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Abstract

Multi-channel intracardiac electrocardiograms of atrial
fibrillation (AF) patients are acquired at the electrophys-
iology laboratory in order to guide radiofrequency (RF)
ablation surgery. Unfortunately, the success rate of RF
ablation is still moderate, since the mechanisms underly-
ing AF initiation and maintenance are still not precisely
known. In this paper, we use an advanced machine learn-
ing model, the Gaussian process latent force model (GP-
LFM), to infer the relationship between the observed sig-
nals and the unknown (latent or exogenous) sources caus-
ing them. The resulting GP-LFM provides valuable infor-
mation about signal generation and propagation inside the
heart, and can then be used to perform causal analysis.
Results on realistic synthetic signals, generated using the
FitzHugh-Nagumo model, are used to showcase the poten-
tial of the proposed approach.

1. Introduction

The term atrial fibrillation (AF) is commonly used by
cardiologists to denote a family of cardiac arrhythmias
characterized by a rapid and unsynchronized contraction of
the atria. In spite of its epidemic nature, and the large num-
ber of studies performed over the last decades, the mech-
anisms underlying AF initiation and maintenance are still
not precisely known [1–3]. One of the leading hypotheses
(rotor theory) states that specific areas of the myocardium
may be responsible for AF initiation and maintenance [4].
Radiofrequency (RF) catheter ablation intends to terminate
AF (and prevent its recurrence) by targeting these arrhyth-
mogenetic areas. However, no consensus has been attained
yet on which areas should be ablated, the success rate of a
single procedure is still unsatisfactory, and its relative ef-
fectiveness w.r.t. the use of antiarrhythmic drugs remains
controversial [5–8].

In this paper, we use an advanced machine learning
model, the Gaussian process latent force model (GP-LFM)
[9–11], to describe the intracardiac electrocardiograms

(a.k.a. electrograms (EGMs)) acquired during RF abla-
tion at the electrophisiology laboratory. The GP-LFM as-
sumes that the observed EGMs have been generated by
some unknown signals, latent forces (LFs), and tries to
learn both those LFs, which are modelled as Gaussian pro-
cesses (GPs) [12], and the input-output mechanism, which
is cast within the linear convolution framework. The re-
sulting GP-LFM provides valuable information about sig-
nal generation and propagation inside the heart, and can
then be used to perform causal analysis between the ob-
served EGMs and the inferred LFs. Note that Granger
causality (G-causality) maps were already built in [13,14],
whereas a hierarchical G-causality approach was devel-
oped in [15, 16]. However, none of these approaches takes
into account that the observed EGMs have been generated
by one or more exogenous sources (i.e., the LFs), as we
do here. Results on realistic synthetic signals, generated
using the FitzHugh-Nagumo model, are used to showcase
the potential of the proposed approach.

2. Gaussian Process Latent Force Model

Let us assume that we have a multi-variate time se-
ries composed of Q interrelated signals, yq(t) for q =
1, . . . , Q, corresponding to EGMs recorded at a single
heart site during RF catheter ablation therapy. The GP-
LFM assumes that the observed output EGMs have been
generated by the linear convolution of a set of unknown
input latent signals, which are modelled as independent
Gaussian processes, with a set of smoothing kernels, which
are derived from basic knowledge of the problem. From a
mathematical point of view, each of theQ outputs (EGMs)
is modelled as

yq(t) =

R∑

r=1

Sr,qyr,q(t) + wq(t), (1)

where Sr,q represents the coupling strength between the r-
th LF, fr(t), and the q-th output; wq(t) ∼ N(0, η2q ) is the
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Figure 1. Block diagram of the Gaussian Process Latent
Force Model (GP-LFM).

additive white Gaussian noise (AWGN) term; and

yr,q(t) = fr(t) ∗ hq(t) =
∫ t

0

fr(τ)hq(t− τ)dτ (2)

is the r-th pseudo-output for the q-th EGM (i.e., the part of
the q-th output that can be explained by the r-th LF), with
hq(t) denoting the q-th smoothing kernel. Fig. 1 provides
a graphical representation of the GP-LFM.

In order to complete the statistical description of the
model, we must define the latent functions and the smooth-
ing kernels. On the one hand, the R LFs (fr(t) for r =
1, . . . , R) are modelled as independent Gaussian processes
(IGPs) with a zero mean function, µfr (t) = 0, and an ar-
bitrary auto-covariance function (ACF), kfrfr (t, t

′), which
encodes our a priori knowledge about basic characteristics
of the LFs such as continuity, smoothness, stationarity, etc.
Although several choices for kfrfr (t, t

′) are possible (e.g.,
see [9–11]), in the following we consider only the squared
exponential, RBF or Gaussian auto-covariance function:

kfrfr (t
′ − t) ∝ exp

(
− (t′ − t)2

`2r

)
, (3)

where the hyperparameter `r controls the length-scale (i.e.,
the extent of temporal correlation) of the process. On the
other hand, the smoothing kernel encodes our knowledge
about the linear system that relates the unknown LFs and
the observed EGMs. In this paper, we consider one of the
simplest possibilities: the smoothing kernel associated to
a first order linear ordinary differential equation with con-
stant coefficients [9],

hq(t) = exp (−Dqt) , (4)

where Dq is a parameter which is related to the decay
speed of the system. This smoothing kernel acts as a
low-pass filter on the input LF, with a potentially differ-
ent bandwidth (controlled by the decay parameter Dq) for
each of the observed outputs.

3. Granger Causality (G-Causality)

Granger causality (G-causality) measures the increase in
predictability on the future outcome of a signal, given the
past values of another signal, w.r.t. the predictability at-
tained by taking into account only past values of itself [17].
We are interested in determining whether each of the LFs
is able to provide a statistically significant forecast of each
of the outputs. Let us assume that we have Q EGMs that
have been acquired by uniformly sampling the underlying
continuous signals with a sampling frequency fs = 1/Ts,
yq[n] = yq(nTs) for 0 ≤ n ≤ N − 1, and that we have in-
ferred the R LFs at those same instants, fr[n] = fr(nTs).
Then, we can apply the G-causality methodology to deter-
mine the increase in predictability on the future outcome
of the q-th EGM, yq[n] for 1 ≤ q ≤ Q, given the past val-
ues of the r-th latent signal, fr[n] with 1 ≤ r ≤ R, w.r.t.
the predictability achieved by taking into account only the
past values of yq[n]. In order to achieve this goal, we first
build a linear autoregressive (AR) predictor for yq[n] given
its past samples (i.e., the q-th self-predictor),

ŷq[n] =

Mqq∑

m=1

αqq[m]yq[n−m], (5)

where Mqq is the order of the q-th self-predictor and
αqq[m] are the coefficients of the model. Similarly, let us
define the linear AR predictor for yq[n] given the past sam-
ples of both yq[n] and fr[n] (i.e., the cross-predictor from
the r-th LF to the q-th EGM) as

ŷr→q[n] =

Mqq∑

m=1

αqq[m]yq[n−m]+

Mrq∑

m=1

αrq[m]fr[n−m],

(6)
whereMrq is the order of the predictor from the r-th LF to
the q-th EGM, and αrq[m] denotes its coefficients. The
residual errors of the two predictors in (5) and (6) are
εq[n] = yq[n] − ŷq[n] and εr→q[n] = yq[n] − ŷr→q[n]
respectively. The G-causality strength is then measured by
the logarithm of the ratio of these two variances [18]:

G`→q = ln
Var(εq[n])

Var(ε`→q[n])
. (7)

Using these pairwise values, we can build a G-causality
strength matrix, G, whose (r, q)-th entry is1

Gr,q =

{
Gr→q, r 6= q;

0, r = q.
(8)

Finally, note that we should add a causality link from r to
q only when the decrease in the residual’s noise variance

1Note that Var(εq→q [n]) = Var(εq [n]), since ŷq→q [n] = ŷq [n], and
thus Gq→q [n] = ln 1 = 0 and the definition in (8) is consistent with (7).
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Figure 2. Example of the aligned signals for the four cases considered (colored thin lines) and the LF learnt (black thick
line). (a) Flat. (b) Circular. (c) Rotor 1. (d) Rotor 2.

from (5) to (6) is statistically significant. In order to con-
struct this causality graph, we may define the G-causality
connection matrix, C, whose (r, q)-th element is

Cr→q = χp(Gr→q), (9)

where χp(·) is a threshold function that determines, when
applied to Gr→q and for a pre-defined p-value, whether
the r-th LF is statistically signiticant in predicting the q-th
output (i.e., Cr→q = 1) or not (i.e., Cr→q = 0).

4. Numerical Simulations

In this section, we use several realistic synthetic signals
to showcase the potential of the proposed approach. These
signals have been generated using a grid of interconnected
elements that emulate the behaviour of heart tissue using
the FitzHugh-Nagumo model [19], and placing a virtual
lasso cathether with Q = 9 monopolar sensors at some
point within that grid. We have simulated four signals:

• Flat, which corresponds to the flat propagation wave-
front typically obtained when we have a regular rhythm
and the catheter is placed far away from the source.
• Circular, which corresponds to the circular propaga-
tion wavefront typically obtained when we have a regular
rhythm and the catheter is placed close to the source.
• Rotor1 and Rotor2, which corresponds to the spiral
propagation wavefront obtained when a rotor (turning anti-
clockwise and clockwise, respectively) is anchored within
the area enclosed by the catheter.

In all cases, the clean signals are contaminated by
AWGN with an SNR = 10 dB. The Multi-output Gaus-
sian Processes - MATLAB Software2 has been used to con-
struct the model for the signals, assuming a single LF (i.e.,
R = 1). Since the kernel used does not consider a dif-
ferent delay for each of the outputs, a simple algorithm
(based on the detection of the first QRS complex by means
of a threshold) is used to estimate their relative delay and
align all the signals. A stochastic gradient descent method

2https://sheffieldml.github.io/multigp/
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Figure 3. Causal connectivity among the inferred LF, f(t),
and each of theQ = 9 EGMs for the four cases considered
(flat, circular, rotor 1 and rotor 2). Note that a black square
implies causality (i.e., Cr→q = 1), whereas a white square
indicates the lack of causality (i.e., Cr→q = 0).

is then applied to learn the hyperparameters (`r, Srq, Dq

and σq for r = 1 and q = 1, . . . , Q = 9), using all the sam-
ples from the available EGMs (Nq for q = 1, . . . , Q = 9)
as the training set. After this training stage, the single LF,
f(t) = f1(t), can be easily recovered using standard GP
formulas [12]. Finally, the Granger causal connectivity
toolbox (see [20]) is used to obtain the desired G-causality
relationships with Mqq =Mrq = 10 and p = 10−4.3

Fig. 2 shows theQ = 9 aligned signals for the four cases
considered (colored thin lines) and the LF learnt (black
thick line). On the one hand, note the perfect alignment
among the single LF and all the EGMs attained for the flat
propagation case, which implies that the model has been
able to capture all the relevant information in the outputs.
On the other hand, note that some activations in the EGMs
do not correspond to peaks in the LF for the remaining
three cases, implying that the model has missed some rel-
evant features of the outputs. Fig. 3 confirms this fact
by showing the causal connectivity among the inferred LF,
f(t), and each of the Q = 9 EGMs for the four cases con-

3Several values for these parameters were tested, but the performance
seemed to be largely insensitive to the values of Mqq = Mrq (as long as
large enough values were used) and p.

 

 

  



sidered. Note that a causal link among the LF and all the
EGMs is found for the first case (flat propagation), whereas
some signals cannot be fully explained by using f(t) alone
in the remaining three cases.

5. Conclusions and Future Lines

In this paper, we have applied an advanced machine
learning model, the Gaussian process latent force model
(GP-LFM), to describe the intracardiac electrocardiograms
acquired during RF ablation surgery. The GP-LFM al-
lows us to recover the unknown latent forces (LFs) that
have generated the observed outputs, as well as the input-
output interaction mechanism, and perform causal analy-
sis. Promising results have been attained on synthetic sig-
nals, generated using the FitzHugh-Nagumo model. Fu-
ture lines include extending the GP-LFM (e.g., adding
a variable delay for the different outputs and developing
novel input-output kernels), and testing it on real signals.
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