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ABSTRACT
The Effective Sample Size (ESS) is an important measure
of efficiency in the Importance Sampling (IS) technique. A
well-known approximation of the theoretical ESS definition,
involving the inverse of the sum of the squares of the normal-
ized importance weights, is widely applied in literature. This
expression has become an essential piece within Sequential
Monte Carlo (SMC) methods, using adaptive resampling pro-
cedures. In this work, first we show that this ESS approxima-
tion is related to the Euclidean distance between the probabil-
ity mass function (pmf) described by the normalized weights
and the uniform pmf. Then, we derive other possible ESS
functions based on different discrepancy measures. In our
study, we also include another ESS measure called perplex-

ity, already proposed in literature, that is based on the discrete
entropy of the normalized weights. We compare all of them
by means of numerical simulations.

Index Terms— Effective Sample Size; Importance Sam-
pling; Perplexity measure; Resampling; Sequential Monte
Carlo.

1. INTRODUCTION

The Effective Sample Size (ESS) is a widely used concept for
measuring the efficiency of different Monte Carlo methods,
such as Markov Chain Monte Carlo (MCMC) [11, 15, 20] and
Importance Sampling (IS) techniques [1, 4, 18, 16, 21]. ESS
is theoretically defined as the equivalent number of indepen-
dent samples generated directly from the target distribution,
which yields the same efficiency in the estimation obtained
by the MCMC or IS algorithms. Thus, a possible mathemat-
ical definition [11, 13] considers the ESS function propor-
tional to the ratio between the variance of the ideal Monte
Carlo estimator (drawing samples directly from the target)
over the variance of the estimator obtained by MCMC or IS
techniques, using with the same number of samples in both
estimators.

The most common choice in literature to approximate this
theoretical ESS definition is [ESS ⇡ 1PM

n=1 w̄2
n

, which in-
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volves (only) the normalized importance weights w̄n, n =

1, . . . , N [6, 7, 14, 21]. This expression presents different
weaknesses since it has been obtained after several approxi-
mations of the theoretical definition (see [17] for further de-
tails). Another measure called perplexity, involving the dis-
crete entropy [5] of the normalized weights has been also pro-
posed in [2]; see also [21, Chapter 4], [9, Section 3.5].

However, the approximation [ESS is widely used in dif-
ferent Sequential Monte Carlo (SMC) methods (a.k.a., par-
ticle filtering algorithms) [7, 8, 6, 12, 19]. A key point for
the success of a SMC method is the use of resampling pro-
cedures, that are applied for avoiding the particle degener-
acy [6, 7]. However, the application of resampling increases
the variance of the Monte Carlo estimators so that one de-
sire to employ resampling steps parsimoniously, only when it
is strictly required. This adaptive implementation of the re-
sampling procedure needs the use of an approximation of the
ESS [6, 16, 21]. We show that [ESS is related to Euclidean
distance between the multinomial probability mass function
(pmf) defined by the normalized weights w̄n, n = 1, . . . , N ,
and the discrete uniform pmf. When the pmf defined by w̄n

is close to the discrete uniform pmf, [ESS provides high val-
ues otherwise, when the pmf defined by w̄n is concentrated
mainly in one weight, [ESS provides small values. We deduce
other possible ESS functions based on different distances. We
compare them by means of numerical simulations. This anal-
ysis shows that (at least) one novel ESS expression, defined
as the inverse of the maximum of the normalized weights,

1

max[w̄1,...,w̄N ]

, presents interesting features from a theoretical
and practical point of view and it can be considered a valid
alternative to the standard formula 1PM

n=1 w̄2
n

.

2. EFFECTIVE SAMPLE SIZE FOR IMPORTANCE
SAMPLING

Let us denote the target probability density function (pdf) as
⇡̄(x) / ⇡(x) (known up to a normalizing constant) with x 2
X . Moreover, we consider the following integral involving
⇡̄(x) and a square-integrable function h(x),

I =

Z

X
h(x)⇡̄(x)dx, (1)



which we desire to approximate using a Monte Carlo ap-
proach. If we are able to draw N independent samples
x

1

, . . . ,xN from ⇡̄(x), then the Monte Carlo estimator of I
is

bI =

1

N

NX

n=1

h(xn) ⇡ I, (2)

where xn ⇠ ⇡̄(x), with n = 1, . . . , N . However, in general,
generating samples directly from the target, ⇡̄(x), is impossi-
ble. Alternatively, we can draw N samples x

1

, . . . ,xN from
a (simpler) proposal pdf q(x),1 and then assign a weight to
each sample, wn =

⇡(xn)

q(xn)

, with n = 1, . . . , N , according to
the importance sampling (IS) approach. Defining the normal-
ized weights,

w̄n =

wnPN
i=1

wi

, n = 1, . . . , N, (3)

then the self-normalized IS estimator is

eI =

NX

n=1

w̄nh(xn) ⇡ I, (4)

with xn ⇠ q(x), n = 1, . . . , N . In general, the estimator
eI is less efficient than bI , since the samples are not directly
drawn from ⇡̄(x). In several applications [6, 7, 12, 19], it is
necessary to measure the loss of the efficiency using eI instead
of bI . The idea is to define the Effective Sample Size (ESS) as
the ratio of the variances of the estimators [13],

ESS = N
var⇡[

bI]

varq[eI]

. (5)

2.1. Approximations of ESS

Finding a useful expression of ESS derived analytically from
the theoretical definition above is not straightforward. Then,
different derivations [13, 14], [7, Chapter 11], [21, Chapter
4] proceed using several approximations and assumptions for
yielding an expression useful from a practical point of view.
A well-known rule of thumb, widely used in literature [7, 16,
21], is

[ESS = PN (w̄), (6)

=

1

PN
i=1

w̄2

n

=

⇣PN
i=1

wn

⌘
2

PN
i=1

w2

n

, (7)

where we have used the the normalized weights

w̄ = [w̄
1

, . . . , w̄N ],

1We assume that q(x) > 0 for all x where ⇡̄(x)) 6= 0, and q(x) has
heavier tails than ⇡̄(x).

in the first equality, and the unnormalized ones in the second
equality. An interesting property of the expression (7) is

1  PN (w̄)  N. (8)

Due to the several approximations which have been applied to
obtain the final formula, PN does not depend on the particles
xn, n = 1, . . . , N , which is obviously a drawback (for fur-
ther considerations see [17]). Another similar measure, called
perplexity, has been proposed in literature [2, 21] based only
on the normalized importance weights,

[ESS = PerN (w̄) = 2

H(w̄) (9)

where

H(w̄) = �
NX

n=2

w̄n log w̄n

is the discrete entropy of the vector w̄ [5].2 Note that, 1 
PerN (w̄)  N .

3. ESS BASED ON DISCREPANCY MEASURES

Many population Monte Carlo (PMC) [3, 10] or sequential
Monte Carlo (SMC) methods [7, 12], employ resampling
steps for updating the parameters of the used proposal func-
tions. On the one hand, PMC and SMC suffer the so-called
particle degeneracy, i.e., after some iterations only one sample
is statistically relevant in terms of importance weights. This
problem could be solved by applying resampling procedures.
However, on the other hand, the application of resampling
yields loss of diversity in the set of samples (and incorpo-
rating additional variance in the Monte Carlo estimators).
Therefore, one often attempts to apply resampling steps only
in certain specific iterations, when it is considered strictly
required.

In the standard multinomial resampling, the indices of the
particles used in the next generation are drawn according to
a multinomial probability mass function (pmf) defined by the
normalized weights w̄n =

wnPN
i=1 wi

, with n = 1, . . . , N . Ide-
ally, if the samples were drawn directly from the target distri-
bution all the weights wn would be equal, so that w̄n =

1

N ,
n = 1, . . . , N . We denote

w̄

⇤
=


1

N
, . . . ,

1

N

�
, (10)

that is the vector with equal components w̄n =

1

N , n =

1, . . . , N . It important to note that the inverse is not always
true: namely the scenario w̄n =

1

N , n = 1, . . . , N , could
occur even if the proposal density is different from the tar-
get. Hence, in general, in this case we can assert ESS  N

2Different ESS approximations involving the discrete entropy can be de-
signed. However, the perplexity satisfies certain important properties [17].



(considering independent samples). The other extreme case
is

w̄

(j)
= [w̄

1

= 0, . . . , w̄j = 1, . . . , w̄N = 0], (11)

i.e., w̄j = 1 and w̄n = 0 ( it occurs only if ⇡(xn) = 0),
for n 6= j with j 2 {1, . . . , N}. In general, in this case
ESS  1. Both approximations PN and PerN , based only
on the information given by the vector w̄, apply an opti-

mistic approach setting [ESS = N and [ESS = 1 in the
extreme scenarios described above. The underlying idea be-
hind both formulas PN (w̄), PerN (w̄), is that if the pmf w̄n,
n = 1, . . . , N , is reasonably close to the discrete uniform
pmf U{1, 2, . . . , N} then the resampling is not needed. Oth-
erwise, the resampling is applied. Below, we show that the
formula PN is related to the Euclidean distance between these
two pdfs. We derive some alternative ESS functions employ-
ing other kind of distances between the pmf represented by
weights w̄n and the discrete uniform pmf. For further infor-
mation see [17].

Euclidean distance L
2

. Let us consider the Euclidean dis-
tance L

2

between the discrete uniform pmf U{1, 2, . . . , N}
and the pmf given by the normalized weights w̄n, i.e,

||w̄ � w̄

⇤||
2

=

vuut
NX

n=1

✓
w̄n �

1

N

◆
2

=

vuut
 

NX

n=1

w̄2

n

!
+ N

✓
1

N2

◆
� 2

N

NX

n=1

w̄n

=

vuut
 

NX

n=1

w̄2

n

!
� 1

N

=

s
1

PN (w̄)

� 1

N
. (12)

Therefore, maximizing PN is equivalent to minimizing the
Euclidean distance between the pmf w̄n and the discrete uni-
form pmf.

Distance L
1

. Given the previous observations, we can at-
tempt to obtain other suitable ESS formulas, employing other
distances. Let us define two disjoint sets of weights

{w̄+

1

, . . . , w̄+

N+} =

�
all w̄n: w̄n � 1/N, 8n = 1, . . . , N

 
,

{w̄�
1

, . . . , w̄�N�} =

�
all w̄n: w̄n < 1/N, 8n = 1, . . . , N

 
,

where N+

= #{w̄+

1

, . . . , w̄+

N+} and N�
= #{w̄�

1

, . . . , w̄�N+}.

Clearly, N�
+ N+

= N and
PN+

i=1

w̄+

i +

PN�

i=1

w̄�i = 1.

Considering the L
1

distance, we can write

||w̄ � w̄

⇤||
1

=

NX

n=1

����w̄n �
1

N

����

=

N+X

i=1

✓
w̄+

i �
1

N

◆
+

N�X

j=1

✓
1

N
� w̄�j

◆

=

N+X

i=1

w̄+

i �
N�X

i=1

w̄�i �
N+ �N�

N
(13)

and replacing the relationships
PN�

i=1

w̄�i = 1 �
PN+

i=1

w̄+

i

and N�
= N �N+,

||w̄ � w̄

⇤||1 = 2

2

4
N+X

i=1

w̄+
i �

N+

N

3

5 ,

= 2
N

PN+

i=1 w̄+
i �N+

N
= 2

»
N �QN (w̄)

N

–
+ 2,

where

[ESS = QN (w̄) = �N

N+X

i=1

w̄+

i + N+

+ N, (14)

Note that 1  QN (w̄)  N , with QN (w̄

⇤
) = N and

QN (w̄

(i)
) = 1 for all i 2 {1, . . . , N}. Maximizing QN is

equivalent to minimizing the L
1

distance between the pmf
w̄n and the uniform pmf.

Norm L1. Considering the distance between the vector
w̄ and the vector of null entries (i.e. the norm of w̄), we
can obtain other suitable ESS formulas. For instance, we can
consider the norm L1, i.e.,

||w̄||1 = max [|w̄
1

| , . . . , |w̄N |] =

1

DN (w̄)

, (15)

where

[ESS = DN (w̄) =

1

max [w̄
1

, . . . , w̄N ]

, (16)

is another valid ESS measure. We have also 1  DN (w̄) 
N , with DN (w̄

⇤
) = N and DN (w̄

(i)
) = 1, 8i 2 {1, . . . , N}.

4. NUMERICAL SIMULATIONS

Let us recall the theoretical definition of ESS in Eq. (5),

ESSvar = N
var⇡[

bI]

varq[eI]

. (17)

Since eI is biased and its bias is not negligible for small N , a
more convenient definition is

ESSMSE = N
MSE⇡[

bI]

MSEq[
eI]

= N
var⇡[

bI]

MSEq[
eI]

. (18)



0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

 

 

ESSvar
ESSMSE
PerN
QN
PN
DN

µp

ESS/N

(a) N = 5.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

 

 

ESSvar
PerN
QN
PN
DN

µp

ESS/N

(b) N = 1000.

Fig. 1. Rates ESS
N as function of µp, corresponding to the theoretical values ESSvar (solid line), ESSMSE (dashed line; shown only in

(a)), PN (circles), DN (squares), QN (x-marks), and PerN (triangles down).

considering the Mean Square Error (MSE) of the estimators,
instead of only the variance. For large values of N the differ-
ence between the two definitions is negligible since the bias of
eI tends to zero. In this section, we compute approximately via
Monte Carlo the theoretical definitions ESSvar, ESSMSE ,
and we compare them with the ESS functions presented in the
previous section. More specifically, we consider a univariate
standard Gaussian density as target pdf,

⇡̄(x) = N (x; 0, 1), (19)

and also a Gaussian proposal pdf,

q(x) = N (x;µp, �
2

p), (20)

with mean µp and variance �2

p. We set �p = 1 and vary
µp 2 [0, 2]. Clearly, for µp = 0 we have the ideal Monte
Carlo case, q(x) ⌘ ⇡̄(x). As µp increases, the proposal be-
comes more different from ⇡̄. We test N 2 {5, 1000}. Fig-
ure 1 shows the (approximated) theoretical ESS curves and
the curves corresponding to different ESS formulas, averaged
over 10

5 independent runs. More specifically, we provide the
rates ESS

N . Note that 1

N  ESS
N  1. For N = 1000, the

difference between ESSvar and ESSMSE is negligible, so
that we only show ESSvar.

Figure 1(a) shows the results for N = 5. First of all, we
can observe that ESSvar and ESSMSE are very close when
µp ⇡ 0 (i.e., q(x) ⇡ ⇡̄(x)) but they differ substantially when
the bias increases. Moreover, PN and DN also provide good
approximations of ESSvar. Note that ESSvar is always con-
tained between DN and PN . Figure 1(b) shows the results
for N = 1000. The formula PN provides the closest curve to
ESSvar. The ESS function DN gives a good approximation
when µp increases, i.e., the scenario becomes worse from a
Monte Carlo point of view. Again, ESSvar is always con-
tained between DN and PN .

We can conclude that in general when the proposal dif-
fers substantially from the target, DN provides the best re-
sults (i.e., closer to the theoretical values), whereas in better
scenarios and large N , PN seems to be the best approxima-
tions. The ESS function DN seems to perform better than
PN when the number of particles N is small. The ESS func-
tion QN provides the best approximation when the proposal is
very similar to the target in both cases N = 5 and N = 1000.
In the analyzed scenarios, the perplexity does not seem a suit-
able approximation of the theoretical ESS values.

5. CONCLUSIONS

In this work, we have introduced alternative ESS functions
for sampling algorithms based on IS. They are derived based
on discrepancy measures between the multinomial pmf de-
fined by the normalized weights w̄n, n = 1, . . . , N , and the
discrete uniform pmf (or the vector of null entries). We have
shown that the standard ESS approximation PN is related to
the Euclidean distance L

2

. Another measure called perplex-

ity [2, 21] can be included in this class of ESS approximations
based on discrepancy measure, since it is based on the discrete
entropy of the normalized weights w̄n, n = 1, . . . , N . We
have tested and compared all them by numerical simulations.

At least one of them, DN (w̄) =

1

max[w̄1,...,w̄N ]

, presents
interesting features and some benefit, compared to the rest
of ESS formulas, when the proposal function differs substan-
tially from the target distribution. Moreover, DN (w̄) seems
to behave as a “lower bound” for the theoretical ESS defini-
tion, in our simulations.
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