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Abstract

Monte Carlo (MC) sampling methods are widely applied in Bayesian inference, system
simulation and optimization problems. The Markov Chain Monte Carlo (MCMC) algorithms
are a well-known class of MC methods which generate a Markov chain with the desired
invariant distribution. In this document, we focus on the Metropolis-Hastings (MH) sampler,
which can be considered as the atom of the MCMC techniques, introducing the basic notions
and different properties. We describe in details all the elements involved in the MH algorithm
and the most relevant variants. Several improvements and recent extensions proposed in the
literature are also briefly discussed, providing a quick but exhaustive overview of the current
Metropolis-based sampling’s world.

Keywords: Monte Carlo methods, Metropolis-Hastings algorithm, Markov Chain Monte
Carlo (MCMC).

1 Problem Statement

In many practical applications, the goal consists in inferring a variable of interest, x =
[x1, . . . , xD] ∈ RD, given a set of observations or measurements, y ∈ RP . In the Bayesian
framework [52], the total knowledge about the parameters, after the data have been observed,
is represented by the posterior probability density function (pdf), i.e.,

π̄(x) = p(x|y) =
`(y|x)g(x)

Z(y)
, (1)

where `(y|x) denotes the likelihood function (i.e., the observation model), g(x) is the prior
probability density function (pdf) and Z(y) is the marginal likelihood (a.k.a., Bayesian evidence)
[10, 83]. In general Z(y) is unknown, and it is possible to evaluate the unnormalized target
function,

π(x) = `(y|x)g(x). (2)

The analytical study of the posterior density π̄(x) ∝ π(x) is often unfeasible and integrals involving
π̄(x) are typically intractable [10, 14, 83]. For instance, one might be interested in the estimation
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Table 1: Summary of the notation.

D dimension of the inference problem, x ∈ RD.
T total number of generated samples.

x variable of interest; parameter to be inferred, x = [x1, . . . , xD].
y observed data.

`(y|x) likelihood function.
g(x) prior density.
π̄(x) posterior (target) density π̄(x) = p(x|y).
π(x) posterior (target) function, π(x) = `(y|x)g(x) ∝ π̄(x).
q(x) proposal density.

I integral to be approximated, I = Eπ[f(x)].

of

I = Eπ[f(x)] =

∫

RD

f(x)π̄(x)dx, (3)

where f(x) is a squared integrable function w.r.t. π̄, i.e. Eπ[f(x)2] <∞. Table 1 summarizes the
notation.

1.1 Monte Carlo integration

In many practical scenarios, the integral I cannot be computed in a closed form, and numerical
approximations are typically required. Many deterministic quadrature methods are available in the
literature [1, 4, 18, 51, 80]. However, as the dimension D of the inference problem grows (x ∈ RD),
the deterministic quadrature schemes become less efficient. In this case, a common approach
consists of approximating the integral I in Eq. (3) by using Monte Carlo (MC) quadrature
[25, 47, 33, 50, 57, 70, 85]. Namely, considering T are independent and identically distributed
(i.i.d.) samples drawn from the posterior target pdf, i.e. x(1), . . . ,x(T ) ∼ π̄(x),1 we can build the
consistent estimator

ÎT =
1

T

T∑

t=1

f(x(t))
p−→ I, (4)

i.e., ÎT converges in probability to I due to the weak law of large numbers. In other words, for
any positive number ε > 0, we have limT→∞ Pr(|ÎT − I| > ε) = 0. Note also that Eπ[ÎT ] = I,

i.e. the estimator is unbiased. The approximation ÎT is known as a direct (or ideal) Monte Carlo
estimator if the samples x(t) are i.i.d. from π̄.

1In this work, for simplicity, we use the same notation for denoting a random variable or one realization of a
random variable.
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1.1.1 Efficiency of the direct Monte Carlo estimator

Since the samples are i.i.d., the variance of the estimator ÎT is given by

Var
[
ÎT

]
=

1

T 2

T∑

t=1

Var
[
f(x(t))

]
, (5)

=
σ2
f

T
, (6)

where σ2
f = Var [f(x)], and i.i.d. x(1), . . . ,x(T ) ∼ π̄(x). Therefore, the variance of ÎT depends on

the functions f and π̄ (i.e., the variance of the random variable z = f(x) with x ∼ π̄(x)) and
decreases linearly with the number T of i.i.d. samples. Due to the central limit theorem, the

distribution of ÎT is approximated by N
(
I,

σ2
f

T

)
when T →∞.

1.2 Markov chain Monte Carlo (MCMC) methods

Unfortunately, drawing independent samples from π̄(x) is in general not possible, and alternative
approaches, e.g., Markov chain Monte Carlo (MCMC) algorithms, are needed [24, 37, 55, 85]. An
MCMC method generates an ergodic Markov chain with invariant (a.k.a., stationary) density given
by the posterior pdf π̄(x) [53]. Specifically, given a starting state x(0), a sequence of correlated
samples is generated, x(0) → x(1) → x(2) → .... → x(T ). Even if the samples are now correlated,
the estimator

ĨT =
1

T

T∑

t=1

f(x(t)) (7)

is consistent, regardless the starting vector x(0) [91].2 With respect to the direct Monte Carlo
approach using i.i.d. samples, the application of an MCMC algorithm entails a loss of efficiency
of the estimator ÎT , if the samples are positively correlated. In other words, to achieve a given
variance obtained with the direct Monte Carlo estimator, it is necessary to generate more samples.
In order to clarify this consideration, let us define the auto-covariance at lag k

γk = cov
[
f(x(t)), f(x(t+k))

]
,

so that γ0 = σ2
f = Var [f(x)]. Then, the autocorrelation at lag k is defined as

ρk =
cov
[
f(x(t)), f(x(t+k))

]

Var [f(x)]
,

=
γk
σ2
f

. (8)

Note that ρ0 = 1 and ρ0 ≥ |ρk| for all k > 0 (k ∈ N). It can be shown that the variance of the

estimator ĨT in Eq. (7) when the samples have autocorrelation function ρk is [29]

Var
[
ĨT

]
=

σ2
f

T

(
1 +

2

T

T−1∑

k=1

(T − k)ρk

)
. (9)

2Recall we are assuming that the Markov chain is ergodic and hence the starting value is forgotten.
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Moreover, it is possible to write that

lim
T→∞

TVar
[
ĨT

]
= σ2

f

(
1 + 2

∞∑

k=1

ρk

)
, (10)

if the series of ρk is convergent. In order to quantify the loss of efficiency w.r.t. the direct Monte
Carlo approach (see Eq. (6)), we can define the Effective Sample Size (ESS) for an MCMC
technique

Teff = lim
T→∞

T
Var

[
ÎT

]

Var
[
ĨT

] , (11)

=
T

1 + 2
∑∞

k=1 ρk
, (12)

which can be thought of the number of independent samples needed to obtain a variance of

Var
[
ĨT

]
, i.e., Var

[
ÎTeff

]
= Var

[
ĨT

]
. Since, in general, the MCMC algorithm induces positive

correlation among the samples, then Teff ≤ T [29]. Note that, the equality Teff = T is achieved
if there is zero correlation among the samples. Thus, considering the same computational cost,
an MCMC technique provides better performance than other MCMC method if the generated
samples present less correlation.

Burn-in. Another consequence of the correlation is the burn-in period that the chain requires
before converging to the invariant distribution. Therefore a certain number of initial samples
should be discarded, i.e., not included in the resulting estimator [7, 85]. However, the length of
the burn-in period is in general unknown. Several studies in order to estimate the length of the
burn-in period [16, 32] or to avoid it [81] can be found in the literature.

Example 1. Let us consider the study of an invariant probability mass function (pmf) of a Markov
chain in a discrete space. In this case, we consider x ∈ {1, 2, 3} and a 3 × 3 transition matrix
(a.k.a., as a kernel matrix) of the chain,

K = {ki,j} =




0.3 0.3 0
0.7 0.1 0.5
0 0.6 0.5


 . (13)

where ki,j represents the probability of the transition from i-th to the j-th state. For instance,
k1,2 = 0.7 is the probability of jumping from state 1 to state 2. Let us consider the eigenvalue
problem

Kp = λp,

where λ ∈ R and p is 3 × 1 generic vector. The eigenvalues of K are λ1 = 1, λ2 = −0.4772
and λ3 = 0.3772. The eigenvector associated to λ1 = 1 is the invariant probability mass function
(pmf)

π̄ = [0.1630, 0.3804, 0.4565]>.
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This pmf is called invariant since
Kπ̄ = π̄,

i.e., for a dynamical point of view, π̄ is a fixed point for the application K. Moreover, the fixed
point π̄ is attractive and stable. Indeed, let us consider now the starting pmf p0 = [0, 0, 1]>, and
the following recursion

pt+1 = Kpt, for t = 0, 1, 2, . . . ,

that can be also written as pt+1 = Ktp0. We can observe that

p1 = Kp0 = [0, 0.5, 0.5]>,

p2 = Kp1 = [0.50, 0.30, 0.55]>,
...

p13 = Kp12 = [0.1630, 0.3805, 0.4565]>,

p14 = Kp13 = [0.1630, 0.3804, 0.4565]> ≈ π̄,
...

π̄ = Kπ̄,

i.e., after 14 steps (i.e., the burn-in period), the chain has virtually reached the invariant pmf π̄.
It is possible to show that

lim
t→∞

pt = π̄, and lim
t→∞

Kt = [π̄, π̄, π̄]

i.e., the matrix Kt converges, as t grows, to a matrix whose columns are exactly π̄, so that
π̄ = K∞p0 for any possible starting pmf p0.

2 Metropolis-Hastings (MH) algorithm

Algorithm. One of the most popular and widely applied MCMC algorithm is the Metropolis-
Hastings (MH) method [42, 71, 29, 55, 84]. Nicolas Metropolis (physicist and mathematician)
came to Los Alamos (New Mexico) in 1943, during the World War II, joining a group of scientists
working on mathematical physics and the atomic bomb. In 1953, they published a first version
of the algorithm in the Journal of Chemical Physics [71]. The algorithm was generalized by W.
Hastings in 1970 [42]. In order to apply the MH method, the only requirement is to be able
to evaluate point-wise a function proportional to the target, i.e., π(x) ∝ π̄(x). For the sake of
simplicity, we assume that π(x) > 0 for all x ∈ RD. A proposal density (a pdf which is easy to
draw from) is denoted as q(x|x(t−1)) > 0, with x,x(t−1) ∈ RD. Below, we describe the standard
MH algorithm in detail.

5



The Metropolis-Hastings algorithm

1. Choose an initial state x(0).

2. For t = 1, . . . , T :

(a) Draw a sample z′ ∼ q(x|x(t−1)).

(b) Accept the new state, x(t) = z′, with probability

α(x(t−1), z′) = min

[
1,

π(z′)q(x(t−1)|z′)
π(x(t−1))q(z′|x(t−1))

]
. (14)

Otherwise, set x(t) = x(t−1).

The algorithm returns the sequence of states {x(1),x(2), . . . ,x(t), . . . ,x(T )} or a subset of them
removing the burn-in period if an estimation of its length is available. We can see that the next
state x(t) can be the proposed sample z′ (with probability α) or the previous state x(t−1) (with
probability 1 − α). Under some mild regularity conditions, when t grows, the pdf of the current
state x(t) converges to the target density π̄(x) [85]. The MH algorithm satisfies the so-called
detailed balance condition which is sufficient to guarantee that the output chain is ergodic and
has π̄ as stationary distribution [29, 55, 85] (see proof in Section 2.3).

2.1 Elements in the MH method

Observe the MH algorithm involves the following three elements:

• the proposal density q(z|x),

• the acceptance probability α(x, z),

• and the target function π(x).

All of them can be varied, improved or extended in order to improve the performance of the
algorithm, and always ensuring the ergodicity of the chain (see Sections 2.2, 2.4 and 3). The
proposal pdf q should be chosen as close as possible to the target π. Different acceptance
probabilities α could be used, and in generalized MH methods suitable acceptance functions
must be designed in order to guarantee the ergodicity of the generated chain. Furthermore, in
some specific scenario, an artificial increase of the parameter space can be useful for improving the
performance. More specifically, higher dimensional target functions πg are studied in some cases.
The extended target πg is built in order to have the true posterior pdf π as a marginal density.
Other important considerations about the MH method are:

• the inference is directly performed in the D-dimensional space, i.e., using a block approach
(unlike in a component-wise strategy; see Section 3),

• only one sample z′ is proposed as new possible state,
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• the dimensionality of the problem D is considered fixed,

• the only requirement is to be able to evaluate π(x).

In the rest of the work, we broaden the discussion about the flexibility of the MH algorithm and
its extensions.

2.2 Particular choices of the proposal form

Some interesting cases, depending on the choice of the proposal density, are discussed below:

1. Symmetric proposal: if the proposal satisfies the equality q(z|x) = q(x|z), then the
acceptance probability is simplified, i.e.,

α(x, z) = min

[
1,
π(z)

π(x)

]
, (15)

depending only on the evaluation of the target function π. This special case is interesting
since it clarifies the strict relationship between the sampling and optimization problems.
Indeed, in this case, we have

α(x, z) =





1, if π(z) ≥ π(x),

π(z)

π(x)
, if π(z) < π(x),

(16)

i.e., the samples providing higher values of π are always accepted, whereas the samples
providing smaller values of π are only accepted according to a certain probability. Figure 1
depicts this scenario.

x(t�1)
z0 z0

↵ =
⇡(z0)

⇡(x(t�1)) ⇡(x)

x

↵ = 1

Figure 1: With a symmetric proposal, the “uphill” samples z′ are always accepted as next state.
The “downhill” jumps are accepted with probability α = π(z′)

π(x(t−1))
.

Variant for Optimization. The simulated annealing method is an optimization algorithm
[49, 59, 44] which can be considered a variant of the MH method where the target π is
tempered (i.e., scaled) in order to decrease the probability of accepting the new points z’s
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with smaller values π(z) w.r.t. the current state x. More specifically, in simulated annealing,
the α is modified as

α(x, z) = min

[
1,

(
π(z)

π(x)

)γt]
, (17)

where γt ∈ [1,∞) and for optimization purposes is an increasing function of t, i.e.,

γ0 = 1 ≤ γ1 ≤ γ2 ≤ · · · ≤ γt <∞.

Indeed, for γt > 1 and z 6= x, if π(z) > π(x) we have
(
π(z)
π(x)

)γt
> π(z)

π(x)
> 1 whereas, if

π(z) < π(x), we have
(
π(z)
π(x)

)γt
< π(z)

π(x)
so that the ratio

(
π(z)
π(x)

)γt
is closer to zero.

2. Independent proposal: if the proposal pdf is independent on the previous state of the
chain, i.e., q(z|x) = q(x), the acceptance probability is

α(x, z) = min

[
1,
π(z)q(x)

π(x)q(z)

]
, (18)

= min

[
1,
w(z)

w(x)

]
, (19)

where w(x) = π(x)
q(x)

is the weight associated to the sample x in the standard importance

sampling technique [17, 27, 28, 26, 64, 63].

3. Optimal proposal: if q(x) = π̄(x), i.e., the proposal coincides with the target pdf (recall
π̄(x) ∝ π(x)), we have

α(x, z) = 1, (20)

hence all the proposed samples are accepted since they are distributed as π̄(x). The produced
states are independent and, as consequence, they have zero correlation among each other.

4. Random walk proposal: this is the case when the proposal pdf can be expressed as
q(z|x) = q(z− x), i.e., x plays the role of a location parameter (as the mean). This choice
presents an interesting explorative behavior since the location of the proposal follows a
random walk around the parameter space, according to the states of chain.

Example 2. An example of a both symmetric and random walk proposal is

q(z|x) ∝ exp

(
−(z− x)2

2σ2

)
, (21)

i.e., a Gaussian density with mean x and covariance matrix σ2ID.3

3With ID, we have denoted the identity matrix of dimensions D ×D.
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2.3 Invariant distribution of the MH algorithm

Let us denote as K(z|x) the transition function (or kernel) that determines the probability of
moving from the state x to the state z of an MCMC algorithm. A generic MCMC technique has
π̄(x) as an invariant (or stationary) distribution if its kernel satisfies

∫

RD

K(z|x)π̄(x)dx = π̄(z), (22)

i.e., π̄(x) plays the role of an eigenfunction w.r.t. the integral operator including K(z|x) associated
to an eigenvalue 1 (see Ex. 1 for the discrete case). A sufficient condition which implies the
equation above is the detailed balance condition [85],

π̄(x)K(z|x) = π̄(z)K(x|z). (23)

If the condition above if fulfilled, π̄ is invariant w.r.t. K and the chain is also reversible [29, 85].
This condition is equivalent to Eq. (22) since by integrating both sides of (23) w.r.t. x, we obtain

∫

RD

π̄(x)K(z|x)dx =

∫

RD

π̄(z)K(x|z)dx, (24)
∫

RD

π̄(x)K(z|x)dx = π̄(z). (25)

In the following, we show that the MH technique yields a reversible chain, with invariant pdf
π̄(x) ∝ π(x), by proving that it fulfills the detailed balance condition. The kernel of the MH
method is

K(z|x) =

{
q(z|x)α(x, z), for x 6= z,

βr(x), for x = z,
(26)

where

βr(x) = 1−
∫

RD
q(v|x)α(x,v)dv,

is the rejection probability of a proposed generic state given that the previous state is x [5]. In
the case z = x, the kernel is a Dirac delta function. For z 6= x, the balance condition is

π(x)K(z|x) = π(x)q(z|x)α(x, z),

= π(x)q(z|x) min

[
1,
π(z)q(x|z)

π(x)q(z|x)

]
,

= min [π(x)q(z|x), π(z)q(x|z)] ,

(27)

where we have replaced the expression of α(x, z) in Eq. (14). We can observe that (27) is
symmetric w.r.t. the variables x and z (i.e., they can be interchanged without varying the
expression), then we can write π(x)K(z|x) = π(z)K(x|z), which is precisely the detailed balance
condition. About the possible rates of convergence of an ergodic chain, see [78, 93].
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2.4 Alternative acceptance functions

General form. There exist other alternative acceptance functions α(x, z) which yield reversible
MH kernels (i.e., that satisfy the balance condition). Let us define

r(x, z) =
π(z)q(x|z)

π(x)q(z|x)
, (28)

and a function h(r) : R+ → [0, 1] that satisfies the following property

h(r) = rh(r−1). (29)

Then any acceptance probability defined as

α(x, z) = h ◦ r(x, z) = h(r(x, z)), (30)

is suitable in order to fulfill the balance condition (see [13] for a similar discussion). A more
general formulation is

α(x, z) = λ(x, z)h(r(x, z)), (31)

where λ(x, z) = λ(z,x) is a symmetric function satisfying 0 ≤ α(x, z) ≤ 1 for all possible x and
z. Noting that r(z,x) = 1

r(x,z)
and recalling Eq. (29), for the α functions defined in Eq. (30) we

can also write

α(x, z) = h(r(x, z)) = r(x, z)h(r(x, z)−1),

= r(x, z)h(r(z,x)),

and finally we obtain

α(x, z) = r(x, z)α(z,x). (32)

Therefore, employing the property above, we can easily prove the detailed balance condition as
follows

π(x)q(z|x)α(x, z) = π(x)q(z|x)r(x, z)α(z,x),

= π(x)q(z|x)
π(z)q(x|z)

π(x)q(z|x)
α(z,x),

= π(z)q(x|z)α(z,x).

Examples. Considering Eq. (30) and choosing h(r) = min[1, z] we have again α(x, z) =

min
[
1, π(z)q(x|z)

π(x)q(z|x)

]
. Choosing h(r) = 1

1+ 1
r

, considering Eq. (31) and recalling r(x, z) = 1
r(z,x)

,

we obtain the so-called Hastings’ generalization [42],

α(x, z) =
λ(x, z)

1 + π(x)q(z|x)
π(z)q(x|z)

=
λ(x, z)

1 + 1
r(x,z)

(33)

=
λ(x, z)

1 + r(z,x)
, (34)

=
r(x, z)λ(x, z)

r(x, z) + 1
, (35)

10



With λ(x, z) = 1, we obtain Barker’s acceptance function [6],

α(x, z) =
π(z)q(x|z)

π(z)q(x|z) + π(x)q(z|x)
. (36)

=

π(z)
q(z|x)

π(z)
q(z|x) + π(x)

q(x|z)
=

w(z|x)

w(z|x) + w(x|z)
, (37)

where, in the second line, we have multiplied numerator and denominator by 1
q(x|z)q(z|x) and we

have denoted w(x|z) = π(x)
q(x|z) (in the same fashion of an importance sampling weight [57, 85]).

Different discussions about the relationship of the Barker’s acceptance function with resampling
procedures and extensions with different numbers of proposed samples can be found in [75, 20, 65].
The Hastings’ generalization in Eq. (33) includes also the standard acceptance function in Eq.
(14) for λ(x, z) = 1 + min [r(x, z), r(z,x)]. Indeed, replacing this choice of λ(x, z) into Eq. (35),
we have

α(x, z) =
r(x, z)λ(x, z)

r(x, z) + 1
,

=
r(x, z)(1 + r(x, z))

r(x, z) + 1
= r(x, z), if r(x, z) < r(z,x),

and

α(x, z) =
r(x, z)λ(x, z)

r(x, z) + 1
,

=
r(x, z)(1 + r(z,x))

r(x, z) + 1
,

=
r(x, z)(1 + 1

r(x,z)
)

r(x, z) + 1
= 1 if r(x, z) ≥ r(z,x).

Therefore, with λ(x, z) = 1 + min [r(x, z), r(z,x)], we obtain α(x, z) = min[1, r(x, z)]. Figure 2
provides a graphical representation of these connections among the two general forms Eq. (30)
and (31) and their specific cases.

Best choice. Within this class of acceptance functions, the best choice following Peskun’s
ordering [79, 92] is the standard acceptance function min [1, r(x, z)]. Indeed, recalling Eqs. (30)-
(32) (and always we have 0 ≤ α ≤ 1), it is possible to show that

α(x, z) = r(x, z)α(z,x) ≤ min [1, r(x, z)] , (38)

i.e., roughly speaking, keeping fixed the proposal and target functions, the standard acceptance
function provides higher acceptance rates.
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Figure 2: Relationships among the general forms of the acceptance function and the specific cases.

Other examples. Other possible alternatives have appeared. For instance, the following
acceptance probabilities have been proposed in the literature,

α(x, z) =
π(z)

q(z|x)
ρ(x, z), α(x, z) =

1

q(z|x)π(x)
ρ(x, z), (39)

α(x, z) =
q(x|z)

π(x)
ρ(x, z), α(x, z) = q(x|z)π(z)ρ(x, z), (40)

where ρ is a symmetric function, ρ(x, z) = ρ(z,x), such that 0 ≤ α(x, z) ≤ 1 for all x, z ∈ RD.

2.5 Acceptance rate

In the MH method, a tentative sample is drawn from a proposal distribution and then a test is
carried out to determine whether the state of the chain should jump to the new proposed value
or not. This test depends on the acceptance probability α. If the jump is not accepted (with
probability 1 − α), the chain remains in the same state as before. We can define the acceptance
rate as

aR =

∫

D2

α(x, z)q(z|x)π̄(x)dzdx ≈ 1

T

T∑

t=1

α(x(t−1), z(t)), (41)

where the last expression is a Monte Carlo approximation of the integral in Eq. (41) where x(t−1)

represents the state of an MH chain at the (t− 1)-th iteration, and z(t) is the proposed sample at
the t-th iteration,4 i.e., z(t) ∼ π(z|x(t−1)). Clearly, 0 ≤ aR ≤ 1.

4Since the chain has π̄ as invariant pdf, we have x(t−1) ∼ π̄(x) after a “burn in” period. Namely, after a certain
number of iterations, we have (x(t−1), z(t)) ∼ q(z(t)|x(t−1))π̄(x(t−1)).
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Optimal acceptance rate a∗R. Given a target π̄(x) and choosing the class of the proposal
functions to be used as qσ(x|x(t−1)), where σ represents a scale parameter, there exists an optimal
scale parameter σ such that we obtain an optimal value a∗R. This optimal acceptance rate a∗R
minimizes the correlation among the samples within the chain. Unlike in a rejection sampler
[36, 85], this optimal rate a∗R is in general unknown. Moreover, it varies depending on the specific
problem, and in general differs from 1 (i.e., a∗R 6= 1 in a generic sampling problem). In [86], under
certain assumptions, the authors obtain a∗R ≈ 0.234 whereas, considering another scenario, the
authors of [87, 88] obtain a∗R ≈ 0.574.

Scenarios where aR ≈ 1. Above, we have observed that the optimal acceptance rate a∗R
generally differs from 1. However, in some scenarios, acceptance rates close to 1 could show that
the proposal and the target functions have similar shapes and the MH sampler provides excellent
performance. In other scenarios, it can mean catastrophic behaviors in terms of performance.
Below, we list two different scenarios where we can have aR ≈ 1:

1. When the proposal coincides with the target density, i.e., q(x) = π̄(x). This is clearly
an ideal case, where the MH method is converted into an exact sampler, providing the
optimal possible Monte Carlo performance, i.e., i.i.d. samples from the target π̄(x) (without
considering negative correlation among the samples). In this case, aR = 1.

2. When the scale parameter σ of the proposal pdf qσ(x|x(t−1)) is very small w.r.t. the variance
of the target. In this case the MH sampler tends to accept any proposed candidate in order
to explore as quickly as possible the state space. The performance is often poor with high
correlation among the generated samples.

In more sophisticated MH-type algorithms other similar scenarios exist. For instance, in
certain advanced MCMC techniques, as the Multiple Try Metropolis (MTM) method [58] or
the Independent Doubly Adaptive Metropolis Sampling (IA2RMS) technique [69], if certain
parameters grow to infinity, then aR → 1. In this case, the performance can be extremely good,
providing virtually independent samples, but with an increased computational cost. The key point
in these kind of methods is how they handle the trade-off between performance and computational
cost. Another example where aR = 1 occurs in an ideal (and only theoretical) scenario in the
Hamiltonian Monte Carlo approach when the Hamiltonian equations can be solved analytically
and no numerical integration steps (as the leapfrog method) are required [76].

3 Variants, Extensions and Enhancements

In this section, we provide a brief overview of the main variants, extensions and enhancements
of MH which can be found in literature. We summarize the main ideas and classes of algorithms
that have been widely used in different applications. This can be seen as a list of research topics
which have been (or they still are) active research areas. Note that all the points in the following
list generalize the elements and relax some of the assumptions described in Section 2.1 for the
standard MH method. This section is summarized graphically in Figure 3.
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Figure 3: Graphical representation of different variants, extensions and research lines regarding
the MH algorithm. In all these schemes, in general, x can be a discrete or continuous variable
whereas the iteration t of the chain is a discrete variable, typically t ∈ N (for continuous extensions
see, e.g., [11]).

Componentwise Metropolis sampling. The standard MH technique works directly in the D-
dimensional space of the variable of interest x = [x1, . . . , xd, . . . xD]> ∈ RD. However, component-
wise approaches [41, 48, 54, 35] working iteratively in different uni-dimensional slices of the entire
space (updating individually each component xd) are possible. This scheme is called Metropolis-
within-Gibbs or Componentwise Metropolis sampling [31, 56, 85]. In many applications, and for
different reasons, the component-wise approach is the preferred choice. For instance, this is
the case when the full-conditional distributions are directly provided or when the probability of
accepting a new state with a complete block approach becomes negligible as the dimension of the
problem D increases. The Metropolis-within-Gibbs strategy can be applied with uni-dimensional
slices (updating component by component) applying the MH for drawing from univariate full-
conditional pdfs. Block-wise MH-within-Gibbs sampling approaches where several components
are updated simultaneously have been also proposed.
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Improving the proposal and gradient-based approaches. The performance of the MH
technique depends strongly on the choice of the proposal density. With a proposal pdf closer to
the target density, the algorithm provides a sequence of states with less correlation among each
other and, as a consequence, Monte Carlo estimators with smaller Mean Square Error (MSE).
Therefore, several schemes adapting the proposal function have been proposed [19, 45, 30, 23, 90]:
some of them adapt parametric functions [40, 38, 60], whereas others consider non-parametric
approaches [35, 69, 72]. The main issue with the adaptation of the proposal is to ensure the
ergodicity of the resulting chain [43, 89].

Another way for improving the proposal is to incorporate any information available in advance
about the target pdf. For instance, we can use the information provided by the gradient of the
target posterior density: this is the idea in the Metropolis-adjusted Langevin algorithm (MALA)
[87, 55, 85]. A more general approach, containing MALA as a special case, is given by the
Hamiltonian Monte Carlo (HMC) schemes [76]. In HMC, the target pdf is extended by creating
a complete artificial variable p ∈ RD (inspired by the momentum in physics) and the joint
generalized target πg is defined following the Hamiltonian, i.e., − log πg(x) = − log π(x) + 1

2
p2

[76] where 1
2
p2 plays the role of kinetic energy.

Several tries per iteration. In the MH technique, at each iteration one new sample z′ is
generated to be tested with the previous state x(t−1) by the acceptance probability α(x(t−1), z′).
Other generalized MH schemes generate several candidates at each iteration to be tested as new
possible state. In all these schemes, the acceptance probability α is properly designed in order
to guarantee the ergodicity of the chain. The Multiple Try Metropolis (MTM) algorithms are
examples of this class of methods [58, 21, 22, 68], whereN samples are drawn from the proposal pdf,
then one of them is selected according to some suitable weights, and finally the selected candidate
is accepted as new state according to a generalized probability function α. A similar approach is
the so-called Ensemble MCMC (EnMCMC) technique [75, 20, 65]. When an independent proposal
q(z) is employed, the EnMCMC scheme can be seen as an MH generalization using an extended
Barker acceptance function (see Section 2.4). Moreover, both MTM and EnMCMC can be also
interpreted as a way to combine an MCMC approach with the resampling procedure [68, 65].
Another interesting scheme (possibly) drawing different candidates per iteration is the Delaying
Rejection MH (DRMH) algorithm [94]. In DRMH, if the generated sample z′1 is rejected according
to the probability α1, then a new candidate z′2 is drawn and tested according to a new suitable
probability α2 (ensuring the ergodicity). If z′2 is rejected the process continues, generating a new
sample z′3. The information provided by the rejected tries z′1, z

′
2 can be used for improving the

proposal function. If z′2 is accepted, then the chain is moved forward. The main advantage of
all these schemes (MTM, EnMCMC and DRMH) is that they can explore a larger portion of the
sample space, at the expense of a higher computational cost per iteration (more evaluations of the
target are needed at each iteration).

The particle Metropolis-Hastings (PMH) method [2] belongs to the MTM family: in this case,
the N samples (called particles) and the corresponding weights are generated sequentially via
sequential importance resampling, a.k.a., particle filtering technique [62, 66]. The presence of
the resampling steps adds correlation among the N tries (particles) but the ergodicity is not
jeopardized (note also that several MTM schemes with correlated tries have been proposed in
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literature [22, 67]). In the so-called particle marginal MH (PM-MH) algorithm [2], a subset of
parameters is generated sequentially and the rest of the parameters are drawn with a standard
block approach. This fits particularly well for making inference in state space models where
the dynamical variables are drawn by a particle filter and the unknown (static) parameters are
generated in a standard way (using a proposal pdf with a block approach). More specifically,
the PM-MH performs as an MTM scheme w.r.t. to the dynamic parameters, whereas PM-MH
performs as a standard MH w.r.t. the static parameters [66]. Furthermore, PMH and MTM using
an independent proposal pdf can be also interpreted as standard MH schemes when an extended
importance sampling theory is employed [62].

Parallel chains, tempering of the target, and parallel implementation. For a fixed
computational cost, the use of a longer single MH chain should be better than the use of
several shorter independent runs, in terms of convergence (in order to exceed the burn-in period).
However, in certain scenarios (as a multimodal target pdfs, for instance), there is not a clear
advantage of using single longer chain with respect to employing independent parallel chains (IPCs)
[50, 65]. IPCs can foster the exploration of the state space and improve the overall performance.
Several studies suggest different ways for exchanging information among the parallel chains that,
in this case, are no longer independent [65, 23, 34]. These schemes are often combined with the
idea of defining an extended target

π̄g(x1, . . . ,xR) ∝
R∏

r=1

πr(xr), (42)

where π1(x1) = π(x) is the original target and the other ones are tempered (i.e., scaled) versions
of π, i.e., πr(xr) = [π(x)]γr (unlike for optimization, in this case 0 < γr < 1 for all r).5 In this
type of scheme, R different chains are performed considering a different target function πr(xr),
and they exchange information in order to improve the mixing of the first one addressing π(x).
Another related topic is the parallel implementation of the standard MH algorithm, distributed
across different processors/machines. The MH method has traditionally been implemented in an
iterative non-parallel fashion. Several authors have studied its parallelization, in order to reduce
their computation time [15, 46].

Variable dimension D of the inference space (inferring D). Several applications involve
varying-dimension problem. Hence, it is necessary that the space of the parameters can change
its dimension D (x ∈ RD). For instance, this usually occurs for the joint purpose of parameter
estimation and model selection, e.g., when the number of parameters in the model is unknown.
Typically, more complex models require more parameters whereas simpler models require fewer
parameters. We can interpret that the dimension D is an additional parameter that has to be
inferred. The Reversible Jump MCMC (RJ-MCMC) algorithm proposed in [39] is an extension of
the MH method capable of jumping between spaces of different dimensionality. This is possible
with a suitable generalization of the acceptance probability function α (incorporating the Jacobian
of the transformation considered for connecting the different spaces).

5The dimension of the problem is increased, but it is considered fixed during the inference.
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When the posterior cannot be evaluated. In some applications, it is not possible to evaluate
the target function π(x). In some cases, we can compute an extended target πe(x,v) having π(x)
as marginal pdf, and we are not interested in inferring the parameter v but only x. If we cannot
evaluate directly the marginal π(x), we have to approximate this marginal pdf in some way. The
approximated MH methods for this scenario are called pseudo-marginal algorithms [8, 3]. A related
problem (as noted, e.g, in [82]) appears when the normalizing constant of the likelihood function
(a.k.a., partition function) is unknown and depends to the parameter x to be inferred. Namely, a
piece/factor of the likelihood function cannot be evaluated and must be estimated as well. This is
the case of the doubly-intractable distributions [82] and the Møller method [73] and the so-called
exchange algorithm [74]. When the entire likelihood `(y|x) is completely unknown or cannot
be evaluated, the so-called Approximate Bayesian Computation (ABC) approach can be applied
[9, 61]. In both cases, it is necessary to generate artificial data y1,y2, ...,yM ∼ `(y|x′) given a
generic parameter value x′. This task can require the use of another Monte Carlo technique (for
instance, a rejection sampler or other MCMC algorithm).

Convergence detection. Several studies have been devoted to the detection of the convergence
or lack thereof (establishing convergence bounds etc.) [29, 85]. One algorithm that avoids
this problem is the Coupling From The Past (CFTP) technique [81]. However, its design and
implementation tend to require a great care. In general, implementing CFTP for practical
application is still a difficult task.

Non-reversible algorithms. The standard MH method, as well as several its generalizations,
satisfies the detailed balance condition so that the produced chain is reversible (see Section 2.3).
However, the reversibility is only used as a theoretical tool in order to show that the generated
chains converges to the target distribution (recall that is a sufficient condition but not necessary).
However, different studies in the literature show that non-reversible Markov chains may have better
properties in terms of mixing behavior or asymptotic variance, hence providing better performance
[12, 77].
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