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ABSTRACT
Monte Carlo (MC) methods are widely used for Bayesian in-
ference in signal processing, machine learning and statistics.
In this work, we introduce an adaptive importance sampler
which mixes together the benefits of the Importance Sampling
(IS) and Markov Chain Monte Carlo (MCMC) approaches.
Different parallel MCMC chains provide the location param-
eters of the proposal probability density functions (pdfs) used
in an IS method. The MCMC algorithms consider a tem-
pered version of the posterior distribution as invariant density.
We also provide an exhaustive theoretical support explain-
ing why, in the presented technique, even an anti-tempering
strategy (reducing the scaling of the posterior) can be bene-
ficial. Numerical results confirm the advantages of the pro-
posed scheme.

Index Terms— Adaptive importance sampling, MCMC
methods, parallel chains, Bayesian inference.

1. INTRODUCTION

Importance sampling (IS) and Markov Chain Monte Carlo
(MCMC) are two well-known Monte Carlo (MC) techniques
widely used in signal processing for efficiently computing
a-posteriori estimators [1–5]. This requires the approxima-
tion of integrals involving a complicated multidimensional
target probability density function (pdf), ⇡(x) with x 2 RD

x

(the posterior pdf in Bayesian framework) [1, 5–7]. Both ap-
proaches use a simpler proposal pdf, q(x), to draw random
candidates which are weighted or filtered in different ways.
In both cases, the quality of the performance is directly re-
lated to the discrepancy between the shape of the proposal
and the target. For this reason, several adaptive schemes have
been proposed [8–14].

In this work, we extend the approach proposed in [15].
More specifically, we describe an adaptive importance sam-
pler which mixes together the IS and MCMC approaches,
while preserving the advantages of both (see also [16, 17]).
Indeed, MCMC outputs (upper layer) provide the location pa-
rameters for the proposal pdfs used in importance sampler
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(lower layer), where deterministic mixture (DM) weighting
schemes are employed [18–23]. Unlike in [15], the MCMC
chains address a tempered target pdf. In the first iterations, a
standard tempering approach is used increasing the scale of
the target, in order to foster the exploration behavior of the
Markov chains. Then, an anti-tempered target is employed
reducing the scale of the target (addressed by the Markov
chains; the posterior considered in the IS layer remains al-
ways unchanged). The underlying idea is based on an equiv-
alent proposal formulation that we describe later on. There-
fore, a theoretical support of the proposed approach is given.

We also provide a specific adaptive IS algorithm belong-
ing to the family described above, called Anti Tempered Lay-
ered Adaptive Importance Sampler (ANTE-LAIS). The cloud
of N different proposal pdfs is updated considering N in-
dependent parallel Metropolis-Hastings (MH) chains [5, 24].
The outputs of the MH methods are then used as location pa-
rameters for N proposal densities. In a lower level, these pro-
posal pdfs interact for providing a unique global IS estimator,
using the DM weighting procedure [15]. Unlike other tech-
niques in the literature (e.g., [9, 25–28]), the novel method
does not require resampling steps, thus avoiding the loss of
diversity in the population. The ANTE-LAIS is also an ex-
cellent algorithm in order to estimate the normalizing con-
stant (a.k.a., marginal likelihood) of the target density. The
new algorithm improves the performance (in terms of mean
squared error) as shown in the numerical simulations.

2. PROBLEM STATEMENT AND BACKGROUND

In many applications, the goal is to make inference about a
vector of unknowns as x 2 X ✓ RD

x given the observed data
as y 2 Y ✓ RD

y . The statistical information is summarized
by the posterior pdf,

⇡̄(x) = ⇡̄(x|y) =

`(y|x)g(x)

Z(y)

, (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf,
and Z = Z(y) is the normalization factor. Generally, we
are able to evaluate ⇡(x) where ⇡̄(x) =

1
Z

⇡(x). A generic



moment related to ⇡̄(x) is denoted as

I =

1

Z

Z

X
f(x)⇡(x)dx, (2)

where f(·) can be any integrable function of x. For instance,
with f(x) = x, the integral I represents the Minimum Mean
Square Error (MMSE) estimator, ˆ

x

MMSE

=

R
X x⇡̄(x)dx.

2.1. Monte Carlo integration

In many practical scenarios, the integral I cannot be com-
puted in a closed form, and numerical approximations are
typically required. Many deterministic quadrature methods
are available in the literature [29]. However, as the dimension
D

x

of the inference problem grows (x 2 RD

x), the determin-
istic quadrature schemes become less efficient.
Standard Monte Carlo. A common approach consists in ap-
proximating the integral I in Eq. (2) by using Monte Carlo
(MC) quadrature [5, 24]. Namely, drawing K independent
and identically distributed (i.i.d.) samples from the target
pdf, i.e. x

(1), . . . ,x(K) ⇠ ⇡̄(x), we can build the estima-
tor bI

K

=

1
K

P
K

k=1 f(x

(k)
).

Sampling methods. However, generally, it is not possible
to draw from ⇡̄(x). Therefore, the MC algorithms employ a
simpler proposal pdf q(x) in order to generate random candi-
dates which are filtered or weighted according to some suit-
able rule for building consistent estimators. For instance, the
MCMC techniques yield a Markov chain where the invariant
density is exactly the posterior, whereas in the IS schemes the
samples drawn from q(x) are properly weighted, for instance
w(k)

=

⇡(x(k))
q(x(k))

, k = 1, . . . ,K. The resulting (correlated or
weighted) samples are used for approximating I in Eq. (2).
For instance, the IS (self-normalized) estimator is given by

eI
K

=

KX

k=1

w(k)

P
K

i=1 w(i)
f(x

(k)
). (3)

Efficiency of sampling methods. The performance of a
MC method depends on the discrepancy between the target
⇡̄(x) / ⇡(x) and the proposal q(x). Roughly speaking, the
performance is improved if q(x) is more similar to ⇡̄(x). In
the following, we describe a theoretical procedure for tuning
the parameters of the proposal density and then present some
practical implementations.

3. HIERARCHICAL PROCEDURE FOR PROPOSAL
GENERATION

In general, tuning the parameters of the chosen proposal is a
difficult task that requires statistical information of the target
distribution. In this section, we deal with this important is-
sue, focusing on the mean vector of the proposal pdf. More
specifically, we consider a proposal defined by a mean vec-
tor µ and covariance matrix C, which can be denoted as

q(x|µ,C) ⌘ q(x � µ|C). We propose the following hier-
archical procedure for generating a set of samples that will
be employed afterwards within some Monte Carlo technique:
1. For j = 1, . . . , J :

(a) [Upper layer] Draw a mean vector µ
j

⇠ h(µ).

(b) [Lower layer] Draw x

(m)
j

⇠ q(x|µ
j

,C) for m =

1, . . . ,M .

2. Use all the generated samples, x

(m)
j

for j = 1, . . . , J
and m = 1, . . . ,M , as candidates within some Monte
Carlo method, for instance, an importance sampler.

Note that h(µ) plays the role of a prior pdf over the mean
vector of q. Hence, the equivalent density of all generated
samples can be expressed as

eq(x|C) =

Z

X
q(x|µ,C)h(µ)dµ, (4)

i.e. we can consider that x

(m)
j

⇠ eq(x|C) for all possible
values of j and m. The density eq is an equivalent proposal
density corresponding to the hierarchical generating proce-
dure. Note that µ1, . . . ,µJ

, are not directly used in the Monte
Carlo estimator, but only the samples x

(m)
j

, for j = 1, . . . , J
and m = 1, . . . ,M . Hence, the computational cost per itera-
tion of this hierarchical approach is higher than in a standard
approach, but this leads to substantial computational savings
in terms of improved convergence towards the target, and thus
a reduced number of iterations required, as shown in [15].
Note that, unlike other schemes such as [9,26], the generation
of the µ

j

’s in the upper level is independent of the samples
x

(m)
j

drawn in the lower level, thus facilitating the theoretical
analysis of the resulting algorithms.1

Table 1. Generic Layered Adaptive Importance Sampler

1. For j = 1, . . . , J :

(a) Draw a mean vector µj ⇠ h(µ).

(b) Draw M samples, x(m)
j ⇠ q(x|µj ,C), with m = 1, . . . , M .

2. Weight all the samples, x(m)
j with

w
(m)
j =

⇡(x
(m)
j )

1
J

PJ
j=1 q(x

(m)
j |µj ,C)

, (5)

for m = 1, . . . , M and j = 1, . . . , J .

3. Return {x(m)
j , w

(m)
j } for m = 1, . . . , M and j = 1, . . . , J .

Deterministic Mixture (DM) weighting. Note that in
Eq. (5) a DM approach is used [18–20], i.e., the denominator

1Note that, in the ideal case described here, each µj is also independent
of the other µ’s. However, in several parts of this work, we also consider
cases where correlation among the mean vectors, µ1, . . . , µJ , is introduced
(due to the application of an MCMC scheme).



of the weight is the mixture  (x) =

1
J

P
J

j=1 q(x|µ
j

,C).
Observe also that  (x) is a Monte Carlo approximation of the
equivalent proposal eq(x|C) (using J samples, µ1, . . . ,µJ

).

3.1. Optimal prior h⇤(µ|C)

Let us first assume a given parametric form of q(x|µ,C) with
its covariance matrix C fixed. We consider the problem of
finding the optimal prior h⇤(µ|C) over the mean vector µ.
Note that, since µ is a mean vector, we have q(x|µ,C) =

q(x� µ|C) and we can write the equivalent proposal as

eq(x|C) =

Z

X
q(x� µ|C)h(µ|C)dµ. (6)

Note that the equivalent proposal above can be also seen as
the pdf of the sum of two independent random variables. A
desirable scenario consists in having the equivalent proposal
eq(x|C) coinciding exactly with the target ⇡̄(x), i.e.,

eq(x|C) := ⇡̄(x). (7)

In IS, as discussed in Section 2.1, if only specific moment I
of the target must be approximated, the best equivalent pro-
posal is eq(x|C) ⌘ |f(x)|⇡̄(x), which minimizes the variance
of the estimator [5, 30]. In order to obtain the optimal prior
h⇤(µ|C) and assuming eq(x|C) = ⇡̄(x and noting that Eq. (6)
corresponds to a convolution, we can express it in the Fourier
domain through the convolution theorem [31, Section 3.3] as

¯

⇧(⌫) = Q(⌫|C)H⇤
(⌫|C),

where we use E
p

[ei⌫x

] to denote the expectation of ei⌫x

w.r.t. the pdf p(x) (i.e., the characteristic function of p(x)),
and thus Q(⌫|C) = E

q

[ei⌫x

], H⇤
(⌫|C) = E

h

⇤
[ei⌫x

] and
¯

⇧(⌫) = E
⇡̄

[ei⌫x

] are the characteristic functions of q(x),
h⇤(µ|C) and ⇡̄(x) respectively. Hence, the optimal prior pdf
has the following characteristic function2

H⇤
(⌫|C) =

¯

⇧(⌫)

Q(⌫|C)

. (8)

Unfortunately, in general it is not possible to determine ana-
lytically the optimal prior pdf h⇤(µ|C) from H⇤

(⌫|C), i.e. a
closed-form expression for the inverse Fourier transform can-
not be obtained, and alternative choices are then required.3

4. TEMPERED PRIOR OVER THE PROPOSAL
PARAMETERS

In [15], we discuss and justify the use of

h(µ) = ⇡̄(µ). (9)
2Using Bochner’s theorem [32, Theorem 1.8.9], it can be easily proved

that H⇤(⌫|C) is indeed a characteristic function.
3In some cases, the optimal prior pdf h⇤(µ|C) can even not exist.

This choice allows very good performance when the posterior
is multimodal and/or is heavy-tailed [15]. In this work, we
propose to employ a sequence of tempered functions, i.e.,

h
t

(µ) = [⇡̄(µ)]

�

t , (10)

where �
t

> 0, t 2 N and

�0  �1  . . .  �
t

. . .  �1 =1. (11)

Therefore, we allow �
t

> 1 (anti-tempering), so that the scale
of the posterior is even reduced. More specifically, we have
�

t

= �
�

(�
t�1), where �

�

is a suitable non-decreasing posi-
tive function.
Theoretical justification. Eq. (6) represents a convolution
between the functions q and h. The convolution works as a
smoother of h(µ) by using the proposal q, i.e., it is low-pass
filter. Since det[C] > 0, in order to obtain eq(x|C) = ⇡̄(x),
the prior of the means h(µ|C) must be sharper than the tar-
get ⇡̄ (given a fixed covariance matrix C). This is the rea-
son why the anti-tempering is advantageous in the proposed
scheme. Due to the law of total variance,

Coveq = Cov

q

+ Cov

h

= Cov

q

+ Cov

⇡̄

� . (12)

Since ideally, eq := ⇡̄, it would be desirable that Coveq =

Cov

⇡̄

. We can control Coveq by jointly tuning � and C,
where � > 1. See the example in Section 6.

Let us consider a covariance matrix C

t

varying with the iter-
ation t and, for simplicity, let us assume C

t

= �2
t

I. Eq. (12)
suggests us to use

�0  �1  . . .  �
t

, (13)

i.e., �
t

= �
�

(�
t�1), where �

�

is another suitable non-
decreasing function. Since sampling directly from ⇡̄(µ) or
[⇡̄(µ)]

�

t is in general unfeasible, we apply an approximate
procedure, i.e., MCMC steps are performed with invariant
density h

t

(µ) = [⇡̄(µ)]

�

t .

5. ANTI-TEMPERED LAIS

The previous ideas can be applied to a population of N
proposal pdfs which also evolves with iteration index t =

1, . . . , T . The Anti Tempered LAIS (ANTE-LAIS) algo-
rithm adapts the location parameters of the N proposals with
MCMC steps with invariant pdf h

t

(µ) = [⇡̄(µ)]

�

t . At each
iteration, the temperated parameter �

t

is increased. For fos-
tering the convergence of the chains is convenient to start
with �0 < 1. ANTE-LAIS is outlined in Table 2.

6. NUMERICAL SIMULATIONS

In this section we provide a numerical example where we ev-
idence the effect of the tempering in the equivalent proposal



Fig. 1. Target distribution with standard LAIS (� = 1) with
the means of the proposals represented with red solid circles.
The marginals of ⇡̄ and eq are also displayed.

Fig. 2. Target distribution with standard ANTE-LAIS (� = 4)
with the means of the proposals represented with red solid
circles. The marginals of ⇡̄ and eq are also displayed.

Table 2. Anti Tempered LAIS (ANTE-LAIS)
- For t = 1, . . . , T :
1. Set �t = ��(�t�1), �t = ��(�t�1) and Cn,t = �2

t I, for all n.

2. Perform one transition of an MCMC technique with invariant pdf
ht(µ) = [⇡̄(µ)]�t over the current population of means,

Pt�1 = {µ1,t�1, ..., µN,t�1},

to obtain a new population of means,

Pt = {µ1,t, ..., µN,t}.

3. Draw x

(m)
n,t ⇠ qn,t(x|µn,t,Cn,t) for m = 1, . . . , M and n =

1, . . . , N .

4. Compute the importance weights,

w
(m)
n,t =

⇡(x
(m)
n,t )

1
N

PN
k=1 qk,t(x

(m)
n,t |µk,t,Ck,t)

, (14)

with n = 1, . . . , N , and m = 1, . . . , M .

- Return {x(m)
n,t , w

(m)
n,t } for all m, n and t.

eq. Let us consider the bivariate target pdf, which is a mixture
of 5 Gaussians,

⇡̄(x) =

1

5

5X

i=1

N (x;⌫
i

,⌃
i

), x 2 R2, (15)

with means ⌫1 = [�10,�10]

>, ⌫2 = [0, 16]

>, ⌫3 =

[13, 8]

>, ⌫4 = [�9, 7]

>, ⌫5 = [14,�14]

>, and covariance
matrices ⌃1 = [2, 0.6; 0.6, 2], ⌃2 = [2, �0.4;�0.4, 2],
⌃3 = [2, 0.8; 0.8, 2], ⌃4 = [2, 0; 0, 2] and ⌃5 =

[2, �0.1;�0.1, 2]. We first run the traditional LAIS, i.e.
with � = 1 and hence with no tempering. We set the parame-
ters T = 200, N = 50, and the IS proposals in the lower level
are Gaussians with covariance C = �2

I, where �2
= 1.5.

Figure 1 shows the multimodal bivariate target with the means
µ

n,t

represented with red solid circles. We represent only the
last half of iterations in order to remove the burn-in period of
the MCMC in the upper layer. The two marginals of the target
are displayed below and to the left of the main figure, both in
solid blue line. We also show the approximation of the two
marginals of the equivalent proposal eq, both in red dashed
line. In Fig. 2 we run ANTE-LAIS in the same setup with
� = 4. First, note that in ANTE-LAIS the means are more
concentrated in the middle of the modes, since ⇡̄� is sharper
than ⇡̄. Secondly, we see that the marginals of ⇡̄ are much
better approximated by eq with ANTE-LAIS (� = 4) than
with standard LAIS (� = 1). In fact, ANTE-LAIS seems to
replicate almost perfectly the target with the equivalent pro-
posal eq. In standard LAIS, the equivalent proposal eq seems
to be a smoothed version of the target, due to the low-pass
effect implicit in the convolution of Eq. (6) and explained in
the theoretical justification of Section 4.



7. CONCLUSIONS
We have proposed a novel scheme that combines the benefits
of the Markov chain Monte Carlo (MCMC) and importance
sampling (IS) approaches. MCMC methods are run on top of
a multiple IS scheme in order to find good location param-
eters for the population of proposal pdfs, which interact for
providing a unique global IS estimator. The MCMC algo-
rithms address tempered versions of the posterior pdf. First, a
standard tempering is used facilitating the convergence of the
Markov chains. In a second stage, an anti-tempering strat-
egy is employed in order to obtain an equivalent proposal pdf
more similar to the target, and therefore improving the effi-
ciency of the IS estimators.
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