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Abstract—Monte Carlo (MC) methods are well-known compu-
tational techniques, widely used in different fields such as signal
processing, communications and machine learning. An important
class of MC methods is composed of importance sampling (IS)
and its adaptive extensions, such as population Monte Carlo
(PMC) and adaptive multiple IS (AMIS). In this work, we intro-
duce a novel adaptive and iterated importance sampler using a
population of proposal densities. The proposed algorithm, named
adaptive population importance sampling (APIS), provides a
global estimation of the variables of interest iteratively, making
use of all the samples previously generated. APIS combines
a sophisticated scheme to build the IS estimators (based on
the deterministic mixture approach) with a simple temporal
adaptation (based on epochs). In this way, APIS is able to keep all
the advantages of both AMIS and PMC, while minimizing their
drawbacks. Furthermore, APIS is easily parallelizable. The cloud
of proposals is adapted in such a way that local features of the
target density can be better taken into account compared to single
global adaptation procedures. The result is a fast, simple, robust
and high-performance algorithm applicable to a wide range of
problems. Numerical results show the advantages of the proposed
sampling scheme in four synthetic examples and a localization
problem in a wireless sensor network.

Index Terms—Monte Carlo methods, adaptive importance
sampling, population Monte Carlo, iterative estimation.

I. INTRODUCTION

Monte Carlo (MC) methods are widely used in signal
processing and communications for statistical inference and
stochastic optimization [1], [2], [3], [4], [5]. Importance
sampling (IS) [6], [7] is a well-known MC methodology to
compute efficiently integrals involving a complicated multidi-
mensional target probability density function (pdf), π(x) with
x ∈ RDx . Moreover, it is often used in order to calculate the
normalizing constant of π(x) (also called partition function),
which is required in several applications, like model selec-
tion [6], [7], [8]. The standard IS technique draws samples
from a simple proposal pdf, q(x), assigning weights to them
according to the ratio between the target and the proposal,
i.e., w(x) = π(x)

q(x) . However, although the validity of this
approach is guaranteed under mild assumptions, the variance
of the estimator depends notably on the discrepancy between
the shape of the proposal and the target [6], [7].

Many other techniques to approximate integrals for
Bayesian inference have been developed, including asymptotic
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methods, multiple quadrature rules and Markov Chain Monte
Carlo (MCMC) algorithms [9], [10]. In particular, MCMC
algorithms are another well-known class of MC techniques
which generate a Markov chain converging to the target
distribution [6], [11]. MCMC techniques often lead to ran-
dom walks of the samples generated around the regions of
high probability. This exploratory behaviour is responsible for
MCMC methods being usually preferred in high-dimensional
applications [5], [12], [13]. Nevertheless, MCMC algorithms
also suffer from several important shortcomings [6], [7]: the
diagnostic of the convergence is often difficult and it is
not straightforward to estimate the partition function (i.e.,
the normalizing constant of the target) given the generated
samples, although several algorithms that can address this
issue have been recently developed [14], [15], [16].

In the sequel we focus on IS schemes, which are often the
preferred approach for the approximation of multi-dimensional
integrals in statistics [9], [10]. In order to overcome the
problems of standard IS, substantial effort has been devoted
to the design of adaptive IS schemes [7], where the proposal
density is updated by learning from all the previously gener-
ated samples. The population Monte Carlo (PMC) [17] and the
adaptive multiple importance sampling (AMIS) [18] methods
are two general schemes that combine the proposal adaptation
idea with the cooperative use of a cloud of proposal pdfs. On
the one hand, in PMC a population of proposals is updated
using propagation and resampling steps [7, Chapter 14]. The
IS estimator is built as in the standard IS approach, but using a
mixture of different proposals [19], [20], [21]. PMC schemes
have been widely used in signal processing applications due
to their simplicity and flexibility [22], [23], [24].

On the other hand, in AMIS a single proposal is adapted
in a standard adaptive IS fashion, but the sequence of all the
previous proposals is used to build the importance weights, and
the global estimator is constructed according to the so-called
deterministic mixture approach [25], [26]. This implies that all
the previous proposals must be evaluated at the new samples,
and also that the new proposal pdf must be evaluated at all the
previous samples, thus yielding an increase in computational
cost as the algorithm evolves in time. This single proposal
could also be a mixture of pdfs, but the adaptation in this case
involves more complicated methodologies (such as clustering),
increasing the computational cost even more [27]. AMIS
has been successfully applied to genetic inference problems
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recently [28]. Finally, let us remark that the update of the
proposals in both methodologies (AMIS and PMC) can also
be carried out according to some optimality criterion, such
as the minimization of the Kullback-Leibler divergence [19],
[20], [21], although at the expense of an increased complexity.

In this work, we introduce a novel population scheme, adap-
tive population importance sampling (APIS).1 APIS draws
samples from different proposal densities at each iteration,
weighting these samples according to the deterministic mixture
approach [25], [26], which was originally developed for a
fixed (i.e., non-adaptive) setting. At each iteration, the APIS
algorithm computes iteratively a global IS estimator, taking
into account all the generated samples up to that point. The
main difference w.r.t. the existing AMIS and PMC schemes
lies in the more streamlined adaptation procedure of APIS,
as well as in the approach followed to build the estimators.
APIS starts with a cloud of N proposals, initialized randomly
or according to the prior information available, with the
location parameters spread throughout the state space. The
initial location parameter for each proposal should be different,
and different scale parameters can also be used.2 The algorithm
is then divided into groups (epochs) of Ta iterations, where
the proposals are fixed and Ta samples are drawn from
each one. At the end of every epoch, the Ta samples drawn
from each proposal are used to update its location parameter
(using partial IS estimators), and the adaptation memory is
“refreshed”. This approach allows each proposal to concentrate
on some particular region of the state space, thus modelling
specific and localized features of the target. In this way, APIS
can obtain a very good global approximation of the target
by combining all the local approximations. This is achieved
without any additional computation in terms of evaluation of
the target and proposal pdfs.

Unlike PMC, the novel technique does not require resam-
pling steps to prevent the degeneracy of the mixture, thus
avoiding the loss of diversity in the population. This is a
common problem for sampling-importance resampling type
algorithms, where additional MCMC moves are occasionally
applied [30]. Indeed, in [31] the authors attempt to diminish
this negative effect by forcing artificially a pre-defined amount
of the highest importance weights to be equal to control the
loss of diversity caused by resampling. Following the previous
observations, we also propose a possible interaction among
the proposal locations applying MCMC moves, allowing us
to preserve a higher degree of diversity in the population than
through the use of resampling steps. We call the resulting tech-
nique Markov APIS (MAPIS). MAPIS contains two sources of
movement: the APIS movements with the addition of MCMC
iterations.

1A preliminary version of this work has been published in [29]. With respect
to that paper, here we propose an interacting adaptation using an MCMC
technique, discuss the construction and the consistency of the estimators,
and provide more exhaustive numerical simulations, including a localization
example in wireless sensor networks. Comparisons with other sampling
algorithms are also included.

2Since the adaptation of the scale parameters can be an issue for the
performance of the sampler, here we focus only on the update of the location
parameters in order to ensure the robustness of the algorithm. The development
of a robust update mechanism for the scales is left for a future work.

In APIS, at each iteration, the cloud of proposals partake
jointly in the construction of an IS estimator using the de-
terministic mixture approach [25], [26], that introduces more
stability in the estimation. This estimator is combined with
the past estimators using a simpler strategy than in AMIS: a
standard (simpler than the deterministic mixture) IS estimator
using multiple proposals is built. Therefore, in this sense, APIS
follows an approach “in-between” PMC and AMIS (for further
clarifications see Appendix A). Numerical results show that
APIS improves the performance of a standard non-adaptive
multiple importance sampler regardless of the initial conditions
and parameters. We have also compared the performance of
APIS to that of several AMIS and PMC schemes, showing
that APIS outperforms both approaches in terms of robustness
to the choice of the initial parameters.

The paper is organized as follows. The general problem
statement is provided in Section II, and the novel APIS
algorithm is described in detail in Section III. In Section IV,
we introduce the additional MCMC adaptation which leads to
the MAPIS algorithm. Then, Section V is devoted to analyzing
differences and similarities among APIS, AMIS and PMC
methods. An exhaustive numerical comparison among these
three methods is provided in Section VI, where a bidimen-
sional toy example is considered, and Section VII, where
two high-dimensional examples are addressed. Section VIII
is devoted to comparing APIS with other MCMC approaches
(particle splitting methods), whereas the application of APIS
to a localization problem in wireless sensor networks is
considered in Section IX. Finally, we conclude with a brief
summary in Section X.

II. PROBLEM STATEMENT AND AIM OF THE WORK

In many applications, we are interested in inferring a
variable given a set of observations or measurements. Let
us consider the variable of interest, x ∈ X ⊆ RDx , and let
y ∈ RDy be the observed data. The posterior pdf is then

p(x|y) =
`(y|x)g(x)
Z(y)

∝ `(y|x)g(x), (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf
and Z(y) is the model evidence or partition function (useful in
model selection). In general, Z(y) is unknown, so we consider
the corresponding (usually unnormalized) target pdf,

π(x) = `(y|x)g(x). (2)

Our goal is computing efficiently the expected value of f(X),
where X ∼ 1

Zπ(x), i.e., an integral measure w.r.t. the target
pdf,

I = E[f(X)] =
1
Z

∫
X
f(x)π(x)dx, (3)

where Z =
∫
X π(x)dx. Our goal is to design a sampling

algorithm able to estimate jointly I and Z. Furthermore, we
would like to obtain a sampler as efficient and robust as
possible, so that the interested user can apply it easily to
different problems without having to perform an exhaustive
fine tuning of the proposed approach.
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III. THE APIS ALGORITHM

The adaptive population importance sampling (APIS) algo-
rithm attempts to estimate jointly Z and I (for an arbitrary
function f(x)) by drawing samples from a population of
adaptive proposals.

A. Motivation

Our motivation in designing the APIS algorithm has been
trying to exploit the strong points of other adaptive impor-
tance sampling algorithms (such as PMC or AMIS), while
minimizing their drawbacks. First of all, we consider a cloud
of proposal pdfs as in PMC and unlike in AMIS. Moreover, we
include the deterministic mixture (DM) approach for building
the estimators, since the DM strategy presents advantages in
terms of stability and variance w.r.t. the standard IS approach,
as shown in Appendix A. However, unlike AMIS (which also
exploits the DM technique), we follow a much more efficient
approach, dividing the set of iterations of the algorithm into
epochs and using the DM scheme to construct the partial IS
estimators. In this way, we avoid the increase in computational
cost of AMIS with the number of iterations without sacrificing
the performance (as shown in the results section). Finally note
that, unlike PMC, no resampling step is required in APIS, thus
avoiding the loss of diversity in the population.

B. Description of the algorithm

For the sake of simplicity, here we consider proposal pdfs
defined by two parameters: a location and a scale parameter.
However, any other class of proposals can be used, as long as
their tails are fatter than the tails of the target density. Currently
the adaptation mechanism of APIS focuses exclusively on the
location (i.e., first order) parameters, whereas the scale (i.e.,
second order) parameters are fixed. We have decided not to
adapt second or higher order parameters, in order to reinforce
the robustness of the sampler.3

The APIS algorithm is summarized in Table I. First of all,
the class of the N proposal pdfs, the initial location parameters
µ

(0)
i and their scale parameters Ci have to be fixed. The

number of epochs M = T
Ta

(or directly the parameter Ta ≥ 2)
also has to be selected. The algorithm works on two different
time scales: at each iteration t = 1, . . . , T = MTa, the global
estimates Ît and Ẑt are updated; whereas, at the end of every
epoch m = 1, . . . ,M = T

Ta
, the location parameters µ

(m)
i of

the N proposals are updated using the partial IS estimates in
Eq. (8).

More specifically, at t-th iteration, one sample from every
proposal pdf is generated. The resulting N samples are jointly
used, providing a current IS estimator Ĵt obtained by the DM
approach. The global estimators Ît and Ẑt are built iteratively
as in Eq. (6). Alternative expressions of Ît and Ẑt are given
in Eqs. (13)-(15).

At the end of each epoch, i.e., t = mTa, the locations of
the N proposal pdfs are adapted. The update of the location

3It is well-known that the adaptation of second or higher order parameters
in adaptive importance sampling schemes is a very delicate issue that can
compromise the performance of the algorithm [17]. However, in APIS we
can use different scale parameters for the cloud of proposals (as in PMC).

Table I
APIS ALGORITHM.

1) Initialization: Set t = 1, m = 0, Î0 = 0, H0 = 0, and L0 = 0.
Choose N normalized proposal pdfs,

q
(0)
i (x) = qi(x; µ

(0)
i ,Ci), i = 1, . . . , N,

with location (i.e., mean) vectors µ
(0)
i and scale (i.e., covariance)

matrices Ci (i = 1, . . . , N ). Select the number of iterations per
epoch, Ta ≥ 2, and the total number of iterations, T = MTa,
with M ≤ T

2
∈ Z+ denoting the number of epochs. Set also

ηi = 0 and Wi = 0 for i = 1, . . . , N .
2) IS steps:

a) Draw zi,t ∼ q
(m)
i (x) for i = 1, . . . , N .

b) Compute the importance weights,

wi,t =
π(zi,t)

1
N

PN
j=1 q

(m)
j (zi,t)

, i = 1, . . . , N, (4)

and normalize them, w̄i,t =
wi,t
St

, where St =
PN

j=1 wj,t.
3) Iterative IS estimation: Calculate the current estimate of I =

E[f(X)],

Ĵt =

NX
i=1

w̄i,tf(zi,t) ≈ I, (5)

and the global estimate, using the recursive formula

Ît =
1

Ht−1 + St

“
Ht−1Ît−1 + StĴt

”
≈ I, (6)

where Ht = Ht−1 + St. Note that Ẑt = 1
Nt
Ht.

4) Learning:
a) Compute

ρi =
π(zi,t)

q
(m)
i (zi,t)

, i = 1, . . . , N. (7)

b) Calculate the partial estimations of the mean of the target,

ηi =
1

Wi + ρi
(Wiηi + ρizi,t) , (8)

and set Wi = Wi + ρi for i = 1, . . . , N .
5) Proposal adaptation: If t = kTa (k = 1, 2, . . . ,M ):

a) Change the location parameters µ
(m)
i according to their

partial estimates of the mean of the target, i.e., set

µ
(m+1)
i = ηi, i = 1, . . . , N, (9)

and q(m+1)
i = qi(x; µ

(m+1)
i ,Ci).

b) “Refresh memory” by setting ηi = 0 and Wi = 0 for
i = 1, . . . , N . Set also m = m+ 1.

6) Stopping rule: If t < T , set t = t + 1 and repeat from step 2.
Otherwise, end.

7) Outputs: Return the random measure {zi,t, wi,t}, for i =
1, ..., N and t = 1, ..., Ta, as approximation of π̄(x). More
specifically, return the estimate of the desired integral,

ÎT ≈ I =
1

Z

Z
X
f(x)π(x)dx, (10)

as well as the normalizing constant of the target pdf,

ẐT ≈ Z =

Z
X
π(x)dx. (11)

parameter µ
(m)
i is done using only the last Ta samples drawn

from the i-th proposal, and building the standard IS estimate
ηi in Eq. (8) of the expected value E[X], with X ∼ π̄(x).

The underlying idea of APIS is providing a good configu-
ration for the location parameters µ

(m)
i , i = 1, . . . , N . Indeed,
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Figure 1. Contour plot of π(x) in Section VI-A, the initial means µ
(0)
i (squares) and the final means µ

(T )
i (circles) obtained in a single run of APIS

(σ = 5, N = 100, T = 2000, Ta = T
M

= 50). The trajectories of two means in the sample population are depicted in dashed line. Left figure:
µ

(0)
i ∼ U([−4, 4]× [−4, 4]) (In1). Right figure: µ

(0)
i ∼ U([−20, 20]× [−20, 20]) (In2).

in APIS we can equivalently state that the proposal consists
of an equally weighted mixture of N pdfs:

ψ(m)(x) =
1
N

N∑
i=1

q
(m)
i (x|µ(m)

i ,Ci). (12)

In every epoch, NTa samples are drawn from (12) determin-
istically by taking exactly one sample from each pdf in the
mixture. This mixture can be seen as a kernel density approx-
imation of the target pdf, π̄(x) ∝ π(x), where the proposals
qi play the role of the kernels [32, Chapter 6]. Thus, following
kernel density estimation arguments, the best configuration for
the location parameters is µ

(m)
i ∼ π̄(µ). Therefore, in general,

a good configuration of µ
(m)
i , i = 1, . . . , N , is around the

modes of the target, as shown in Fig. 1. This ensures a good
estimation of the desired integral measure for any arbitrary
function f(x) (since ψ(m)(x) approximates π̄(x), diminishing
the variance of the IS weights wi,t). For related considerations
and an alternative view of APIS see also Appendix B.

An example of the behaviour of APIS is shown in Fig.
1, which displays a contour plot of a multimodal target
π(x) and the evolution of the location parameters µi, after
a run of T = 2000 iterations of APIS with M = 40,
Ta = T

M = 50. Gaussian proposals with Ci = σ2I2, σ = 5
have been used and two initializations (shown with squares)
have been considered. In the left figure, the initialization
is µ

(0)
i ∼ U([−4, 4] × [−4, 4]) (In1), whereas in the right

figure µ
(0)
i ∼ U([−20, 20] × [−20, 20]) (In2). The second

initialization is better than the first one, since it covers all
the areas of high probability of the target and in particular it
spans all its modes, towards which the proposals converge. Fig.
1 also depicts the final locations of the means, µ

(T )
i (circles),

after T iterations of APIS. Furthermore, the trajectories of two
means in the population are depicted by a dashed line. Note
that a random walk among different modes is induced in some
cases, whereas the corresponding mean remains trapped (after
some iterations) around a local mode in other cases.

C. Remarks and observations
In this section we provide several remarks on important

aspects of the APIS algorithm:

1) All the different proposal pdfs must be normalized.
2) APIS provides a procedure to update the location parame-
ters µi, i = 1, . . . , N , in the mixture ψ(m)(x) of Eq. (12).
3) The adaptive mechanism of APIS is driven by the un-
certainty in the partial IS estimators (as quantified by their
variance). The memoryless feature of APIS facilitates that each
proposal pdf can describe local features of the target. Typically,
the proposals remain invariable in some regions or a random
walk is generated around areas of high probabilities, in the
state space X ⊂ RDx .
4) Steps 4 and 5 of APIS do not require additional evaluations
of the target and the proposal pdfs since they are already
evaluated at zi, i = 1, . . . , N , in step 2.
5) The global estimators, ÎT and ẐT , are iteratively obtained
by an importance sampling approach using NT samples drawn
from NM different proposals: N initial proposals chosen by
the user, and N(M − 1) proposals adapted by the algorithm.
Indeed, recall that zi,t denotes the sample from i-th proposal
at the t-th iteration with unnormalized weights in Eq. (4),
i.e., wi,t = π(zi,t)

ψ(m)(zi,t)
, where ψ(m) is defined in Eq. (12) and

m = b tTa c. Then, the final global estimator ÎT can be written
as

ÎT =
T∑
t=1

N∑
i=1

δ̄i,tf(zi,t),

=
1
ẐT

(
1
NT

T∑
t=1

N∑
i=1

wi,tf(zi,t)

)
,

(13)

where

δ̄i,t =
wi,t∑T

t=1

∑N
i=1 wi,t

=
wi,t

NTẐT
, (14)

and

ẐT =
1
NT

T∑
t=1

N∑
i=1

wi,t. (15)

The expressions (13), (14), and (15) above show that the global
estimator is built using a standard multiple IS approach with
the mixtures ψ(m)(x) in Eq. (12) as proposal pdfs, with m =
1, . . . ,M , and drawing Ta samples from each of them.
6) Note that the adaptation procedure is independent from each
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proposal function. Hence, APIS can be completely parallelized
if Steps 2(b) and 3 in Table I are computed in batch at the end
of the algorithm. All the evaluations of the target are performed
in parallel in Step 4(a).
7) APIS degenerates into a static algorithm when Ta = T (i.e.,
M = 1). In this scenario, where the adaptation of the proposals
never occurs, an iterated multiple IS algorithm is performed.
We denote this algorithm, which combines the deterministic
mixture idea and the standard IS approach to build the global
estimators, and thus is different from a standard multiple IS
scheme, as static APIS or PIS.

D. Choice of the parameters
As in any other Monte Carlo technique, the performance

of APIS depends on a proper initialization and choice of the
parameters, although this sensitivity is reduced w.r.t. a standard
IS approach, as illustrated in the simulations. Hence, if some
prior information about the target is available, it should be used
to choose the initial parameters. In the following, we briefly
discuss how to select the main parameters of the algorithm:
µ

(0)
i , Ci and Ta.
1) Initial location parameters µ

(0)
i : If no prior information

about the target is available, then the initial locations for the
proposals should be chosen in order to cover as much as
possible of the target’s domain, X ⊆ RDx . Otherwise, they
should be distributed according to the prior.

2) Scale parameters Ci: Since the scale parameters are not
adapted, it is advisable to use different scales for the proposals.
The simplest possibility is to choose them randomly (within a
range of acceptable scales) for each proposal. Another possi-
bility is associating more than one variance to each proposal
pdf. For instance, selecting Nµ initial location parameters and
Nσ different scale parameters for each one, implying that the
total number of different proposals is N = NµNσ .

3) Samples from each proposal per epoch Ta = T
M : Ta

is the number of samples used to choose the new location
parameters at the end of every epoch. As Ta grows, each partial
IS estimator ηi (used to adapt the proposals) provides a better
estimation, closer to the expected value of the target π(x),
and also closer to the estimates provided by other proposals.
Although this is clearly a good scenario, it is not the best
situation for APIS, as the proposals would tend to cover the
same region of the target’s domain, thus losing diversity in
the population. For smaller values of Ta the proposal pdfs
tend to be spread out around the regions of high probability,
which is a better configuration for APIS. However, if Ta is too
small, large and almost random movements of the proposals
are encouraged throughout the state space.4

In any case, even with a bad choice of the parameters APIS
always provides a consistent IS estimator; even in the worst
cases APIS provides better performance than an adaptive IS
scheme using a single proposal and a static multiple IS scheme
with a random choice of the parameters, as shown in the sim-
ulations. Furthermore, the numerical results in Section VI also

4A physical analogy could help the reader in understanding the behavior:
defining an energy variable E = 1

Ta
, increasing Ta means to cool down the

cloud (less energy E) whereas decreasing Ta means to heat up the system,
i.e., rise the energy E in the cloud of particles, increasing the total entropy.

suggest the existence of an optimal value T ∗a (or equivalently
M∗ = T

T∗a
), which depends of the scale parameters Ci of the

proposals and the dimension Dx. In general, proposals with
small variances provide a better performance using smaller
values of Ta, whereas big variances work better with larger
values of Ta. Different values of T (i)

a (one for each proposal)
could be applied according to their scale parameters and they
could even be changed with the time step: smaller values for a
more explorative behaviour at the beginning, and larger values
to reduce the uncertainty of the proposals as time evolves.

IV. MCMC INTERACTION: MARKOV APIS

In APIS the adaptation of the location parameter of a
proposal is done independently from the rest of the population.
Here we propose a possible interaction procedure among the
location parameters of the proposal pdfs that avoids the loss
of diversity in the population caused by a resampling step
(another form of interaction). We propose to share information
among proposals by applying an MCMC technique over the
cloud of means, {µi}Ni=1, at every transition between two
epochs, i.e., t = mTa with m = 1, . . . ,M . An appropriate
MCMC technique for this purpose is the Sample Metropolis-
Hastings (SMH) algorithm [11, Chapter 5]. We denote the
SMH-enhanced APIS algorithm as Markov APIS (MAPIS).
The proposed MCMC iterations are applied after step 5 of
APIS. Thus, MAPIS contains two sources of movement for the
proposals: step 5 of APIS plus the SMH iterations. Observe
that, unlike steps 4 and 5 of APIS, these SMH steps require
new evaluations of the target pdf. For the sake of simplicity,
in this section we remove the super-index denoting the current
epoch from the location parameters µi.

A. Sample Metropolis-Hastings (SMH) algorithm

Consider the extended target pdf

π̄g(µ1, . . . ,µN ) ∝
N∏
i=1

π(µi), (16)

where each marginal π(µi), i = 1, ..., N , coincides with the
target pdf in Eq. (2). Let us denote as τ = 1, . . . ,Υ the SMH
iteration index. At the τ -iteration, we consider the population
of samples

Pτ = {µ1,τ , ...,µN,τ}.

At each iteration, the underlying idea of SMH is to replace one
“bad” sample in the population with a “better” one, according
to certain suitable probabilities. The algorithm is designed so
that, after a burn-in period τb, the elements in Pτ ′ (τ ′ > τb) are
distributed according to πg(µ1,τ ′ , . . . ,µN,τ ′), i.e., µi,τ ′ are
i.i.d. samples from π(x). For τ = 1, ...,Υ, the SMH algorithm
consists of the following steps:

1) Draw µ0,τ ∼ ϕ(µ), where ϕ is another proposal
density, chosen by the user, which could be based on the
information obtained from the previous steps of APIS.

2) Choose a “bad” sample, µk,τ with k ∈ {1, ..., N}, from
the population according to a probability proportional
to ϕ(µk,τ )

π(µk,τ )
, which corresponds to the inverse of the

importance sampling weights.
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3) Accept the new population, Pτ+1 = {µ1,τ+1 =
µ1,τ , ...,µk,τ+1 = µ0,τ , ....,µN,τ+1 = µN,τ}, with
probability

α(Pτ ,µ0,τ ) =

∑N
i=1

ϕ(µi,τ )
π(µi,τ )∑N

i=0
ϕ(µi,τ )
π(µi,τ )

− min
0≤i≤N

ϕ(µi,τ )
π(µi,τ )

. (17)

Otherwise, set Pτ+1 = Pτ .
4) If τ < Υ, set τ = τ + 1 and repeat from step 1.

Observe that the difference between Pτ and Pτ+1 is at most
one sample. The ergodicity can be proved considering the
extended target function π̄g(µ1, . . . ,µN ) and proving the
detailed balance condition, as shown in Appendix C. Further-
more, for N = 1 it is possible to show that SMH becomes the
standard MH method with an independent proposal pdf [11].

B. Benefits of the interaction via MCMC

The use of the MCMC step facilitates the movement of
the means towards the high-probability regions of the target,
regardless of the choice of the initial parameters. Indeed, it
can help to reallocate “lost” means in a better position. This
step could stop an explorative random walk behaviour of
some proposal and reallocate it around a mode. This effect is
particularly advantageous when the chosen value Ta is smaller
than the optimal one T ∗a and complements the basic adaptive
mechanism of APIS, allowing us to avoid the degeneracy
problem characteristic of particle systems.

Note that only one new importance weight needs to be
evaluated at each iteration, since the rest of the weights have
already been computed in the previous steps (except for the
initial iteration, where all need to be computed). Finally, we
note also that the locations of the proposals hardly ever change
if the parameters of ϕ are not properly chosen, since new
points are never accepted. However, this issue can be easily
solved by adapting these parameters using some of the existing
adaptive MCMC strategies [13], [33].

V. RELATIONSHIP WITH AMIS AND PMC AND
CONSISTENCY OF THE ESTIMATORS

A. Estimators in PMC and AMIS: relationship with APIS

To clarify the different estimators used in PMC, AMIS and
APIS, we distinguish two different stages w.r.t. the exchange
of statistical information among the proposal pdfs:
• In space (x ∈ X ): creating an estimator by sharing

information among different proposal pdfs (i.e., forming
a population) for a given time step.

• In time (t ∈ N): combining information obtained in
different iterations to create a global estimator.

PMC schemes use a cloud of proposal pdfs in each iter-
ation (spread throughout the state space of the variable of
interest), following the standard IS approach (see Appendix
A-A) to construct the estimator. The temporal combination
of the information (i.e., the global estimator) can be built
in different ways, but the importance weights are based on
the standard IS approach in general [35]. In the numerical
simulations, we also consider a modified version of PMC (M-
PMC), where the spatial sharing of information is performed

through a deterministic mixture (see Appendix A-B). This idea
is based on the Rao-Blackwellised version of the D-kernel
PMC algorithm [19], [20]. However, the way in which the
mixture of proposals is updated in this algorithm (using the
Kullback-Leibler divergence) is much more complicated than
in APIS. Furthermore, in [21] the authors suggest a procedure
to adapt all the parameter of a mixture of pdfs. However,
the resulting algorithm is extremely sensitive to the initial
conditions, and thus quite unstable.

The AMIS algorithm uses a single proposal pdf at each
iteration: N samples are drawn at every step from the same
proposal. However, all of the previously adapted proposal pdfs
are considered to build a global estimator, following the DM
approach. This is clearly the most stable way to construct the
global estimator, but it is also the most costly, since all the
past proposal pdfs need to be re-evaluated at every iteration.
Consequently, the computational cost of AMIS grows as the
algorithm evolves and the pool of previous proposals becomes
larger, thus becoming unfeasible for a medium/large number
of iterations in practice. In this sense, APIS lies “in between”
PMC and AMIS: we use the deterministic mixture idea in
space at each iteration, as shown in Eqs. (4)-(5), but keep the
standard IS approach to build the global estimator (in time),
as shown in Eq. (6). Therefore, the computational cost of
APIS is reduced w.r.t. AMIS, since APIS does not need to
re-evaluate past proposal pdfs, thus being able to maintain a
fixed computational cost per iteration (unlike AMIS).

B. Consistency of the estimators

The consistency of the global estimator provided by APIS
must be ensured when number of samples per time step (N )
and/or the number of iterations of the algorithm (T ) grow
to infinity. In APIS, the global estimator, ÎT , is given by
(13), with the estimator of the normalizing constant, ẐT ,
given by (15). For N → ∞ and a fixed number of iterations
T < ∞, the consistency can be guaranteed by standard IS
arguments, since it is well known that ẐT → Z and ÎT → I
as N → ∞ [7]. For T → ∞ and N < ∞, we have a
convex combination of independent, consistent and biased IS
estimators [7].5 However, ẐT → Z as T →∞, as discussed in
[7, Chapter 14] for PMC schemes. This scenario also applies
to APIS, since a standard IS approach is applied in time to
build the global estimator. Hence, we can ensure that ÎT is
asymptotically unbiased and consistent as T →∞.

In AMIS, the analysis for T → ∞ is much more com-
plicated [34], since a long memory dependence among the
samples is introduced by the use of the deterministic mixture
approach in time. Indeed, the IS weights (built using the
DM scheme) are also used to adapt the proposal pdf in
AMIS, yielding a bias that cannot be easily controlled from a
theoretical point of view. A similar and well-known problem
appears in adaptive MCMC techniques: even if the kernel of
the algorithm is valid at every step, a wrong adaptation (change

5The locations of the proposals depend on the previous configuration of the
cloud, but the samples drawn at each iteration are independent of the previous
ones and each other, thus leading to independent IS estimators. The bias is
due to the estimation of Z, the normalizing constant of π.
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Table II
COMPARISON AMONG THE AIS, PMC, AMIS AND APIS ALGORITHMS.

Algorithm Approaches in the estimation Adaptation
Space Time type of IS weights Memory Equilibrium

Standard none Standard IS Standard IS Long Static
Adaptive IS (single proposal)

(Basic) Short
Generic PMC [7], [17] Standard IS Standard IS Standard IS (Resampling done Dynamic

(Resampling) on the current cloud)
Modified Short

PMC Deterministic Standard IS Standard IS (Resampling done Dynamic
(as in [19], [20]) mixture (Resampling) on the current cloud)

AMIS [18] none Deterministic Deterministic Long Static
(single proposal) mixture mixture

Both Dynamic/
Modified AMIS [34] none Deterministic Standard IS Short Pseudo-static

(single proposal) mixture (like epochs in APIS) (with N fixed)

APIS Deterministic Standard IS Standard IS Short Both Dynamic/
mixture (epochs) Pseudo-static

Markov APIS Deterministic Standard IS Standard IS Short Dynamic
mixture (+ MCMC) (epochs)

of the kernel) using all the previously generated samples can
easily jeopardize the convergence of the chain. Thus, in order
to prove the consistency of AMIS, the authors in [34] suggest
a simplification in the adaptive structure of AMIS. In this
modified approach, the adaptation is performed using only the
more recently generated samples (in APIS terminology this
corresponds to one epoch) and standard IS weights, whereas
the global estimation still uses the deterministic mixture
approach. Note that this resembles the adaptive structure of
APIS, thus reinforcing the idea that APIS is a robust technique,
partly thanks to the memoryless feature of its adaptation.

C. Evolution of the proposals

In AMIS, the parameters of the proposal are updated and
they converge to fixed values after a certain number of
iterations (as in a standard adaptive IS). Thus, the “distance”
between two proposals at different time steps diminishes as
T →∞. In the basic PMC schemes, the location parameters of
the cloud of proposals are updated via resampling. In this case,
the positions of the proposals change at every iteration, moving
around the modes of the target as in a “dynamic equilibrium”.
In APIS both situations can occur, as shown in Fig. 1. On
the one hand, random walks around high probability regions
can be generated due to partial memoryless IS estimates or
MCMC iterations (unlike PMC, where they are due to the
resampling procedure and can result in loss of diversity). On
the other hand, some proposal could also reach a pseudo-static
equilibrium as in AMIS, for instance becoming trapped in a
local mode. Both behaviours present certain advantages and
APIS benefits from both features, attaining a trade off between
explorative search and stability in the estimation.

VI. TOY EXAMPLE: NUMERICAL COMPARISON

A. Target distribution

In order to test and compare APIS with other algorithms,
we first consider a bivariate multimodal target pdf, which is

itself a mixture of 5 Gaussians, i.e.,

π(x) =
1
5

5∑
i=1

N (x; νi,Σi), x ∈ R2, (18)

with means ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 = [13, 8]>,
ν4 = [−9, 7]>, ν5 = [14,−14]>, and covariance matri-
ces Σ1 = [2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2],
Σ3 = [2, 0.8; 0.8, 2], Σ4 = [3, 0; 0, 0.5] and Σ5 =
[2, −0.1;−0.1, 2]. Fig. 1 shows a contour plot of π(x). Note
that we can compute analytically moments of the target in Eq.
(18), so we can easily check the performance of the different
techniques.

B. Goal, comparisons and initialization

We consider the problem of computing (a) the mean of
the target, i.e., E[X] = [1.6, 1.4]> where X ∼ 1

Zπ(x), (b)
and the normalizing constant Z = 1, using Monte Carlo
techniques. We compare the performance in terms of Mean
Square Error (MSE) in the estimation using different sampling
methodologies: (1) standard, non-adaptive, Multiple IS (MIS)
approach; (2) PIS (or static APIS) scheme; (3-4) APIS and
MAPIS (APIS with the MCMC interaction) methods; (5)
the AMIS technique [18]; and (6) a PMC acheme [17].
Moreover, we test for all the previous techniques two different
initializations:

In1: First, we choose deliberately a “bad” initialization of the
initial means in the sense that they are placed far away
from the modes. Thus, we can test the robustness of the
algorithms and their ability to improve the corresponding
static approaches. Specifically, the initial location param-
eters are selected uniformly within a square,

µ
(0)
i ∼ U([−4, 4]× [−4, 4]),

for i = 1, . . . , N . A single realization of µ
(0)
i is depicted

by the squares in Fig. 1(a) (jointly with the final locations
µ

(T )
i , in one specific run).
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Table III.1
HH

HHAlg.
Std

σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 7 σ = 10 σ = 20 σ = 70 σi,j ∼ U([1, 10])

MIS 29.56 41.95 64.51 42.84 2.17 0.0454 0.0147 0.0187 0.1914 4.55

PIS (Ta = T ) 29.28 47.74 75.22 17.61 0.2424 0.0280 0.0124 0.0176 0.1789 0.0651

APIS

Ta = 100 22.86 13.70 6.2606 2.47 0.0438 0.0131 0.0129 0.0212 0.1821 0.0110
Ta = 50 17.62 12.14 5.42 1.99 0.0501 0.0118 0.0138 0.0209 0.1750 0.0077
Ta = 20 14.75 11.33 4.77 1.66 0.0361 0.0108 0.0146 0.0208 0.1873 0.0056
Ta = 5 13.01 8.50 2.30 0.2831 0.0074 0.0114 0.0149 0.0251 0.2027 0.0045
Ta = 2 9.46 2.45 0.0225 0.0170 0.0103 0.0139 0.0185 0.0354 0.2007 0.0077

AMIS (best) 124.22 121.21 100.23 54.67 0.8640 0.0124 0.0121 0.0126 0.0136 −−−−−
(worst) 125.43 123.38 114.82 89.09 16.92 0.3626 0.0128 0.0131 18.66 −−−−−

PMC N = 100 112.99 114.11 47.97 26.32 2.34 0.5217 0.0559 0.4331 2.41 0.3017

M-PMC N = 100 111.92 107.58 26.86 6.03 0.6731 0.1154 0.0744 0.4142 2.42 0.07
Table III.2

Ta = 100 0.7134 0.0933 0.3213 0.1611 0.0167 0.0101 0.0147 0.0023 0.1765 0.0070
Ta = 50 0.7058 0.1287 0.1136 0.1097 0.0114 0.0094 0.0139 0.0020 0.1831 0.0051

MAPIS Ta = 20 0.6950 0.1319 0.0464 0.1040 0.0081 0.0098 0.0152 0.0021 0.1943 0.0041
(N = 100) Ta = 5 0.2729 0.0665 0.0319 0.0154 0.0082 0.0123 0.0151 0.0019 0.1946 0.0046

Ta = 2 0.1708 0.0148 0.0116 0.0138 0.0105 0.0130 0.0165 0.0027 0.1918 0.0075

PMC N = 500 112.18 113.10 36.63 18.59 2.20 0.4011 0.0134 0.0259 0.8891 0.2964
N = 2000 112.09 112.45 27.91 13.63 2.01 0.1899 0.0057 0.0028 0.1120 0.2802

Table III
(Ex-in-Sect VI) MSE OF THE ESTIMATION OF THE MEAN OF THE TARGET (FIRST COMPONENT) WITH THE INITIALIZATION In1. IN TABLE III.1, WE SET
N = 100 (T = 2000; THE TOTAL NUMBER OF SAMPLES IS L = NT = 2 · 105) FOR MIS, PIS, APIS AND PMC. FOR AMIS, WE SHOW THE BEST

RESULTS, OBTAINED VARYING K AND M SUCH THAT L = KM = 2 · 105 .

σ i, j ~U([1,10])

APIS-best  

APIS- worst  

MIS  

PIS  

(a)

σ i, j ~U([1,10])

APIS-best  

APIS- worst  
AMIS-best  

AMIS-worst  

(b)

σ i, j ~U([1,10])

APIS-best  

APIS- worst  M-PMC (N=100)  

PMC  (N=100)  

(c)

σ i, j ~U([1,10])

APIS-best  

APIS- worst  

MAPIS-best  

PMC (N=500)  

PMC (N=2000)  

(d)

Figure 2. (Ex-in-Sect VI) MSE in log-scale versus the scale parameters, σi,j , in the estimation of the first component of the expected value of π. For the
APIS and AMIS methods, we show the best and worst results. (a) Comparison among MIS (rhombus), PIS (triangles) and APIS. (b) Comparison between
AMIS and APIS. (c) Comparison among M-PMC (rhombus), PMC with N = 100 (triangles) and APIS. (d) Comparison among PMC with N = 500
(X-marks), PMC with N = 2000 (triangles), APIS and MAPIS (squares).

In2: We also consider a better initialization where some pro-
posals are placed close to the modes. Specifically, the
initial means are selected uniformly within a square,

µ
(0)
i ∼ U([−20, 20]× [−20, 20]),

for i = 1, . . . , N . A single realization of µ
(0)
i is depicted

by the squares in Fig. 1(b) (jointly with the final locations
µ

(T )
i , in one specific run).

Below we provide more details of each applied scheme (pro-
viding the used parameters).

C. Techniques

We apply the following techniques proposed in this paper:
• APIS: we apply APIS with N = 100 Gaussian proposals

q
(m)
i (x) = N (x; µ(m)

i ,Ci), i = 1, . . . , N.

The initial configurations of the means µ
(0)
i are described

above. First, we use the same isotropic covariance matrix,

Ci = σ2I2, for each proposal. We test different values of
σ ∈ {0.5, 1, 2, 3, 5, 7, 10, 20, 70}, to gauge the performance
of APIS. Then, we also try different non-isotropic diagonal
covariance matrices, Ci = diag(σ2

i,1, σ
2
i,2), where σi,j ∼

U([1, 10]) for j ∈ {1, 2} and i = 1, . . . N , i.e., different for
each proposal. We set T = 2000 and Ta ∈ {2, 5, 20, 50, 100},
i.e., M = T

Ta
∈ {20, 40, 100, 400, T2 = 1000}. We test the

performance of APIS with the two initializations described
above In1 and In2.
• PIS (static APIS): we also consider the case M = 1, which
corresponds to a static APIS technique with multiple proposals
and no adaptation. PIS combines the deterministic mixture idea
and the standard IS approach to build the global estimators (see
Appendix A). For this reason, it is different from the standard
multiple IS scheme, described below.
• MAPIS: for the MCMC interaction, we consider again
a Gaussian proposal for the SMH method, i.e., ϕ(µ) =
N (x; [0, 0]>, λ2I2), with λ = 10. To maintain a constant
computational cost in each simulation, we fix Υ = Ta = T

M
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Table IV.1
HH

HHAlg.
Std

σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 7 σ = 10 σ = 20 σ = 70 σi,j ∼ U([1, 10])

MIS 12.00 9.40 10.26 10.64 7.67 4.40 0.5443 0.0321 0.1764 4.37

PIS (Ta = T ) 10.14 0.9469 0.0139 0.0085 0.0100 0.0115 0.0146 0.0237 0.1756 0.0106

APIS

Ta = 100 0.7741 0.0318 0.0011 0.0017 0.0054 0.0118 0.0129 0.0211 0.1794 0.0032
Ta = 50 0.5792 0.0144 0.0007 0.0015 0.0051 0.0112 0.0131 0.0221 0.1772 0.0029
Ta = 20 0.4831 0.0401 0.0006 0.0014 0.0047 0.0095 0.0136 0.0245 0.1732 0.0029
Ta = 5 0.2552 0.0008 0.0005 0.0022 0.0064 0.0111 0.0149 0.0270 0.2076 0.0039
Ta = 2 0.0547 0.0017 0.0116 0.0051 0.0103 0.0142 0.0182 0.0387 0.1844 0.0080

AMIS (best) 113.97 112.70 107.85 91.56 44.93 12.75 0.7404 0.0121 0.0141 −−−−−
(worst) 116.66 115.62 111.83 104.44 70.62 35.66 9.43 0.0871 18.62 −−−−−

PMC N = 100 111.54 110.78 90.21 46.84 2.29 0.5023 0.0631 0.4273 2.42 0.3082

M-PMC N = 100 23.16 7.43 7.56 3.11 0.6420 0.1173 0.0720 0.4194 2.37 0.0695
Table IV.2

Ta = 100 0.4753 0.0334 0.0027 0.0017 0.0059 0.0092 0.0135 0.0217 0.1762 0.0034
Ta = 50 0.4677 0.0287 0.0007 0.0015 0.0059 0.0091 0.0133 0.0222 0.1901 0.0031

MAPIS Ta = 20 0.3110 0.0092 0.0006 0.0014 0.0061 0.0091 0.0141 0.0233 0.1805 0.0030
(N = 100) Ta = 5 0.3497 0.0015 0.0007 0.0041 0.0079 0.0122 0.0155 0.0249 0.1933 0.0039

Ta = 2 0.0870 0.0101 0.0028 0.0060 0.0098 0.0126 0.0154 0.0333 0.2026 0.0078

PMC N = 500 110.58 109.69 64.81 15.99 2.09 0.4841 0.0144 0.0267 0.8924 0.2900
N = 2000 108.22 107.10 27.93 13.21 1.84 0.1912 0.0054 0.0027 0.0988 0.2805

Table IV
(Ex-in-Sect VI) MSE OF THE ESTIMATION OF THE MEAN OF THE TARGET (FIRST COMPONENT) WITH THE INITIALIZATION In2. IN TABLE IV.1, WE SET
N = 100 (T = 2000; THE TOTAL NUMBER OF SAMPLES IS L = NT = 2 · 105) FOR MIS, PIS, APIS AND PMC. FOR AMIS, WE SHOW THE BEST

RESULTS, OBTAINED VARYING K AND M SUCH THAT L = KM = 2 · 105 .

(the number of iterations of SMH, at the end of each epoch),
i.e., the total number of iterations of SMH in the entire MAPIS
method is alway MΥ = T .
Moreover, we compare these techniques with the following
benchmark schemes:
• Non-adaptive Multiple IS (MIS): Given the initial µ

(0)
i , these

positions never change as in PIS. We set N = 100. Thus,
T = 2000 samples are drawn from each proposal in order
to perform a fair comparison with APIS (in APIS we use
L = NT = 2 · 105 samples). The IS weights are built using
the standard IS approach described in Appendix A-A.
• AMIS scheme: AMIS uses only one proposal pdf in the space
fixing the temporal iteration index m, i.e.,

hm(x) = N (x; µm,Φm), m = 0, . . . ,M − 1,

Both parameters µm and Φm are updated after each itera-
tion. Note that we have used M as the number of adaptive
iterations in AMIS since it is equivalent to the number of
epochs M used in APIS. The initial mean µ0 is chosen
according to In1 and In2, whereas Φ0 = σ2I2 with σ ∈
{0.5, 1, 2, 3, 5, 7, 10, 20, 70}. At each iteration m, K samples
are drawn from hm(x). Then, IS weights are associated to
these samples using the deterministic mixture idea, taking into
account all the previous proposals h0(x), h1(x),. . . , hm−1(x).
Therefore, the weights associated to previous samples need to
be updated as well. For these reasons, AMIS is more costly
than APIS. Then, the parameters µm and Φm are updated
according to the IS estimation of the mean and variances of
the target. We have considered values of K and M such
that L = KM = NT = 2 · 105, for a fair comparison
with APIS. Specifically, we have run different simulations
using K ∈ {500, 1000, 2000, 5000} and, as a consequence,
M ∈ {40, 20, 10, 4}. Obviously, AMIS becomes more costly

when M increases. However, depending on the starting value
σ, the best results of AMIS in this scenario are usually
provided by M ∈ {4, 10} (i.e., K = 5000 and K = 2000).
This is due to the fact that better estimations of the mean and
covariance of the target are achieved, so that the adaptation is
also improved.
• PMC schemes: we also apply the mixture PMC scheme [17].
More precisely, we consider a population of samples

{x(t)
1 , . . . ,x(t)

N },

at the t-th iteration, and propagate them with random walks

x(t+1)
i = x(t)

i + εt, i = 1, . . . , N,

where εt ∼ N (x; [0, 0]>,Φ), with Φ = σ2I2 and σ ∈
{0.5, 1, 2, 5, 10, 20, 70}. At each iteration, the resampling step
is performed according to the normalized importance weights.
The initial cloud {x(0)

i }Ni=1 is chosen according to the same
initialization procedure described for In1 and In2. The cu-
mulative mean of the cloud {x(0)

i }
N,T
i=1,t=1, as well as the

cumulative estimate of the normalizing constant, are computed
until T = 2000. We have not been able to apply the adaptive
strategy suggested in [17] in order to select suitable scale
parameters, within a population of pre-chosen values, since
it has been difficult to select these values adequately. More
specifically, we have not been able to find a set of parameters
for this approach that provides reasonable results in this sce-
nario. We have set N = 100 for a fair comparison with APIS,
using the same total number of samples L = NT . Moreover,
we have also run other simulations with N = 500, 2000
in order to see the computational cost needed to reach the
performance of APIS. Finally, we have also considered a
Modified PMC (M-PMC) that, similarly to [19], [20], uses
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the deterministic mixture for the spatial construction of the
global estimator as in APIS. The results are shown in Tables
III-IV.

D. Results

All the results are averaged over 2000 independent ex-
periments. Tables III and IV show the Mean Square Error
(MSE) in the estimation of the mean (first component), with
the initialization In1 and In2, for the different algorithms. In
AMIS, for the sake of simplicity, we only show the worst and
best results among the several simulations made with different
parameters (see the detailed description above). The results
of MAPIS and PMC with N ∈ {500, 2000} are included
in two different subtables since their application entails more
computational effort. In each subtable, the best results in each
column are highlighted in bold-face.

We can observe that APIS outperforms the other techniques,
except for a few values of σ, where APIS has a negligibly
larger error. Only with σ = 70, AMIS has an MSE sensibly
smaller than APIS in its best case. However, this result depends
strictly on the choice of the parameter: the MSE of AMIS in
its worst case is the highest whereas APIS provides always
small MSE regardless of the choice of Ta. Moreover, for high
values of σ ∈ {10, 20, 70}, the results of APIS could be easily
improved using a higher value of Ta (for instance, Ta = 500).
Observe also that the robust implementation, choosing ran-
domly the scale parameters σi,j ∼ U([1, 10]), provides the
best results (with the exception of PMC with N = 2000
which provides negligibly smaller MSE, with much higher
computational cost). Moreover, MAPIS in general improves
the results and the robustness of APIS, although at the expense
of a higher computational cost due to the additional MCMC
steps. Figure 2 depicts the MSE in log-scale of the estimation
of the mean of π versus the choice of the scale parameters
σi,j , comparing the different techniques.

VII. NUMERICAL COMPARISONS IN HIGHER DIMENSION

In this section, we investigate there performance of
APIS and MAPIS in higher dimensional problems. As
a target density, we consider a mixture of Gaussians
π̄(x) = 1

3

∑3
k=1N (x; νk,Σk), with x ∈ RDx , νk =

[νk,1, . . . , νk,Dx ]> and Σk = ξkIDx , k = 1, 2, 3, where
IDx is the Dx × Dx identity matrix. In this example, we
consider two different cases: Dx ∈ {10, 30}. We use Gaussian
proposal densities for all the analyzed methodologies: we
compare APIS and MAPIS, with PMC and AMIS as in the
previous examples. Furthermore, here we also test the mixture
AIS scheme in [21]. In this method, weights, means and
covariances of a mixture of Gaussians (with a fixed number
of component denoted as J) are adapted.

We have tried different combinations of parameters keeping
fixed the total number of samples, L = 4 · 105. The initial
means are selected randomly µ

(0)
i ∼ U([−W ×W ]Dx), for

i = 1, . . . , N , and for all the techniques. We set W = 10
for Dx = 10, whereas W = 6 for Dx = 30. For
APIS, we test N ∈ {10, 100, 200, 500, 103} and for PMC
N ∈ {100, 200, 103, 104}. For the method in [21], we use

J ∈ {10, 20, 100, 500}. In APIS, we also test different values
of Ta ∈ {100, 200, 500}. We recall that in AMIS there is only
one proposal. In AMIS, we test different values of samples
per iteration K ∈ {500, 103, 5 · 103, 104, 2 · 104, 105}.

We use different initial covariance matrices, Ci =
diag(σ2

i,1, . . . , σ
2
i,10). We choose randomly at each run the

values of σi,j ∼ U([1, Q]), for all i = 1, . . . , N , and
j = 1, . . . , Dx. We test Q = 11 for Dx = 10 whereas
Q ∈ {6, 11} for Dx = 30. The total number of iterations
is chosen adequately for each simulation in order to keep
the computational effort fixed to L = 4 · 105. For MAPIS,
we consider again a Gaussian proposal for the SMH method,
i.e., ϕ(µ) = N (x; [0, 0]>, λ2I2), with λ = 5. To keep a
constant computational cost in each simulation of MAPIS, we
fix Υ = Ta, that is the number of iterations of SMH. Thus, the
total steps of SMH are ΥM = TaM = T . Hence, in MAPIS
the total number of evaluations of the target is L′ = T + L
(where L = 4 · 105 and T is chosen differently in each run in
order to keep L fixed).

A. Target specifications for Dx = 10

In this case, we set ν1,j = 6, ν2,j = −5 with j = 1, . . . , 10,
and ν3 = [1, 2, 3, 4, 5, 5, 4, 3, 2, 1]>. Moreover, we set ξk = 3,
for all k = 1, 2, 3. The expected value of the target π̄(x) is
E[X] =

[
2
3 , 1,

4
3 ,

5
3 , 2, 2,

5
3 ,

4
3 , 1,

2
3

]>
, where X ∼ π̄(x).

B. Target specifications for Dx = 30

For Dx = 30, we set ν1,j = −5, ν2,j = 3 and ν3,j = 6,
with j = 1, . . . , 30. We set again ξk = 3, for all k = 1, 2, 3.
In this case, E[X] =

[
4
3 , . . . ,

4
3

]>
.

C. Results

For each combination of parameters, we have run 103

independent simulations and compute the mean square error
(MSE) in the estimation of E[X] (we have averaged the MSEs
of all the components). The best and the averaged results in
terms of MSE are shown in Table V. With Dx = 10, PMC
provides the minimum MSE but APIS obtains the best aver-
aged results. AMIS suffers in this multimodal scenario since
it often converges to a specific mode. On the contrary, with
Dx = 30, AMIS provides the best results. However, in both
cases, APIS provides results close to the best performance.
The results also show that MAPIS is more robust than APIS,
but at the expense of an increased computational effort.

Dim. Dx Results PMC AMIS AIS in [21] APIS MAPIS

10 best 0.0858 13.70 7.68 0.3857 0.3213
average 7.52 16.92 10.92 2.82 2.06

30 best 8.34 4.75 8.81 5.58 4.81
average 17.35 8.73 13.46 10.20 9.17

Table V
(Ex-in-Sect VII) AVERAGED AND BEST RESULTS IN TERMS OF MSE.
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VIII. COMPARISON WITH PARTICLE SPLITTING METHODS

A. Bivariate bimodal target function

Let us consider the following target pdf used in [15, pages
495-498],

π̄(x1, x2) ∝ exp
(
−x

2
1 + x2

2 + (x1x2)2 − 24x1x2

2

)
,

x1, x2 ∈ R. The goal is to compute the normalizing constant
Z = 1

2.539·1026 = 2.825 · 10−27 (approximated via an exhaus-
tive deterministic method). The authors in [15] apply a particle
splitting technique with a computational effort equivalent to
L ≈ 1.2 · 105 samples (as stated in [15, page 498]), obtaining
an averaged relative error of 5%.

We apply APIS with N = 100 Gaussian proposal pdfs and
T = 103, so that L = NT = 105. In each run, the initial
means are chosen randomly µ

(0)
i ∼ U([−6, 6] × [−6, 6]).

The covariance matrices are also chosen randomly Ci =
diag(σ2

i,1, σ
2
i,2), with σi,j ∼ U([1, 6]), i = 1, . . . , N and

j = 1, 2. We run 103 different simulations with different
epochs 2 ≤ M ≤ T

2 (recall M = b TTa c). Figure 3(a)
shows the percentage of relative error obtained with APIS
(solid line) and particle splitting method (dashed line). APIS
outperforms the technique in [15, pages 495-498] for every
value of M . Furthermore with M = 1, corresponding to
the (static) PIS method, we obtain a relative error of 6%. In
the other extreme case, with M = T , the movements of the
means µ

(m)
i are random walks (i.e., non-driven movements)

producing a relative error of 78% (this shows the effectiveness
in the learning movements of APIS).
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Figure 3. (Ex-in-Sect VIII-A-VIII-B) Relative error (%) obtained with APIS
as a function of the number of epochs M = b T

Ta
c (solid line) and the particle

splitting method [15, pages 495-498] (dashed line), (a) for the example in
Section VIII-A and (b) for the example in Section VIII-B.

B. Logistic model

Consider a set of binary observations yk ∈ {0, 1} and the
the likelihood function

`(y|x) ∝
Dy∏
k

pykk (1− pk)1−yk , pk =
(
1 + exp(−s>k x)

)−1
,

with x = [x1, x2, x3]> ∈ R3 and where sk =
[sk,1, sk,2, sk,3]> is the k-th explanatory variable. We use a
Gaussian prior g(x) ∝ exp

(
− 1

2ξ2 x2
)

with ξ = 10. We
generate Dy = 100 artificial data y∗ = [y∗1 , . . . , y

∗
Dy

]> from

this model given x∗ = [1,−5.5, 1]> (vectors sk are generated
as in [15, page 500]). Let us consider the posterior pdf

π̄(x|y∗) ∝ `(y∗|x)g(x).

The goal consists on computing E[X] with X ∼ π̄(x|y∗), as
an estimate of x∗. We compare the ADAM technique in [36],
[14], [15]6 with APIS. We use N = 10 Gaussian pdfs in APIS
and T ∈ 103 (recall that L = NT = 104 total samples).7 The
initial means are chosen randomly µ

(0)
i ∼ U([−6 × 6]3), for

i = 1, . . . , N , in each simulation. The covariance matrices
Ci = diag(σ2

i,1, σ
2
i,2, σ

2
i,3) are also chosen randomly in each

run, σi,j ∼ U([1, 6]). We test APIS considering different
number of epochs M = b TTa c.

Figure 3(b) depicts the percentage of the relative error
(averaged over the 3 components) for APIS (solid line) and
ADAM (dashed line). APIS, in general, outperforms ADAM
(for several values of M ). The results are averaged over 103

independent runs.

IX. LOCALIZATION PROBLEM IN A WIRELESS SENSOR
NETWORK

We consider the problem of positioning a target in a
2-dimensional space using range measurements. This is a
problem that appears frequently in localization applications in
wireless sensor networks [37], [38], [39]. Namely, we consider
a random vector X = [X1, X2]> to denote the target position
in the plane R2. The position of the target is then a specific
realization X = x. The range measurements are obtained
from 3 sensors located at h1 = [−10, 2]>, h2 = [8, 8]> and
h3 = [−20,−18]>. The observation equations are given by

Yj = a log
(
||x− hj ||

0.3

)
+ Θj , j = 1, . . . , 3, (19)

where Θj are independent Gaussian random variables with
identical pdfs, N (ϑj ; 0, ω2), j = 1, 2. We also consider a
prior density over ω, i.e., Ω ∼ p(ω) = N (ω; 0, 25)I(ω > 0),
where I(ω > 0) is 1 if ω > 0 and 0 otherwise. The parameter
A = a is also unknown and we again consider a Gaussian prior
A ∼ p(a) = N (a; 0, 25). Moreover, we also apply Gaussian
priors over X, i.e., p(xi) = N (xi; 0, 25) with i = 1, 2. Thus,
the posterior pdf π(x1, x2, a, ω) = p(x1, x2, a, ω|y) is

π(x1, x2, a, ω) ∝ `(y|x1, x2, a, ω)p(x1)p(x2)p(a)p(ω),

where y ∈ RDy is the vector of received measurements. We
simulate d = 30 observations from the model (Dy/3 = 10
from each of the three sensors) fixing x1 = 3, x2 = 3, a =
−20 and ω = 5. With Dy = 30, the expected value of the
target (E[X1] ≈ 2.8749, E[X2] ≈ 3.0266, E[A] ≈ 5.2344,
E[Ω] ≈ 20.1582)8 is quite close to the true values.

6We use the code provided directly by the authors in [15, pages 500-503]
considering the generated Dy = 100 observations and only one run of ADAM
in each simulation.

7The authors in [15] use 103 particles but it is not straightforward to
compute the overall computational effort. The computational cost of ADAM in
[15, pages 500-503] is L ≥ 104 (in terms of evaluations of the target) since
they also applied a Newton-Raphson method before running the algorithm
and at least 10 steps of an hybrid MCMC technique before each iteration of
ADAM.

8These values have been obtained with a deterministic, expensive and
exhaustive numerical integration method, using a thin grid.
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Our goal is computing the expected value of
(X1, X2, A,Ω) ∼ π(x1, x2, a, ω) via Monte Carlo, in
order to provide an estimation of the position of the target,
the parameter a and the standard deviation ω of the noise
in the system. We apply APIS and PMC schemes both
using N Gaussian proposals as in the previous example. For
both algorithms, we initialize the cloud of particles spread
throughout the space of the variables of interest, i.e.,

µ
(0)
i ∼ N (µ; 0, 302I4), i = 1, ..., N,

and the scale parameters Ci = diag(σ2
i,1, . . . , σ

2
i,4)I4 with

i = 1, . . . , N . The values of the standard deviations σi,j
are chosen randomly for each Gaussian pdf. Specifically,
σi,j ∼ U([1, Q]), where we have considered three possible
values for Q, i.e., Q ∈ {5, 10, 30}.

The MSE of the estimations (averaged over 3000 indepen-
dent runs) are provided in Tables VI and VII for different
values of N ∈ {50, 100, 200}, T ∈ {1000, 2000, 4000} and
Ta ∈ {20, 100}. More specifically, in Table VI, we maintain
fixed T = 2000 whereas in Table VII we keep fixed the total
number of generated samples NT = 2 105. APIS outperforms
always PMC when σi,j ∼ U([1, 5]) and σi,j ∼ U([1, 10])
whereas PMC provides better results for σi,j ∼ U([1, 30])
(with the exception of the case N = 200 and T = 2000 in
Table VI). This is owing to APIS needs the use of a greater
value of Ta with bigger variances. Therefore, the results show
jointly the robustness and flexibility of the APIS technique.

X. CONCLUSIONS

In this work, we have introduced the adaptive population
importance sampling (APIS) algorithm. APIS is an iterative
importance sampling (IS) technique which uses multiple adap-
tive proposal pdfs. On the one hand, the deterministic mixture
is used to build the partial IS estimators for the population
of proposals in APIS, thus providing an increased robustness
w.r.t. the population Monte Carlo (PMC) approach. On the
other hand, the temporal evolution makes use of a standard
IS estimator, thus avoiding the increase in computational cost
as the algorithm evolves occurring in the adaptive multiple
importance sampling (AMIS) scheme. Consequently, APIS
is able to attain simultaneously the advantages of these two
approaches (simplicity and robustness) while minimizing their
drawbacks. Unlike PMC, APIS updates the proposal pdfs
in an adaptive IS fashion, without using resampling. Hence,
there is no loss of diversity in the mixture of proposals.
Furthermore, by introducing an MCMC approach on top of
APIS (thus leading to the so-called MAPIS algorithm) that
diversity may be increased w.r.t. the initial population. Another
advantage of APIS is that it is easily parallelizable, thus
serving as the basis to develop distributed importance sampling
estimators. Numerical results confirm that APIS outperforms
both techniques (AMIS and PMC) in terms of performance
and robustness w.r.t. the choice of the initial parameters.
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[2] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F.
Bugallo, and J. Mı́guez, “Particle filtering,” IEEE Signal Processing
Magazine, vol. 20, no. 5, pp. 19–38, September 2003.

[3] X. Wang, R. Chen, and J. S. Liu, “Monte Carlo Bayesian signal
processing for wireless communications,” Journal of VLSI Signal
Processing, vol. 30, pp. 89–105, 2002.

[4] A. Doucet and X. Wang, “Monte Carlo methods for signal processing,”
IEEE Signal Processing Magazine, vol. 22, no. 6, pp. 152–170, Nov.
2005.

[5] W. J. Fitzgerald, “Markov chain Monte Carlo methods with applications
to signal processing,” Signal Processing, vol. 81, no. 1, pp. 3–18,
January 2001.

[6] J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer,
2004.

[7] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer,
2004.

[8] K. H. Knuth, M. Habeck, N. K. Malakar, A. M. Mubeen, and B. Placek,
“Bayesian evidence and model selection,” arXiv:1411.3013, 2014.

[9] M. Evans and T. Swartz, “Methods for approximating integrals in
statistics with special emphasis on Bayesian integration problems,”
Statistical Science, vol. 10, no. 3, pp. 254–272, 1995.

[10] M. Evans and T. Swartz, Approximating Integrals via Monte Carlo and
Deterministic Methods, Oxford University Press, Oxford (UK), 2000.

[11] F. Liang, C. Liu, and R. Caroll, Advanced Markov Chain Monte Carlo
Methods: Learning from Past Samples, Wiley Series in Computational
Statistics, England, 2010.

[12] C. Andrieu, N. de Freitas, A. Doucet, and M. Jordan, “An introduction
to MCMC for machine learning,” Machine Learning, vol. 50, pp. 5–43,
2003.

[13] D. Luengo and L. Martino, “Fully adaptive Gaussian mixture
Metropolis-Hastings algorithm,” Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2013.

[14] Z. I. Botev and D. P. Kroese, “An efficient algorithm for rare-
event probability estimation, combinatorial optimization, and counting,”
Methodology and Computing in Applied Probability, vol. 10, no. 4, pp.
471–505, December 2008.

[15] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo
Methods, Wiley Series in Probability and Statistics, New York, 2011.

[16] J. Skilling, “Nested sampling for general Bayesian computation,”
Bayesian Analysis, vol. 1, no. 4, pp. 833–860, June 2006.
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HHHHAlg.
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(Ex-in-Sect IX) MSE OF THE ESTIMATION OF E[(X1, X2, A,Ω)] USING APIS AND PMC WITH T = 2000, FOR DIFFERENT RANDOM CHOICES OF THE

SCALE PARAMETERS AND DIFFERENT NUMBER OF PARTICLES N IN THE POPULATION. THE BEST RESULTS, IN EACH COLUMN AND WITH THE SAME
NUMBER N , ARE HIGHLIGHTED WITH BOLD-FACES.
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HHHAlg.
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APPENDIX A
IS APPROACHES USING WITH MULTIPLE PROPOSAL PDFS

Recall that our goal is computing efficiently some moment
of x, i.e., an integral measure w.r.t. the target pdf 1

Zπ(x), I =
1
Z

∫
X f(x)π(x)dx. Let us assume that we have two normal-

ized proposal pdfs, q1(x) and q2(x), from which we intend to
draw K1 and K2 samples respectively: x(1)

1 , . . . ,x(1)
K1
∼ q1(x)

and x(2)
1 , . . . ,x(2)

K2
∼ q2(x). Then, there are at least two pro-

cedures to build a joint IS estimator: the standard importance
sampling (IS) approach and the deterministic mixture (DM)
IS technique. Both are briefly reviewed in the following.
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A. Standard IS approach

The simplest approach [7, Chapter 14] is computing the
classical IS weights:

w
(1)
i =

π(x(1)
i )

q1(x(1)
i )

, w
(2)
j =

π(x(2)
j )

q2(x(2)
j )

, (20)

with i = 1, . . . ,K1 and j = 1, . . . ,K2. The IS estimator is
then built by normalizing them jointly, i.e., computing

ÎIS =
1
Stot

K1∑
i=1

w
(1)
i f(x(1)

i ) +
K2∑
j=1

w
(2)
j f(x(2)

j )

 , (21)

where Stot = S1 + S2 and the two partial sums are given
by S1 =

∑K1
i=1 w

(1)
i and S2 =

∑K2
j=1 w

(2)
j . Considering the

normalized weights, w̄(1)
i = w

(1)
i

S1
and w̄

(2)
j =

w
(2)
j

S2
, Eq. (21)

can be rewritten as

ÎIS =
1

S1 + S2

(
S1Î1 + S2Î2

)
=

S1

S1 + S2
Î1 +

S2

S1 + S2
Î2,

where Î1 and Î2 are the two partial IS estimators, obtained
by considering only one proposal pdf. This procedure can be
easily extended for N > 2 different proposal pdfs, obtaining
the complete IS estimator as the convex combination of the
N partial IS estimators:

ÎIS =
∑N
n=1 SnÎn∑N
n=1 Sn

, (22)

where x(n)
1 , . . . ,x(n)

Kn
∼ qn(x), w(n)

i = π(x(n)
i )/qn(x(n)

i ),
Sn =

∑Kn
i=1 w

(n)
i and În =

∑Kn
i=1 w

(n)
i f(x(n)

i ).

B. Deterministic mixture

An alternative approach is provided by the so-called deter-
ministic mixture [25], [26]. For N = 2 proposals, setting

Z =
[
x(1)

1 , . . . ,x(1)
K1
,x(2)

1 , . . . ,x(2)
K2

]
,

with x(j)
i ∈ RDx×1 (j ∈ {1, 2} and 1 ≤ i ≤ Kj) and Z ∈

RDx×(K1+K2), the weights are now defined as

wi =
π(Zi)

K1
K1+K2

q1(Zi) + K2
K1+K2

q2(Zi)
, (23)

with Zi denoting the i-th column of Z for i = 1, . . . ,K1 +
K2. In this case, the complete proposal is considered to be
a mixture of q1 and q2, weighted according to the number of
samples drawn from each one. Note that, unlike in the standard
procedure for sampling from a mixture, a deterministic and
fixed number of samples are drawn from each proposal in
the DM approach. However, it can be easily proved that the
samples drawn in this deterministic way is exactly distributed
according to the mixture q(z) = K1

K1+K2
q1(z) + K2

K1+K2
q2(z)

[25]. The DM estimator is finally given by

ÎDM =
1
Stot

K1+K2∑
i=1

wif(Zi),

where Stot =
∑K1+K2
i=1 wi and the wi are given by (23). For

N > 2 proposal pdfs, the DM estimator can also be easily
generalized:

ÎDM =
1∑K

j=1 wj

K∑
i=1

wif(Zi),

with wi = π(Zi)/(
∑N
n=1

Kn
K qn(Zi)) and K = K1 + K2 +

. . .+KN . On the one hand, the DM approach is more stable
than the IS method, thus providing a better performance in
terms of a reduced variance of the corresponding estimator, as
shown in the following section. On the other hand, it needs to
evaluate every proposal K times (i.e., KN total evaluations)
instead of Kn times (i.e., K total evaluations), and therefore is
more costly from a computational point of view. However, this
increased computational cost is negligible when the proposal
is much cheaper to evaluate than the target, as it often happens
in practical applications.

C. Comparison in terms of variance

In this section we prove that the variance of the DM
estimator is always lower or equal than the variance of the
IS estimator. For the sake of simplicity we focus on the case
where Kn = 1 for n = 1, . . . , N (and thus K = N ), as this
is the case in APIS, but this result can be easily extended to
any value of Kn. We first prove the following lemma and then
state our main theorem.

Lemma A.1: Let ϕ1(x), ϕ2(x) > 0 for x ∈ X ⊆ RDx .
Then, for all x ∈ X and any α such that 0 ≤ α ≤ 1,

1
(1− α)ϕ1(x) + αϕ2(x)

≤ 1− α
ϕ1(x)

+
α

ϕ2(x)
. (24)

Proof: Note that (24) is equivalent to

1
(1− α)ϕ1(x) + αϕ2(x)

≤ (1− α)ϕ2(x) + αϕ1(x)
ϕ1(x)ϕ2(x)

. (25)

Defining β = 1− α, (25) can be rewritten as

ϕ1(x)ϕ2(x) ≤[αϕ1(x) + βϕ2(x)][βϕ1(x) + αϕ2(x)]

=β2ϕ1(x)ϕ2(x) + αβ[ϕ1(x)2 + ϕ2(x)2]

+ α2ϕ1(x)ϕ2(x). (26)

Rearranging terms in (26), we obtain

0 ≤ [β2 + α2 − 1]ϕ1(x)ϕ2(x) + αβ[ϕ1(x)2 + ϕ2(x)2]

= −2αβϕ1(x)ϕ2(x) + αβ[ϕ1(x)2 + ϕ2(x)2]

= αβ[ϕ1(x)− ϕ2(x)]2, (27)

which is obviously verified, since α, β ≥ 0. �
Theorem A.2: Consider a normalized target pdf, π̄(x) =

1
Zπ(x), and N samples drawn from a set of N normalized
proposal pdfs (one from each pdf), xi ∼ qi(x) for i =
1, 2, . . . , N . In this case, the standard importance sampling
(IS) estimator and the deterministic mixture (DM) IS can be
expressed as

ÎIS =
1
N

N∑
i=1

f(xi)π(xi)
qi(xi)

, ÎDM =
1
N

N∑
i=1

f(xi)π(xi)
1
N

∑N
j=1 qj(xi)

.
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Moreover, we also consider N independent samples zi ∼
1
N

∑N
j=1 qj(x), drawn from the mixture in a standard way

and the corresponding standard mixture estimator

ÎSM =
1
N

N∑
i=1

f(zi)π(zi)
1
N

∑N
j=1 qj(zi)

.

The variance of the DM estimator is always lower or equal
than the variance of the corresponding standard IS estimators,
i.e.,

Var(ÎDM ) ≤ Var(ÎSM ) ≤ Var(ÎIS). (28)

Proof: It is straightforward to see that

Var(ÎDM ) ≤ Var(ÎSM ),

since the DM procedure follows a well-known variance re-
duction method (such as the stratified sampling [7, Chapter
4], [15, Chapter 9]). The variance of the IS estimator is [7]

Var(ÎIS) =
1
N2

N∑
i=1

(∫
X

f2(x)π2(x)
qi(x)

dx− I2

)
, (29)

where I =
∫
X f(x)π̄(x)dx is the true value of the integral

that we want to estimate. The variance of the standard mixture
estimator is given by

Var(ÎSM ) =
1
N2

N∑
i=1

(∫
X

f2(x)π2(x)
1
N

∑N
j=1 qj(x)

dx− I2

)
. (30)

Substracting (30) and (29), we get

Var(ÎSM )− Var(ÎIS)

=
∫
X

[
N

1
N

∑N
j=1 qj(x)

−
N∑
i=1

1
qi(x)

]
f2(x)π2(x)dx ≤ 0,

where the last inequality is required to fulfill (28). Hence, since
f2(x)π2(x) ≥ 0 ∀x ∈ X , in order to prove the theorem it is
sufficient to show that

1
1
N

∑N
j=1 qj(x)

≤ 1
N

N∑
i=1

1
qi(x)

, (31)

which can be easily proved by induction. Let us consider first
the case N = 2, where (31) becomes

1
1
2 (q1(x) + q2(x))

≤ 1
2

(
1

q1(x)
+

1
q2(x)

)
, (32)

which can be obtained directly from Lemma A.1, setting α =
β = 1

2 , ϕ1(x) = q1(x) and ϕ2(x) = q2(x). Now, let us
assume that (31) is true for N − 1, i.e.,

1
1

N−1

∑N−1
j=1 qj(x)

≤ 1
N − 1

N−1∑
i=1

1
qi(x)

. (33)

Then, for N we have

1
1
N

∑N
j=1 qj(x)

=
1

N−1
N

1
N−1

∑N−1
j=1 qj(x) + 1

N qN (x)

≤ (N − 1)/N
1

N−1

∑N−1
j=1 qj(x)

+
1/N
qN (x)

, (34)

where we have applied Lemma A.1 with α = 1
N , β = 1 −

1
N = N−1

N , ϕ1(x) = 1
N−1

∑N−1
j=1 qj(x) and ϕ2(x) = qN (x).

Finally, making use of (33) we obtain

1
1
N

∑N
j=1 qj(x)

≤ N − 1
N

1
N − 1

N−1∑
i=1

1
qi(x)

+
1
N

1
qN (x)

=
1
N

N∑
i=1

1
qi(x)

.

Thus Var(ÎSM ) ≤ Var(ÎIS) and, as a consequence,
Var(ÎDM ) ≤ Var(ÎIS). �

APPENDIX B
IDEAL CONFIGURATION: PROPOSALS AND LOCATIONS

From a probabilistic point of view, APIS adaptive approach
to update the i-th proposal, within the m-th epoch, can be
summarized by the following two steps:

1) Draw a location parameter µ
(m)
i ∼ φ(m)

i (µ).
2) Draw samples zi,t ∼ q(m)

i (z|µ(m)
i ,Ci).

The pdf φ(m)
i (µ) is associated to the IS estimator used to

update the mean of the i-th proposal at the m-th epoch,

µ̂
(m)
i ∝

Ta∑
t=1

π(zi,t)

q
(m−1)
i (zi,t)

zi,t. (35)

Hence, φ(m)
i (µ) is the pdf of µ̂

(m)
i given in (35). This

procedure leads to the following equivalent proposal pdf:

q̃
(m)
i (z|Ci) =

∫
X
q
(m)
i (z− µ|Ci)φ

(m)
i (µ)dµ

= q
(m)
i (z|Ci) ∗ φ(m)

i (µ),
(36)

where we have used the fact that q(m)
i (z|µ,Ci) = q

(m)
i (z −

µ|Ci), since µ
(m)
i is a location parameter, and ∗ denotes the

Dx-dimensional linear convolution operator.
Ideally we would like to have q̃

(m)
i (z|Ci) = π̄(z), since

this proposal is optimal from the point of view of interpreting
APIS as a kernel density estimator (as discussed in the text).
Then, from (36) we would have

π̄(z) = q
(m)
i (z|Ci) ∗ φ(m)

i (µ). (37)

Eq. (37) can be rewritten, in terms of the character-
istic functions Π̄(ν) = E[π̄(x)ejνx], Q

(m)
i (ν|Ci) =

E[q(m)
i (x|Ci)ejνx], Φ(m)

i (ν) = E[φ(m)
i (x)ejνx], as

Π̄(ν) = Q
(m)
i (ν|Ci)Φ

(m)
i (ν). (38)

On the one hand, from (38) we note that the characteristic
function of the proposals should ideally be given by

Q
(m)
i (ν|Ci) =

Π̄(ν)

Φ(m)
i (ν)

.

Moreover, since the IS estimator is known to be asymptotically
unbiased and consistent [7], φ(m)

i (µ)→ δ(µ− µπ) as Ta →
∞ and thus Φ(m)

i (ν) → 1. Consequently, in the limit we
would have Q

(m)
i (ν|Ci) = Π̄(ν), and the proposals would

have to be distributed exactly as the target ideally. On the
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other hand, the characteristic function associated to the optimal
distribution of the means would be

Φ(m)
i (ν) =

Π̄(ν)

Q
(m)
i (ν|Ci)

. (39)

Particularizing this equation for m = 0 we would have the op-
timal distribution for the prior used to draw the initial means:
Φ(0)
i (ν) = Π̄(ν)/Q(0)

i (ν|Ci). Unfortunately, the optimal prior
pdf cannot be obtained analytically in general.

APPENDIX C
DETAILED BALANCE CONDITION FOR SMH

For simplicity, in the following we remove the super-index
in µi denoting the current epoch, and add the iteration index
τ of the SMH technique. Thus, we denote as

Pτ−1 = {µ1,τ−1, ...,µN,τ−1}

the population of means at the τ -th iteration. A sufficient
condition for proving the ergodicity of the chain (generated
by SMH) is given by the detailed balance condition.

Theorem C.1: The chain yielded by SMH converges to the
stationary pdf in Eq. (16), π̄g(Pτ ) =

∏N
i=1 π̄(µi,τ ), since the

balance condition,

π̄g(Pτ−1)K(Pτ |Pτ−1) = π̄g(Pτ )K(Pτ−1|Pτ ), (40)

is satisfied. The conditional probability K(Pτ |Pτ−1) denotes
the transition kernel of the SMH method.
Proof: For the case Pτ 6= Pτ−1 (the case Pτ = Pτ−1 is
trivial), the kernel K can be expressed as

K(Pτ |Pτ−1) = Nϕ(µ0,τ )
ϕ(µj,τ )
π(µj,τ )∑N
i=1

ϕ(µi,τ )
π(µi,τ )

α(Pτ−1,µ0,τ ),

where we have considered that the j-th mean has been selected
as a candidate for replacement and α is given by Eq. (17).
Since j ∈ {1, . . . , N}, for the interchangeability we have
N equal probabilities (this is the reason of the factor N ).
Replacing the expression of α in Eq. (17), we obtain

K(Pτ |Pτ−1) = Nϕ(µ0,τ )
ϕ(µj,τ )
π(µj,τ )∑N
i=1

ϕ(µi,τ )
π(µi,τ )

×

∑N
i=1

ϕ(µi,τ )
π(µi,τ )∑N

i=0
ϕ(µi,τ )
π(µi,τ )

− min
0≤i≤N

ϕ(µi,τ )
π(µi,τ )

,

K(Pτ |Pτ−1) =
N

π(µj,τ )
ϕ(µ0,τ )ϕ(µj,τ )∑N

i=0
ϕ(µi,τ )
π(µi,τ )

− min
0≤i≤N

ϕ(µi,τ )
π(µi,τ )

.

Now we can also write

π̄g(Pτ−1)K(Pτ |Pτ−1) =

[
N∏
i=1

π̄(µi)

]
N

π(µj,τ )
×

ϕ(µ0,τ )ϕ(µj,τ )∑N
i=0

ϕ(µi,τ )
π(µi,τ )

− min
0≤i≤N

ϕ(µi,τ )
π(µi,τ )

,

and defining γ(Pt−1,µ0,τ ) =
∑N
i=0

ϕ(µi,τ )
π(µi,τ )

− min
0≤i≤N

ϕ(µi,τ )
π(µi,τ )

,

we have

π̄g(Pτ−1)K(Pτ |Pτ−1) =
N

Z

 N∏
i=16=j

π̄(µi)

 ϕ(µ0,τ )ϕ(µj,τ )
γ(Pτ−1,µ0,τ )

.

This expression above is symmetric w.r.t. µ0,τ and µj,τ .
Since Pτ−1 and Pτ differ only in the elements µ0,τ and
µj,τ (Pτ−1 contains µj,τ whereas Pτ contains µ0,τ ), then
π̄g(Pτ−1)K(Pτ |Pτ−1) = π̄g(Pτ )K(Pτ−1|Pτ ), which is pre-
cisely the detailed balance condition. �
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