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ABSTRACT

Monte Carlo (MC) methods are widely used in signal process-
ing, machine learning and stochastic optimization. A well-
known class of MC methods are Markov Chain Monte Carlo
(MCMC) algorithms. In this work, we introduce a novel par-
allel interacting MCMC scheme, where the parallel chains
share information using another MCMC technique working
on the entire population of current states. These parallel “ver-
tical” chains are led by random-walk proposals, whereas the
“horizontal” MCMC uses a independent proposal, which can
be easily adapted by making use of all the generated sam-
ples. Numerical results show the advantages of the proposed
sampling scheme in terms of mean absolute error, as well as
robustness w.r.t. to initial values and parameter choice.

Index Terms— Markov Chain Monte Carlo (MCMC),
Parallel Chains, Population Monte Carlo, Bayesian inference

1. INTRODUCTION

Monte Carlo (MC) methods are widely used in signal process-
ing and communications [1, 2, 3]. Markov Chain Monte Carlo
(MCMC) methods [4] are well-known Monte Carlo method-
ologies to draw random samples and compute efficiently inte-
grals involving a complicated multidimensional target prob-
ability density function (pdf), π(x) with x ∈ Rn. MCMC
techniques only need to be able to evaluate the target pdf, but
the difficulty of diagnosing and speeding up the convergence
has motivated an intense research activity. For instance, sev-
eral adaptive MCMC methods have been developed in order
to adequately fix the parameters of the proposal density, used
to suggest candidate samples [3, 5, 4, 6]. Nevertheless, guar-
anteeing the theoretical convergence is still an issue in most
of the cases. In order to explore the state space faster (and
specially to deal with high-dimensional applications [7]), sev-
eral schemes with parallel chains have been recently proposed
[2, 6], as well as multiple try and interacting schemes [8], but
the problem is still far from being solved.
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In this work, we present a novel family of parallel MCMC
schemes, the so called orthogonal MCMC (O-MCMC) al-
gorithms, where N different chains are independently run
and, at some iterations, they exchange information using an-
other MCMC technique applied on the entire cloud of current
states. Assuming that all the MCMC techniques used yield
chains converging to the target pdf, the ergodicity is guaran-
teed: the whole kernel is still valid, since it is a multiplication
of ergodic kernels with the same invariant pdf. Our scheme
is able to combine both the random-walk and the indepen-
dent proposal approaches, as both strategies have advantages
and drawbacks. On the one hand, random-walk proposal pdfs
are often used when there is no information about the target,
since this approach turns to be more explorative than using a
fixed proposal. On the other hand, a well-chosen independent
proposal density usually provides less correlation among the
samples in the generated chain. Our method can mix both ap-
proaches efficiently: the parallel “vertical” chains (based on
random-walk proposals) move around as “lively kids” explor-
ing the state space, whereas the “horizontal” MCMC tech-
nique (applied over the population of current states and based
on an independent proposal) works as a “loving parent” that
redirects “undisciplined kids” towards the “right path” ac-
cording to the target pdf (“family rules”).

Moreover, we also suggest an adaptive black-box strat-
egy: using different fixed variances in each vertical MCMC,
and adapting the parameters of the proposal in the horizontal
MCMC technique using all the generated samples. The re-
sulting algorithm exhibits both flexibility and robustness w.r.t.
initial values and parameter choice. Numerical results show
the advantages of the proposed scheme.

2. PROBLEM STATEMENT

In many applications, we are interested in inferring a variable
of interest given a set of observations or measurements. Let
us consider the variable of interest, x ∈ Rn, and let y ∈ Rd
be the observed data. The posterior pdf is then

p(x|y) = `(y|x)g(x)
Z(y)

∝ `(y|x)g(x), (1)
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where `(y|x) is the likelihood function, g(x) is the prior pdf
and Z(y) is the model evidence or partition function (useful
in model selection). In general, Z(y) is unknown, so we con-
sider the corresponding (usually unnormalized) target pdf,

π(x) = `(y|x)g(x). (2)

Our goal is computing efficiently some moment of x, i.e., an
integral measure w.r.t. the target pdf,

I =
1

Z

∫
X
f(x)π(x)dx, (3)

where Z =
∫
X π(x)dx.

3. O-MCMC ALGORITHMS: GENERAL OUTLINE

Consider N parallel chains, {xi,t}∞t=0 with i = 1, ..., N , gen-
erated by different MCMC techniques with random-walk pro-
posal pdfs qi(x|xi,t−1), i.e., x = xi,t−1 + ε where ε is a
random perturbation. Thus, at the t-th iteration we have a
population of current states

Pt = {x1,t,x2,t, . . . ,xN,t}.
At certain selected iterations, t∗ such that t∗ = mTa (where
Ta is a constant and m ∈ N), we apply another MCMC tech-
nique over the entire population Pt∗ , yielding a new cloud
of samples P ′t∗ . In this way, the different chains share in-
formation. This horizontal MCMC method uses an indepen-
dent proposal pdf ϕ(x). The general O-MCMC approach is
summarized below and depicted in Figure 1 for the particular
implementation described in the following section.

1. Initialization: Set t = 1. Choose the N initial con-
ditions, P0 = {x1,0,x2,0, . . . ,xN,0}; the total number
of iterations, T ; and an integer value Ta = MT ∈ N
(where M ∈ N). Let T be the number of iterations of
the horizontal MCMC algorithm.

2. Vertical step: For t = (m − 1)Ta + 1, . . . ,mTa − 1
(initially, m = 1), run an independent MCMC tech-
nique for each xi,t−1 ∈ Pt−1, thus obtaining xi,t and a
new population of states Pt = {x1,t,x2,t, . . . ,xN,t}.

3. Horizontal step: If t = mTa (m = 1, 2, . . . ,M ):

(a) Apply an MCMC technique, taking in account the
entire population Pt, using an independent pro-
posal ϕ(x). Starting from W(0) = Pt, each it-
eration of this MCMC technique produce a new
populationW(τ) for τ = 1, ..., T .

(b) Set Pt =W(T ).

4. If t < T , set t = t + 1 and repeat from Step 2. Other-
wise, end.

Ergodicity: If each vertical MCMC algorithm produces an
ergodic chain with invariant density π(x) [4], then the ergod-
icity is guaranteed: it can be shown that the resulting product
of suitable kernels is itself a suitable kernel.

…. 

xN,tx2,tx1,t

…. 

…. Pt = W(0) = W(T ) = …. 

t

…. …. 

………. 

x0
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Fig. 1. Sketch of the O-MCMC technique.

4. SPECIFIC O-MCMC IMPLEMENTATION

In this section, we provide a specific O-MCMC implementa-
tion: using a standard Metropolis-Hastings (MH) algorithm
[4] with random walk proposals qi(x|xi,t−1) for the verti-
cal chains, and a Sample Metropolis-Hastings (SMH) algo-
rithm [9, Chapter 4] with proposal ϕ(x) independent from
{xi,t−1}Ni=1 for the horizontal chain.

4.1. Vertical Chains: Metropolis-Hastings algorithm

For each i = 1, . . . , N and for a given time step t, one MH
update of the i-th chain is obtained as

1. Draw z ∼ qi(x|xi,t−1).

2. Set xi,t = z with probability

α(xi,t−1, z) = min

[
1,

π(z)qi(xi,t−1|z)
π(xi,t−1)qi(z|xi,t−1)

]
.

Otherwise, set xi,t = xi,t−1.

4.2. Horizontal Chain: Sample Metropolis-Hastings

For the sake of simplicity, in this section we do not show the
subindex t in the samples xi. Let us consider a generalized
target density,

πg(x1, . . . ,xN ) ∝
N∏
i=1

π(xi),

where each marginal, π(xi) with i = 1, ...,m and xi ∈ X ⊆
Rn, coincides with the true target pdf. The SMH algorithm
starts with an initial population W(0) = Pt, and returns the
population of samples

W(τ) = {x(τ)
1 , ...,x

(τ)
N }

at the τ -th iteration. The underlying idea of SMH is replac-
ing one “bad” sample in the population with a “better” one
per iteration, according to a certain suitable probability. The
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algorithm is designed so that, after a “burn-in” period τb, the
elements inW(τ ′) (τ ′ > τb) are distributed according to πg ,
i.e., x

(τ ′)
i are i.i.d. samples from π(x) (since πg is built using

N target pdfs as independent marginals). For τ = 1, ..., T ,
the SMH algorithm consists of the following steps:

1. Start withW(0) = Pt and τ = 0.

2. Draw x
(τ)
0 ∼ ϕ(x), where ϕ is the proposal density.

3. Choose a “bad” sample x
(τ)
k in the population, i.e., k ∈

{1, ..., N}, according the to the inverse of the impor-

tance sampling weights: ϕ(x
(τ)
k )

π(x
(τ)
k )

.

4. Accept the new population, W(τ+1) = {x(τ+1)
1 =

x
(τ)
1 , . . . ,x

(τ+1)
k = x

(τ)
0 , . . . ,x

(τ+1)
N = x

(τ)
N }, with

probability

α(x
(τ)
1:N ,x

(τ)
0 ) =

∑N
i=1

ϕ(x
(τ)
i )

π(x
(τ)
i )∑N

i=0
ϕ(x

(τ)
i )

π(x
(τ)
i )
− min

0≤i≤N
ϕ(x

(τ)
i )

π(x
(τ)
i )

.

Otherwise, setW(τ+1) =W(τ).

5. If τ < T , set τ = τ +1 and repeat from Step 2. Other-
wise, end.

Let us remark that the difference between W(τ) and
W(τ+1) is at most one sample, and the acceptance probabil-
ity, 0 ≤ α(x(τ)

1:N ,x
(τ)
0 ) ≤ 1, depends on the entire population,

x
(τ)
i for i = 0, . . . , N . The ergodicity can be easily proved by

using the detailed balance condition and considering the ex-
tended target pdf. Note also that the SMH algorithm becomes
the standard MH method for N = 1. Hence, for N = 1 the
specific O-MCMC implementation described here consists of
applying alternatively two MH kernels with different types of
proposals: a random walk proposal, qi(x|xi,t), and an inde-
pendent one, ϕ(x). This a well-known scheme (cf. [4, 9]),
which can be seen as a particular case of the O-MCMC fam-
ily of algorithms. Finally, it is important to remark that the
population of proposals is never impoverished by the SMH
algorithm, even if a poor choice of ϕ(x) is made. In the worst
case, the newly proposed samples are always discarded and
computational time is wasted. In the best case, a proposal
located in a low probability region can jump close to a mode
of the target. Hence, there is a lot to gain and little to lose by
placing the horizontal MCMC on top of the vertical chains.

5. BLACK-BOX IMPLEMENTATION

As in any other Monte Carlo technique, the performance of
the O-MCMC algorithm depends on the initialization, as well
as on the choice of the proposals and their parameters. Fortu-
nately, the sensitivity of O-MCMC schemes w.r.t. these two

issues is strongly reduced in comparison to a standard MH
algorithm, as illustrated in the simulations. In any case, if
some prior information about the target is available, it should
be used to choose the initial parameters. However, if no prior
information is available, a possible black-box implementation
of O-MCMC is as follows:

• Choose the initial states, xi,0 with i = 1, . . . , N , spread
through the state space, in order to cover as much as
possible of the target’s domain, X ⊆ Rn.

• For each proposal, qi(x|xi,t−1), choose different scale
parameters (e.g., different covariance matrices), incor-
porating both small and large values to take advantage
simultaneously of local (i.e., small scale) and global
(i.e., large scale) exploratory behaviours. For instance,
a grid of variances could be used in practice.

In order to design an algorithm as robust as possible, we
suggest keeping the scale parameters fixed for the vertical
MCMC algorithms (i.e., without any adaptation) to avoid a
loss of diversity within the set of chosen variances. On the
other hand, we propose adapting the variance of the horizon-
tal proposal, ϕ(x), since it is not critical, as discussed at the
end of the previous section.

5.1. Adaptation of the horizontal proposal ϕ(x)

Following a similar approach to the strategies proposed in [3]
and [6], we suggest using (after a training period Ttrain <
T ) all the generated samples (i.e., for each t > Ttrain and
from all the chains) in order to adapt the location and scale
parameters of ϕ(x). For instance, if ϕt(x) = N (x;µt,Σt)
we can use the following approach:

• If t ≤ Ttrain: set µt = µ0, Σt = Σ0 (where µ0 and
Σ0 are the initial choices).

• If t > Ttrain: set µt = 1
Nt

∑t
j=1

∑N
i=1 xi,j , and Σt =

1
Nt

∑t
j=1

∑N
i=1(xi,j − µt)(xi,j − µt)>. Namely, use

the empirical mean and covariance matrix estimators,
which can be computed recursively [3].

6. SIMULATIONS

For the simulations, we consider a bivariate multimodal target
pdf, which is itself a mixture of 5 Gaussians, i.e.,

π(x) =
1

5

5∑
i=1

N (x;νi,Σi), x ∈ R2, (4)

with means ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 =
[13, 8]>, ν4 = [−9, 7]>, and ν5 = [14,−14]>, with covari-
ance matrices Σ1 = [2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2],
Σ3 = [2, 0.8; 0.8, 2], Σ4 = [3, 0; 0, 0.5], and Σ5 =
[2, −0.1;−0.1, 2].
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O-MCMC (T=2000) Parallel chains (T=2000) Parallel chains (T=4000)
N 5 100 1000 5 100 1000 5 100 1000
Ta 1 100 1 100 1 100 − − − − − −

σ = 2 0.9734 1.2322 1.1529 1.5363 2.3618 2.4587 4.3753 2.6925 2.6924 4.3477 2.7198 2.6304
σ = 5 0.9661 1.1778 0.6655 0.7839 1.1433 1.1948 2.9385 1.3408 1.3352 2.6392 1.2450 1.2409
σ = 10 0.8733 0.9426 0.2597 0.2695 0.0949 0.0943 1.2682 0.2788 0.0952 0.8967 0.2028 0.0641
σ = 70 1.0730 1.1491 0.4829 0.4813 0.5077 0.5022 1.8784 0.6046 0.5433 1.5275 0.4140 0.3019

Table 1. Mean absolute error in the estimation of the mean of the target (first component), averaged over 1000 runs, for different
values of σ and Ta. For O-MCMC, we set T = 2000, and ϕ(x) = N (x; [0, 0]>, λ2I2) with λ = 10.

We apply O-MCMC to estimate the mean (true value
[1.6, 1.4]>) of the target using different values for the num-
ber of parallel chains N ∈ {5, 100, 1000}. Furthermore, we
choose deliberately a “bad” initialization to test the robust-
ness of the algorithm and its ability to improve the corre-
sponding trivial parallel MH implementation. Specifically,
we set xi,0 ∼ U([−4, 4]× [−4, 4]) for i = 1, . . . , N .

We consider qi(x|xi,t−1) = N (x;xi,t−1,Ci) using the
same isotropic covariance matrix, Ci = σ2I2, for every pro-
posal. We test different values of σ ∈ {2, 5, 10, 70} to gauge
the performance of O-MCMC. As horizontal proposal, we use
a Gaussian pdf, ϕ(x) = N (x; [0, 0]>, λ2I2) with λ = 10.
We set T = 2000 (we use all the generated samples with-
out removing any “burn-in” period), and Ta ∈ {1, 100}, i.e.,
M = T

Ta
∈ {20, 2000}. To keep the same computational cost

in each experiment, we set T = Ta, i.e., the total number
of iterations of SMH is always T = TM . We also consider
the case of standard parallel MH chains with T = 2000 and
T ′ = 2T = 4000 for a fair comparison w.r.t. O-MCMC, in
which we use T vertical and T horizontal MCMC iterations.

Table 1 shows the mean absolute error (MAE) in the es-
timation of the first component of the mean averaged over
1000 independent runs. O-MCMC always outperforms the
independent parallel chains (IPCs) for T = 2000, showing
a much more stable behaviour w.r.t. the parameter choice
(σ). Considering T ′ = 4000 for the IPCs, O-MCMC pro-
vides better results for small values of σ (i.e., σ = 2 and
σ = 5) and a reduced number of chains (N = 5). For large
scale parameters (σ ∈ {10, 70}) and a large number of chains
(N ∈ {100, 1000}), the IPCs provide lower values of MAE.
The main reason for this is probably the long “burn-in” pe-
riod of SMH, which increases with N , since it is working in
a huge space (the dimension of πg: XN ⊆ RnN ). However,
O-MCMC still shows a more robust behaviour w.r.t. σ even
in this case, implying that a poor choice of σ could easily lead
to worse results for the IPCs even by using T ′ = 2T .

7. CONCLUSIONS

We have introduced a novel family of algorithms, so called
O-MCMC schemes, that incorporate a horizontal MCMC to
share information among a cloud of parallel MCMC chains.
Compared to the fully independent parallel chains approach,

the novel technique shows a more robust behaviour w.r.t. the
parameterization and better performance for a small number
of chains and scale parameters. In future works, we plan to
consider alternative approaches for the horizontal chain, and
test the adaptive black-box strategy suggested in Section 5.
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