, 

i\ = argmax Kq, 
l<q<Q 

(8) 

and set it as the root node, with gq being used only to 
discriminate among nodes with identical values of Kq. 

5. Obtain the set of candidate sons of the root node: C^ = 
cand{«i} = {£ : Cil}£ = 1}. 

3.2. First Iteration: Processing the Sons of the Root Node 

This stage is in charge of processing the set of candidate sons 
of the root node, determining which of them are true sons. 
This decision is taken by sorting the candidates according to 
their proximity to the root node, and processing them sequen­
tially (with closer candidates being processed first). At each 
iteration, a conditional G-causality strength is calculated us­
ing the current set of sons of the root node (initially empty). 
I f the G-causality connection is deemed statistically signifi­
cant (by means of its p-value), the candidate is added to the 

set of sons of the root node and the corresponding entry in the 
conditional G-causality connectivity/strength matrices is up­
dated. The motivation for this approach is that true sons still 
provide statistically significant G-causality values after con­
ditioning, whereas descendants further away along the family 
tree do not provide statistically significant G-causality values 
(as they are masked by closer descendants of the root node). 
As a result, this stage sets the corresponding entries in the 
strength/connection G-causality matrices, Getq\p and C^q|-p, 
returns the set of sons of the root node, S^ = son{«i}, and 
sets the root node as the parent for the nodes in S^, i.e., 
Vq = pa{</} = {«i} V</ G Stl. The procedure applied is: 

1. Set G i i q | p = 0 and C i i q | p = 0 for q = 1, . . . , Q. 
SetG£q|p = NaNandC^g|-p = NaN for 1 < t,q < Q 
w i t h ^ ii.3 

2. Sort the elements in C^ according to their proximity to 
the root node, with the distance defined as: 

d{i\,j) = min{((«i — J))Q, ({j — H))Q}, ^j^^in 

with ((A;))Q denoting the modulo operation, i.e., for 
any three integer numbers m, k and Q, m = ((A;))Q <£=> 
k = £Q + m, where £ and m are the only integers such 
that —oo < £ < oo and 0 < m < Q — 1. 

3. Set C ix^c (1)|P = 1, Gh^c (i)\r = G i^c^ (i) and 
o^ sonj_ î j- \Wi \*-) j . 

4. FORj = 2, . . . , \Ci11: 

(a) Calculate Q ^c^mis^ and Q ^c^mis^ = 
I J- «-]_ W / I b\ ' 

(b) I F C j ^ C j (j)\Si = ! : Set C j ^ C j {j)\v = 1, 

3.3. Main Algorithm: Processing the Remaining Nodes 
Iteratively 

This final stage is in charge of processing the remaining roots 
iteratively in a hierarchical fashion. The process described 
in the previous section is repeated iteratively, processing the 
sons of each of the sons of the root node (i.e., the grandsons 
of the root node), starting again by the closest one. The 
algorithm proceeds in this way (i.e., processing the great-
grandsons of the root node, the great-great-grandsons of the 
root node and so on), until there are no more nodes to process. 
This stage returns the full strength/connection G-causality 
matrices, G^q|-p and C^q|-p, defining a causal network with 
the corresponding sets of sons and parents, Sq = son{</} and 
Vq = pa{</} for q = 1, . . . , Q. The steps taken are: 

3NaN is the IEEE arithmetic representation for “Not-a-Number”, which 
is obtained as the result of mathematically undefined operations (e.g., 0/0 or 
∞ - ∞ ) . We use it here as a convenient way to indicate entries of G P and 
C P that have not been defined yet. 
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Fig. 1. (left) True map and causality maps inferred ( M = 11, p = 0.01 and SNR = 30 dB). (center) Effect of changing the 
p-value (M = 11 and SNR=30 dB). (right) Effect of changing the number of lags M (p = 0.01 and SNR=30 dB). 

1. Sett = 1, It = {ii} and Ait = { 1 , • • •, Q} \ It. 

2. WHILE Ait 7̂  $: 

(a) FOR k = 1, . . . , \It\: 

• Set S = Sxt(k) and sort its elements accord­
ing to their proximity to the current parent. 

• FOR £ = 1, . . . , |S| and j = 1, . . . , \C\: 
Set C 
culate G 

S{£) 

S{£)-rC{j)\Tt 

Mt \S( 
and C 

and cal-

I { G S(£)^c(j)\it ) 
then set: 

IF G 
S{£)-rC{j)\Tt 

S{£)-rC{j)\Tt 
1, 

^5(^)^0(^)1?^ ?̂ 

G S(£)^C(j)\V 

son{S(<?)} 

pa{C(j)} 

son{S(£)} U {C{j)h 

pa{C(j)}U{S(£)}. 

(b) Set Z ^ 
t = t + 1. 

fc=i°it(fc) Sxtift), Ait+i = Ait \It+i and 

4. NUMERICAL SIMULATIONS 

In this section, we validate the proposed approach by means 
of synthetic signals, generated using a grid of interconnected 
elements running the FitzHugh-Nagumo model to simulate 
the behaviour of heart tissue [17], and contaminated by addi­
tive white Gaussian noise (AWGN) at a given signal to noise 
ratio (SNR). The Granger causal connectivity toolbox (see 
[18]) was used to obtain the basic pairwise and conditional 

causality relationships. A flat propagation wavefront is gen­
erated and a catheter with 9 sensors is placed inside the grid, 
with the wavefront entering it through the eighth sensor and 
exiting through the third one. The three approaches described 
in the paper (pairwise causality, full conditional causality and 
the novel hierarchical causality approach) are then applied. 

Fig. 1 (left) shows an example of the networks obtained 
(using M = 11, p = 0.01 and SNR = 30 dB). As expected, 
the pairwise approach includes a huge number of edges, since 
it cannot distinguish direct and indirect causal relationships. 
The full conditional approach does a much better job, but still 
provides too many cross-connections across the nodes. Fi­
nally, the hierarchical scheme includes less cross-connections 
and has a lower computational cost. The effect of the different 
factors (the number of lags, M, and the p-value) is shown in 
Fig. 1 (center and right), whereas Table 1 shows the effect of 
changing the SNR.4 On the one hand, the pairwise technique 
provides very good results in terms of sensitivity (detecting all 
the edges), but very poor results in terms of specificity (intro­
ducing many false edges). On the other hand, the full condi­
tional scheme obtains very good results in terms of specificity, 
but not so good sensitivity results. Finally, the hierarchical ap­
proach provides the best sensitivity results, performing well 

also in terms ofspecificityand accuracy. 
5. CONCLUSIONS AND FUTURE LINES 

In this paper, we have introduced a novel hierarchical ap­
proach to infer Granger causality relationships among multi-

4Figures of merit used: accuracy (TP
P

+
+
T
N

N ), sensitivity (TP
P ) and speci­

ficity (TN
N ). P denotes the number of positive instances (i.e., existing edges), 

N the number of negative instances, TP the number of correctly detected 
existing edges and T N the number of correctly detected missing edges. 

X X 

0.5 

0 

0.8 . 

X X 
0.6 



Table 1. Performance vs. SNR (M = 11, p = 0.01) 
Hierarchical Full Cond. 

SNR Acc. Sen. Spe. Acc. Sen. Spe. 
10 dB 
15 dB 
20 dB 

0.860 
0.850 
0.846 

0.516 
0.591 
0.681 

0.903 
0.882 
0.866 

0.892 
0.889 
0.886 

0.380 
0.520 
0.677 

0.956 
0.935 
0.912 

channel intra-cardiac electrocardiograms. The proposed 
scheme avoids detecting indirect causal links (as in pair-
wise approaches), and has a similar performance and lower 
computational cost than the full conditional causality method. 
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