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ABSTRACT

Monte Carlo (MC) methods are useful tools for Bayesian in-
ference and stochastic optimization that have been widely ap-
plied in signal processing and machine learning. A well-
known class of MC methods are Markov Chain Monte Carlo
(MCMC) algorithms. In this work, we introduce a novel par-
allel interacting MCMC scheme, where the parallel chains
share information, thus yielding a faster exploration of the
state space. The interaction is carried out generating a dy-
namic repulsion among the “smelly” parallel chains that takes
into account the entire population of current states. The er-
godicity of the scheme and its relationship with other sam-
pling methods are discussed. Numerical results show the ad-
vantages of the proposed approach in terms of mean square
error, robustness w.r.t. to initial values and parameter choice.

Index Terms— Markov Chain Monte Carlo; parallel and
interacting chains; Bayesian inference

1. INTRODUCTION

Monte Carlo (MC) methods are widely used in signal pro-
cessing and communications [1, 2, 3]. Markov Chain Monte
Carlo (MCMC) techniques [4] are well-known Monte Carlo
methodologies to draw random samples and compute effi-
ciently integrals involving a complicated multidimensional
target probability density function (pdf), 7(x) withx € X C
R™. MCMC schemes only need to be able to evaluate the tar-
get pdf, but the difficulty of diagnosing and speeding up the
convergence has motivated an intense research activity. For
instance, several adaptive MCMC methods have been devel-
oped in order to adequately fix the parameters of the proposal
density used to draw candidate samples [5, 6]. Nevertheless,
guaranteeing the theoretical convergence is still an issue in
most of the cases. In order to explore the state space faster
(and specially to deal with high-dimensional applications),
several schemes with parallel chains have been recently pro-
posed [6, 7, 8, 9], as well as multiple try and interacting
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schemes [10], but the problem is still far from being solved.

In this work, we present a novel parallel MCMC chains
scheme, the “smelly” parallel MCMC technique (SP-MCMC),
where NV different chains cooperate together in order to ob-
tain a better exploration of the state space. The interaction is
achieved by creating a repulsion among the chains during a
fixed number of iterations. The motivation of this approach
is trying to avoid that several chains remain trapped inside
the same region of the state space (e.g., around a single mode
of the target distribution), thus eliminating the risk of having
a very slow convergence of the chains. Indeed, the starting
point for the SP-MCMC algorithm comes from the fact that
we can obtain a better mixing if each chain explores a dif-
ferent portion of the state space during the “burn-in” period.
Therefore, in SP-MCMC a repulsion among the chains is pro-
duced during this “burn-in” period. The goal is making sure
that each chain can smell the “stink’ of the other chains, thus
forcing it to move away and explore other regions of the state
space. The strength of this repulsion should depend both on
the locations of the chains (several chains could be allowed to
coexist around regions of high probability of the target pdf)
and the effective support of the proposal associated to each
chain (as larger supports imply bigger jumps for the chain).

In this paper, we propose carrying out the interaction by
building different modified target densities for each chain and
iteration. Hence, the SP-MCMC scheme presents certain con-
nections and similar advantages as the tempering approach
[11, 12]. The resulting algorithm exhibits both flexibility and
robustness w.r.t. initial values and parameter choice, as shown
by the numerical results. The paper is structured as follows.
Section 2 outlines the problem addressed. Then, Section 3
shows the generic version of the SP-MCMC, whereas Section
4 provides an example of a modified target. Section 5 dis-
cusses the relationship of the SP-MCMC to other approaches
in the literature and Section 6 displays the numerical results
The paper ends up with the conclusions in Section 7.

2. PROBLEM STATEMENT

In many applications, we are interested in inferring a variable
of interest given a set of observations or measurements. Let
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us consider the variable of interest, x € X C R"™, and let
y € Y C R? be the observed data. The posterior pdf is then

Uy[x)g(x)
Z(y)

where £(y|x) is the likelihood function, g(x) is the prior pdf
and Z(y) is the model evidence or partition function (use-
ful in model selection). In general, Z(y) is unknown, so we
consider an unnormalized target pdf,

m(x) = £(y[x)g(x), 2

such that 7(x) « 7(x). Our goal is computing efficiently
some moment of x, i.e., an integral measure w.r.t. the target,

T(x) = p(x|y) = ; ¢))

1
I= E/Xf(x)w(x)dx7 3)

where f is typically assumed to be a smooth function of x and
Z = [, m(x)dx.

3. GENERIC SMELLY PARALLEL MCMC

3.1. Outline of the Smelly Parallel MCMC Algorithm

Consider N parallel chains,

{xit}i20

generated by several MCMC schemes using different pro-
posal pdfs, g;(x|x;:). In the standard parallel scheme the
chains are independent [13], typically considering the same
target pdf 7(x) and converging to it as t — oco. In this work,
we incorporate an interaction among the chains in such a way
that the chains cooperate to perform a better exploration of
the state space. More specifically, this interaction is carried
out in terms of a repulsion among the chains.

From the sampling point of view, we introduce this repul-
sion by considering a modified target density for each chain
and iteration. These modified target densities should be con-
structed taking into account both the true target pdf and the
proposals for all the chains. Furthermore, when one chain is
far away from the remaining chains (i.e., almost no repulsion
occurs) the modified target should be almost equal to the true
target. For the sake of simplicity, let us assume that the modi-
fied target for the ¢-th chain at the ¢-th iteration is constructed
taking into account only the current states of the remaining
chains, i.e.,!

with i=1,..,N,

@it(x) o¢ 5 4(x) = ¢i(X|P-i ), “4)
where

Pt =[X1t, Xio 1,6, Xig 1t - - XNt 5)

ILet us remark that part or even the whole set of past states of the chains
could be used to build @; ¢ (x) oc ;i ¢(x) = ¢ (x|P=i 0:¢)-
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Table 1. Generic Smelly Parallel (SP-MCMC) method.
Initialization:

1. Choose the NV initial points,
{x1,0,%2,0,- -, XN},

and the total number of iterations 7.

Fort=0,...,T—-1:
For:=1,..., N (in parallel):

2. Draw z ~ ¢;(x|x; ).

3. Set x; 41 = z with probability

o = min |1, Wi,t(z)Qi(xi,t|z)

@it (Xit) i (2]Xi1)
Otherwise, set X; 141 = X; .

4. Decrease the interaction among the chains, so that
each function, ¢; ;4+1(x) for ¢ € {1,..., N}, be-
comes closer to 7(x). Namely, defining

D= / pre(x) —m®ldx, ()

update ;¢ in such a way that D; 1 < D,, with
Dy — 0ast — oo.

The generic SP-MCMC algorithm is described in Table 1 us-
ing Metropolis-Hastings (MH) kernels, although any other
valid MCMC kernel could be easily used as the basic building
block. Observe that, given the cloud {x; .} at the ¢-th itera-
tion, the IV chains can be moved forward in parallel to the
iteration ¢ + 1. Note also that we could consider adaptive pro-
posal pdfs g; ;, as in adaptive MCMC approaches [5, 14, 15].
In this case, g; + could be updated using all the past samples
instead of just the current state x; ;.

3.2. Ergodicity

The convergence of the chains to the true target, 7(x) o
7(x), can only be ensured if

vt > T, (7

for some where iteration 7 < T' < 00.2 In this case, fort > 7
we have N independent parallel MCMC chains converging
to the true target. Thus, all the previous samples for ¢ < 7

ZNote that this is a sufficient condition to guarantee the ergodicity. How-
ever, by making D; — 0 fast enough as ¢ — oo the ergodicity could also
be ensured. Both necessary and sufficient conditions for attaining ergodicity
will be considered in future works.



should be discarded for the final estimation. In this work,
the underlying idea is to take advantage of the transient evo-
lution of a chain (the so-called “burn-in” period) and apply
the interaction in these first steps of the algorithm (note again
that the samples in the “burn-in” period have to be discarded
anyway). Unfortunately, the length of the “burn-in” period is
unknown, so the instant 7 should be set by the user based on
a-priori information. Alternatively, considering the approach
with parallel chains, the length “burn-in” period could be es-
timated as suggested in [13]. The same procedure has been
applied in [6] for adapting the proposal’s parameters.

3.3. Alternative scheme
So far, fixing an index ¢, we have considered that the function
@i 1(x) = ¢;(x|P~; ) depends on the population

P—\i,t = [X1,t, ces X1ty X1, - - 7XN,t];

so that all the chains can be moved forward simultaneously to
the iteration ¢ + 1. However, in a Gibbs sampling fashion, it
is possible to consider a sequential update of the population
in P_; ;. Namely, we could consider

Pt =[X1 41, Xic1 441, Xig1,t - - - XNt)s  (8)

where X1 411, ...,X;—1,.+1 have already been updated for the
previous ¢ — 1 chains. This scheme could perform better than
the previous one, but it loses the advantage of the parallel
computation due to the sequential update of the chains.?

4. MODIFIED TARGET PDFS

In this section, we provide an example of possible functions
;¢ taking into account both the true target 7 and the current
position of the states {x; ; }$2. For instance, we consider

Bi(%) o 9ia(x) = )

N
I Zl 5 (x[%;,¢)
=
it

()]

where v; > 0 determines the strength of the repulsion. De-
noting V' (x) = log[n(x)] and

N
1
Wi(x) =log | - Zl qi(xIx;) |
j=
J#i
then we can simply write ¢, ;(x) as

Pit(x) o< i t(x) = exp (V(x) — Wi (x)) . (10)

3Note that the ergodicity is also ensured for this alternative scheme as
long as (7) is fulfilled.

We remark again that we have a different function ¢, ; for
each chain (1 < ¢ < N) and iteration ¢ € N7T. In this case,
the modified target associated to each chain is directly pro-
portional to the true target and inversely proportional to the
probability mass generated by the remaining proposal pdfs at
the ¢-th iteration. This effect yields a repulsion among the
chains according to the “intensity of the smell” of the remain-
ing chains. The underlying idea is that there is no reason for
the rest of the chains to explore the portion of the state space
easily reachable by the ¢-th chain during the “burn-in” period.
The effective support (i.e., the range) of the ¢-th chain is then
taken to be proportional to the probability mass of the i-th
proposal pdf. In practice, this implies that larger variances or
heavier tails correspond to greater ranges, as expected. Fi-
nally, let us remark that in order to obtain a suitable and fea-
sible approach, we need to fulfill two conditions:

e The parameter ~y; has to decrease as ¢ increases:

M= 22N> 29 =0,
with ., = 0 for 7/ > 7, so that ¢; ;(x) = 7(x) for all
ie{l,..,N}andt>r.

e The proposal pdfs, ¢;, must have heavier tails than the
target, 7, so that fx i t(x)dx < 400.

Figure 1 shows an example of a modified target pdf for a uni-
variate and unimodal case.

4.1. Dynamics of the modified target pdfs

On the one hand, note that the variation of the i-th modified
target ¢; + depends on the evolution of the states of the other
chains. On the other hand, the evolution of the chains depends
on the variation of the targets ¢; ;. Thus, it is not straightfor-
ward to analyze the dynamics of this system of moving states
{x; .} fort < 7, as well as to study the stationary pdf for each
chainif 7 — oco. However, let us remark that an infinite diver-
gence among the chains {x; :} is not possible. Indeed, when
the states are far from each other the intensity of the repulsion

Fig. 1. Example of a modified target for a univariate case.
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SP-MCMC

Independent parallel chains (IPCs)

[N[In [0 =110 =2]c=5[0=10]c =20[Avg [[o =11]c =2[0 =5]0 =10 [0 = 20 [Avg
20 [Inl| 592 [559 [527 [ 544 [ 534 [551] 865 [848 [7.66 | 7.50 | 7.96 [8.05
100[In1 | 239 | 1.50 [ 1.37 | 1.23 | 125 [1.54| 509 [433 |3.80 | 388 | 3.99 [4.21
20 [In2| 7.18 [7.13 [578 [ 739 [ 6.17 [673] 693 [7.27 [6.55 | 6.11 | 6.19 [6.63
100[In2 | 222 [1.95 [1.86 | 2.03 [ 1.79 [1.97 | 2.02 [1.90 | 1.81 | 1.93 | 1.56 [1.84

Table 2. Mean square error (MSE) in the estimation of the mean of the target (averaging the MSEs of the two components), for
different values of the standard deviation of the proposal pdfs (o).

vanishes to zero, and all the modified targets become the true
target. Hence, all the chains would be attracted towards the
modes of the true target, since the SP-MCMC approach be-
comes a standard parallel MH chains technique when the in-
teraction is removed. For this reason, we set 7 < oo to ensure
that the system converges to the true target after the initial
stage, where repulsion is useful to enhance the exploratory
behaviour of the parallel chains.

5. RELATIONSHIP WITH OTHER TECHNIQUES

Unlike the adaptive MCMC schemes, in the SP-MCMC algo-
rithm the target is changing over the time, whereas the pro-
posal pdfs are not adapted considering all the past samples.
In this sense, the SP-MCMC scheme is more similar to the
tempering approaches, where the scale of target is changed
with the time index [11]. Initially, a large scale is considered
using an auxiliary parameter. Then, the scale is progressively
reduced in order to end up drawing samples from the true tar-
get density 7r(x). This idea is often used to help the sampling
schemes in dealing with very sharp and narrow target pdfs
(e.g., those typically arising when analyzing huge amounts of
data). In the SP-MCMC approach, the complete shape of the
target is changed, not just the scale parameter. However, con-
sidering Eq. (9), we notice that we also obtain a similar effect
of spreading the probability mass of the target. This is due to
the fact that the variances and the probability masses of the
proposal pdfs are involved in building the modified targets.

6. NUMERICAL SIMULATIONS

In order to test the SP-MCMC scheme, we consider a bivari-
ate multimodal target pdf, which is a mixture of 5 Gaussians:

5
1

m(x) = 5;/\/(& vi, ), (11

with x € R?; means v; = [-10,-10]", vy, = [0,16]T,

vy = [13,8]T, vy = [-9,7]", and v5 = [14,-14]T;

and covariance matrices X; = [2, 0.6;0.6, 1], 3Xo =

[2, —0.4;—0.4, 2], 35 = [2, 0.8;0.8, 2], X4 = [3, 0;0, 0.5],
and X5 = [2, —0.1;-0.1, 2].

We apply the smelly parallel approach (SP-MCMC) and
a standard scheme with independent parallel chains (IPCs) to

estimate the mean of the target ([1.6,1.4]T) using different
values for the number of parallel chains, N € {20,100}.
Furthermore, in order to test the robustness of the algo-
rithm we choose deliberately a “bad” initialization, ;o ~
U([—4,4] x [—4,4]) (denoted as Inl), and a “better” initial-
ization, x; o ~ U([—20,20] x [-20,20]) (denoted as In2)
fori =1, ..., N. Moreover, defining x = [z(1),2(?)]T and

1) (2)}1"

Xt = [z;¢,%;{] , we consider t-Student proposal pdfs,

v—1

2 1, .. 3 \2) 2
g (X|x;¢) H (1 - (x(J) _ xi,]t—l) ) 7
j=1

and test different degrees of freedom, v, in order to obtain dif-
-5 € {1.1,2,5,10,20},
to gauge the performance of SP-MCMC. We set T' = 1000
and 7 = 100 for all the simulations and use all the gener-
ated samples without removing any “burn-in” period (in order
to obtain a fair comparison with IPCs). This means that for
SP-MCMC we also use the samples {x; .} for ¢ < 7 in the
estimation. We set ¢ = 400 fort < 7 and v = 0 for ¢t > 7.

Table 2 shows the mean square error (MSE) in the esti-
mation of the first component of the mean averaged over 500
independent runs. Note the better performance of SP-MCMC
when compared to the IPCs approach, as well as its increased
robustness w.r.t. the initialization. Indeed, for the “bad” ini-
tialization the SP-MCMC approach succeeds in decreasing
the average MSE from 8.05 to 5.51 for N = 20 (roughly
68.4 % of the IPCs average MSE) and from 4.21 to 1.54 for
N = 100 (around 36.5 % of the IPCs average MSE). In con-
trast, for the “better” initialization there is an almost negligi-
ble loss (around 1.5 % and 7.0 % for N = 20 and N = 100
respectively), caused by the repulsion.

ferent standard deviations o =

7. CONCLUSIONS

We have introduced a novel family of parallel Markov chain
Monte Carlo (MCMC) algorithms that incorporate interaction
among the population of parallel MCMC chains. The smelly
parallel MCMC (SP-MCMC) chains share information, thus
yielding a faster exploration of the state space. Compared
to the fully independent parallel chains approach, the novel
technique shows a more robust behaviour w.r.t. the parame-
terization and the choice of the initialization.
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