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† IMT Lille Douai CRISTAL (UMR 9189), Villeneuve d’Ascq (France).

Abstract—Gibbs sampling is a well-known Markov chain
Monte Carlo (MCMC) algorithm, extensively used in signal
processing, machine learning and statistics. The key point for the
successful application of the Gibbs sampler is the ability to draw
samples from the full-conditional probability density functions
efficiently. In the general case this is not possible, so in order to
speed up the convergence of the chain, it is required to generate
auxiliary samples. However, such intermediate information is
finally disregarded. In this work, we show that these auxiliary
samples can be recycled within the Gibbs estimators, improving
their efficiency with no extra cost. Theoretical and exhaustive
numerical comparisons show the validity of the approach.
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I. INTRODUCTION

Many applications in statistical signal processing, machine
learning and statistics, demand fast and accurate procedures
for drawing samples from probability distributions that exhibit
arbitrary, non-standard forms [1]–[5]. One of the most popular
approaches are the Markov chain Monte Carlo (MCMC)
algorithms [1], [6]. MCMC techniques generate a Markov
chain (i.e., a sequence of correlated samples) with a pre-
established target probability density function (pdf) as invari-
ant density [7].

The Gibbs sampling technique is a well-known MCMC
algorithm, extensively used in the literature in order to gener-
ate samples from multivariate target densities, drawing each
component of the samples from the full-conditional densi-
ties [8]–[13]. In order to draw samples from a multivariate
target distribution, the key point for the successful applica-
tion of the standard Gibbs sampler is the ability to draw
efficiently from the univariate conditional pdfs [6], [7]. The
best scenario for Gibbs sampling occurs when specific direct
samplers are available for each full-conditional, e.g. inversion
method or, more generally, some transformation of a random
variable [6], [14]. Otherwise, other Monte Carlo techniques,
such as rejection sampling (RS) and different flavors of
the Metropolis-Hastings (MH) algorithms, are typically used
within the Gibbs sampler to draw from the complicated full-
conditionals. The performance of the resulting Gibbs sampler
depends on the employed internal technique, as pointed out
for instance in [15]–[18].

In this context, some authors have suggested using more
steps of the MH method within the Gibbs sampler [19]–[21].
Moreover, other different algorithms have been proposed as
alternatives to the MH technique [9], [15], [22], [23]. For
instance, several automatic and self-tuning samplers have been

designed to be used primarily within-Gibbs: the adaptive rejec-
tion sampling (ARS) [24], [25], the griddy Gibbs sampler [26],
the FUSS sampler [18], the Adaptive Rejection Metropolis
Sampling (ARMS) method [13], [16], [27], [28], and the
Independent Doubly Adaptive Rejection Metropolis Sampling
(IA2RMS) technique [17], just to name a few.

Most of the previous solutions require performing several
MCMC steps for each full-conditional in order to improve
the performance, although only one of them is considered
to produce the resulting Markov chain because the rest of
samples play the mere role of auxiliary variables. Strikingly,
they require an increase in the computational cost that is not
completely paid off: several samples are drawn from the full-
conditionals, but only a subset of these generated samples is
employed in the final estimators. In this work, we show that the
rest of generated samples can be directly incorporated within
the corresponding Gibbs estimator. We call this approach the
Recycling Gibbs (RG) sampler since all the samples drawn
from each full-conditional can be used also to provide a better
estimation, instead of discarding them.

The consistency of the proposed RG estimators is guar-
anteed, as will be noted after considering the connection
between the Gibbs scheme and the chain rule for sampling
purposes [6], [14]. RG fits particularly well combined with
adaptive MCMC schemes where different internal steps are
performed also for adapting the proposal density, see e.g. [13],
[16], [17], [28]. The novel RG scheme allows us to obtain
better performance without adding any extra computational
cost as shown by numerical simulations. We test RG for
learning the hyperparameters of a Gaussian Process with
automatic relevance determination (ARD) kernel [29].

II. PROBLEM STATEMENT AND BACKGROUND

In many applications, the goal is to infer a variable of
interest, x = [x1, . . . , xD] ∈ RD, given a set of observations
or measurements, y ∈ RP . In Bayesian inference, we obtain
the posterior pdf

π̄(x) = p(x|y) =
`(y|x)g(x)
Z(y)

, (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf
and Z(y) is the marginal likelihood (a.k.a., Bayesian evi-
dence). In general, Z(y) is unknown and difficult to estimate
then we assume that we are able to evaluate the unnormalized
target function,

π(x) = `(y|x)g(x). (2)
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The analytical study of the posterior density π̄(x) ∝ π(x)
is often unfeasible and integrals involving π̄(x) are typically
intractable. For instance, one might be interested in computing

I =
∫

RD
f(x)π̄(x)dx, (3)

where f(x) is an integrable function with respect to π̄. In order
to compute the intractable integral I , numerical approxima-
tions are typically required. Our goal here is to approximate
this integral by using a Monte Carlo (MC) quadrature [6], [7].
Namely, considering T independent samples from the posterior
target pdf, i.e., x(1), . . . ,x(T ) ∼ π̄(x), we build the estimator

ÎT =
1
T

T∑
t=1

f(x(t))
p−→ I. (4)

This means that for the weak law of large numbers, ÎT
converges in probability to I . In general, a direct method for
drawing independent samples from π̄(x) is not available, and
alternative approaches, e.g., MCMC algorithms, are needed.

A. The Standard Gibbs (SG) sampler

The Gibbs sampler is arguably the most used MCMC
algorithm in signal processing, statistics and machine
learning [6], [8], [9], [11]. Let us define x¬d :=
[x1, . . . , xd−1, xd+1, . . . , xD] and introduce the following
equivalent notations

π̄d(xd|x1:d−1, xd+1:D) ≡ π̄d(xd|x¬d).

In order to denote the unidimensional full-conditional pdf of
the component xd ∈ R, d ∈ {1, . . . , D}, given the rest of
variables x¬d, i.e.

π̄d(xd|x¬d) =
π̄(x)

π̄¬d(x¬d)
=

π̄(x)∫
R π̄(x)dxd

. (5)

The density π̄¬d(x¬d) =
∫

R π̄(x)dxd is the joint pdf of
all variables, except xd. The Gibbs algorithm generates a
sequence of T samples, and is formed by the steps in Alg. 1.

Algorithm 1 The Standard Gibbs (SG) algorithm
1: Fix T , D
2: for t = 1, . . . , T do
3: for d = 1, . . . , D do
4: Draw x

(t)
d ∼ π̄d(xd|x

(t)
1:d−1, x

(t−1)
d+1:D)

5: end for
6: Set x(t) = [x(t)

1 , x
(t)
2 , . . . , x

(t)
D ]

7: end for

B. Monte Carlo-within-Gibbs sampling

The main assumption for the application of Gibbs sampling
is the ability to draw efficiently from these univariate full-
conditional pdfs π̄d, which is not possible in general. Thus,
other Monte Carlo techniques are needed for drawing from
π̄d. For instance, depending on the specific scenario, the
alternatives are: the adaptive rejection samplers (ARS) [25],

[30]–[32] when they can be applied, and additional MCMC
samplers as the standard Metropolis-Hastings (MH) method or
its adaptive/automatic versions [15]–[17], [22], [26], [28], [33],
[34]. The application of other MCMC method within Gibbs
can require the generation of intermediate points but only one
of them is used for the next iteration of the Gibbs sampler
[16], [19]–[21]. In this work, we show that these auxiliary
samples can employed inside the final estimators.

III. CHAIN RULE AND THE GIBBS SAMPLING

For the sake of simplicity, let us consider a bivariate target
pdf that can be factorized according to the chain rule,

π̄(x1, x2) = π̄2(x2|x1)p1(x1)
= π̄1(x1|x2)p2(x2),

where p1 and p2 denote the marginal pdfs and, π̄2 and π̄1,
are the conditional pdfs. Let us consider the first equality.
Clearly, if we are able to draw from the marginal pdf p1(x1)
and from the conditional pdf π̄2(x2|x1), we can draw samples
from π̄(x1, x2) following the chain rule procedure in Alg. 2.
Note that, consequently, the T independent random vectors
[x(t)

1 , x
(t)
2 ], with t = 1, . . . , T , are all distributed as π̄(x1, x2).

Algorithm 2 Chain rule method
1: for t = 1, . . . , T do
2: Draw x

(t)
1 ∼ p1(x1) and x(t)

2 ∼ π̄2(x2|x(t)
1 )

3: end for

A. Standard Gibbs sampler as the chain rule

Considering the previous bivariate case, the standard Gibbs
sampler consists in the following two steps (a) x

(t)
2 ∼

π̄1(x2|x(t−1)
1 ), (b) x(t)

1 ∼ π̄2(x1|x(t)
2 ) and then set x(t) =

[x(t)
1 , x

(t)
2 ]. After the burn-in period, i.e., t ≥ tb, we

have x(t) ∼ π̄(x). Therefore, recalling that π̄(x1, x2) =
π̄2(x2|x1)p1(x1) = π̄1(x1|x2)p2(x2) for t ≥ tb, each com-
ponent of the vector x(t) = [x(t)

1 , x
(t)
2 ] is distributed as

the corresponding marginal pdf, i.e., x(t)
1 ∼ p1(x1) and

x
(t)
2 ∼ p2(x2). Therefore, after tb iterations, the standard

Gibbs sampler can be interpreted as the application of the
chain rule procedure of Alg. 2.

B. Alternative chain rule procedure

An alternative procedure is shown in Alg. 3. This chain
rule draws M samples from the full conditional π̄2(x2|x1) at
each t-th iteration, and generates samples from the joint pdf
π̄(x1, x2).

Algorithm 3 An alternative chain rule procedure
1: for t = 1, . . . , T do
2: Draw x

(t)
1 ∼ p1(x1)

3: Draw x
(t)
2,m ∼ π̄2(x2|x(t)

1 ), with m = 1, . . . .M
4: end for

Note that all the TM vectors, [x(t)
1 , x

(t)
2,m], with t = 1, . . . , T

and m = 1, . . . ,M , are samples from π̄(x1, x2). This scheme
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is valid and, in some cases, it can present some benefits w.r.t.
the traditional scheme in terms of performance, depending
on certain statistical features of the joint pdf π̄(x1, x2). For
instance, the correlation between variables x1 and x2, and the
variances of the marginal pdfs p1(x1) and p2(x2).

At this point, a natural question arises: is it possible to
design a Gibbs sampling scheme equivalent to the alternative
chain rule scheme described before? The answer is in the next
section.

IV. THE MULTIPLE RECYCLING GIBBS SAMPLER

Based on the previous considerations, we design the Mul-
tiple Recycling Gibbs (MRG) sampler which draws M > 1
samples from each full conditional pdf, as shown in Alg. 4.

Algorithm 4 Multiple Recycling Gibbs (MRG) sampler

1: Choose a starting point [z(0)
1 , . . . , z

(0)
D ]

2: for t = 1, . . . , T do
3: for d = 1, . . . , D do
4: for m = 1, . . . ,M do
5: Draw x

(t)
d,m ∼ π̄d(xd|z

(t)
1:d−1, z

(t−1)
d+1:D)

6: Set x(t)
d,m = [z(t)

1:d−1, x
(t)
d,m, z

(t−1)
d+1:D]

7: end for
8: Set z(t)

d = x
(t)
d,M

9: end for
10: end for
11: return {x(t)

d,m} for all d, m and t

For a given test function f(x) in the integral of Eq. (3), the
MRG estimator is eventually formed by TDM samples, i.e.,
without removing any burn-in period, as

ÎT =
1

TDM

T∑
t=1

D∑
d=1

M∑
m=1

f(x(t)
d,m). (6)

Observe that in order to go forward to sampling from the
next full-conditional, we only consider the last generated
component, i.e., z(t)

d = x
(t)
d,M . However, an alternative to step 8

of Algorithm 4 is: (a) draw j ∼ U(1, . . . ,M) and (b) set
z
(t)
d = x

(t)
d,j . Note that choosing the last sample x(t)

d,M is more
convenient for an MCMC-within-MRG scheme.

The MRG sampler is equivalent to the alternative chain rule
scheme described in the previous section, so that the consis-
tency of the MRG estimators is guaranteed. The ergodicity of
the generated chain is also ensured since the dynamics of the
MRG scheme is identical to the dynamics of the SG sampler,
although they differ in the construction of final estimators.

The MRG approach is convenient in terms of accuracy and
computational efficiency, as also confirmed by the numerical
results in Section V. MRG is particularly advisable if an
adaptive MCMC is employed to draw from the full-conditional
pdfs, i.e., when several MCMC steps are performed for sam-
pling from each full-conditional and adapting the proposal. We
can use all the sequence of samples generated by the internal
MCMC algorithm in the resulting estimator.

V. NUMERICAL EXAMPLE: LEARNING
HYPERPARAMETERS IN GAUSSIAN PROCESSES

In section, we test the proposed approach for the estimation
of hyperparameters of the Automatic Relevance Determination
(ARD) kernel function for Gaussian processes (GPs) [29,
Chapter 6], [35]. The MATLAB code of this numerical ex-
ample is provided at http://isp.uv.es/code/RG.zip.

Let us assume observed data pairs {yj , zj}Pj=1, with yj ∈ R
and

zj = [zj,1, zj,2, . . . , zj,L]> ∈ RL,

where L is the dimension of the input features. We also denote
the corresponding P × 1 output vector as y = [y1, . . . , yP ]>

and the L× P input matrix as Z = [z1, . . . , zP ]. We address
the regression problem of inferring the unknown function f
which links the variable y and z. Thus, the assumed model is

y = f(z) + e, (7)

where e ∼ N(e; 0, σ2), and that f(z) is a realization of a
GP [35]. Hence f(z) ∼ GP(µ(z), κ(z, r)) where µ(z) = 0,
z, r ∈ RL, and we consider the ARD kernel function

κ(z, r) = exp

(
−

L∑
`=1

(z` − r`)2

2δ2`

)
, with δ` > 0 (8)

and ` = 1, . . . , L. Note that we have a different hyper-
parameter δ` for each input component z`, hence we also
define δ = δ1:L = [δ1, . . . , δL]. Using ARD allows us
to infer the relative importance of different components of
inputs: a small value of δ` means that a variation of the `-
component z` impacts the output more, while a high value
of δ` shows virtually independence between the `-component
and the output [29, Chapter 6]. Given these assumptions, the
vector f = [f(z1), . . . , f(zP )]> is distributed as

p(f |Z, δ, κ) = N (f ; 0,K), (9)

where 0 is a P × 1 null vector, and Kij := κ(zi, zj), for all
i, j = 1, . . . , P , is a P × P matrix. Note that in Eq. (9) we
have expressed explicitly the dependence on the input matrix
Z, on the vector δ and on the choice of the kernel family κ.
Therefore, the vector containing all the hyper-parameters of
the model is θ = [θ1:L = δ1:L, θL+1 = σ] = [δ, σ], i.e., all
the parameters of the kernel function in Eq. (8) and standard
deviation σ of the observation noise. Considering the filtering
scenario and the tuning of the parameters (i.e., inferring the
vectors f and θ), the full Bayesian solution addresses the study
of the full posterior pdf involving f and θ,

p(f ,θ|y,Z, κ) =
p(y|f ,Z,θ, κ)p(f |z,θ, κ)p(θ)

p(y|Z, κ)
, (10)

where p(y|f ,Z,θ, κ) = N (y; 0, σ2I) given the observation
model in Eq. (7), p(f |z,θ, κ) is given in Eq. (9), and p(θ)
is the prior over the hyper-parameters. We assume p(θ) =∏L+1
`=1

1

θβ`
Iθ` where β = 1.3, and Iv = 1 if v > 0, whereas

Iv = 0 otherwise. Note that the posterior in Eq. (10) is ana-
lytically intractable but, given a fixed vector θ′, the marginal
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(a) MSE versus M (T = 100).
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(b) MSE versus T .
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(c) MSE versus E (target evaluations).
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Figure 1. MSE (log-scale) of different MCMC-within-Gibbs schemes (a) as function of M (T = 100 and D = 2), (b) as function of T for different techniques
(in this case, D = 4), with M = 1 for the MH-within-SG method depicted with a solid line and circles, whereas M = 10 for the remaining curves, (c) as
function of the total number of target evaluations E = MT (D = 4). Namely, for MH-within-SG we have M = 1 and T ∈ {10, 50, 100, 200, 300, 500},
whereas for MH-within-MRG we have M = 5 and T ∈ {3, 5, 10, 20, 40, 60, 100}. The MRG approaches, shown with dashed lines, always outperform the
corresponding standard Gibbs (SG) schemes, shown with solid lines.

posterior of p(f |y,Z,θ′, κ) = N (f ; µp,Σp) is known in
closed-form: it is Gaussian with mean µp = K(K +σ2I)−1y
and covariance matrix Σp = K − K(K + σ2I)−1K [35].
For the sake of simplicity, in this experiment we focus on the
marginal posterior density of the hyperparameters,

p(θ|y,Z, κ) ∝ p(θ|y,Z, κ) = p(y|θ,Z, κ)p(θ),

which can be evaluated analytically, but we cannot com-
pute integrals involving it. Actually, since p(y|θ,Z, κ) =
N (y; 0,K + σ2I) and p(θ|y,Z, κ) ∝ p(y|θ,Z, κ)p(θ), we
have

log [p(θ|y,Z, κ)] =− 1
2
y>(K + σ2I)−1y

− 1
2

log
[
det
[
K + σ2I

]]
− β

L+1∑
`=1

log θ`,

with θ` > 0, where clearly K depends on θ1:L = δ1:L
and recall that θL+1 = σ [35]. However, the moments
of this marginal posterior cannot be computed analytically.
Then, in order to compute the Minimum Mean Square Er-
ror (MMSE) estimator, i.e., the expected value E[Θ] with
Θ ∼ p(θ|y,Z, κ), we approximate E[Θ] via Monte Carlo
quadrature. More specifically, we apply a Gibbs-type samplers
to draw from π(θ) ∝ p(θ|y,Z, κ). Note that dimension of the
problem is D = L+ 1 since θ ∈ RD.

We generated the P = 500 pairs of data, {yj , zj}Pj=1,
drawing zj ∼ U([0, 10]L) and yj according to the model
in Eq. (7), considered L ∈ {1, 3} so that D ∈ {2, 4}, and
set σ∗ = 1

2 for both cases, δ∗ = 1 and δ∗ = [1, 3, 1],
respectively (recall that θ∗ = [δ∗, σ∗]). Keeping fixed the
generated data for each scenario, we then computed the
ground-truths using an exhaustive and costly Monte Carlo
approximation, in order to be able to compare the different
techniques. We tested the standard MH within SG and MRG,
and also the Single Component Adaptive Metropolis (SCAM)
algorithm [33] within SG and MRG. SCAM is a component-
wise version of the adaptive MH method [36] where the

covariance matrix of the proposal is automatically adapted. In
SCAM, the covariance matrix of the proposal is diagonal and
each element is adapted considering only the corresponding
component: that is, the variances of the marginal densities of
the target pdf are estimated and used as a scale parameter of
the proposal pdf in the corresponding component. We averaged
the results using 103 independent runs. Figure 1(a) shows the
MSE curves (in log-scale) of the different schemes as function
of M ∈ {1, 10, 20, 30, 40}, while keeping fixed T = 100
(in this case, D = 2). Figure 1(b) depicts the MSE curves
(D = 4) as function of T considering in one case M = 1 and
M = 10 for the rest. In both figures, we notice that (1) using
an M > 1 is advantageous in any case (SG or MRG), (2)
using a procedure to adapt the proposal improves the results,
and (3) MRG, i.e., recycling all the generated samples, always
outperforms the SG schemes.

Figure 1(c) compares the MH-within-SG with the MH-
within-MRG, showing the MSE as function of the total
number of target evaluations E = MT . We set M = 5,
T ∈ {3, 5, 10, 20, 40, 60, 100} for MH-within-MRG, whereas
we have M = 1 and T ∈ {10, 50, 100, 200, 300, 500}
for MH-within-SG. Namely, we used a longer Gibbs chain
for MH-within-SG. Note that the MH-within-MRG provides
always smaller MSEs, considering the same total number of
evaluations E of the target density.

VI. CONCLUSIONS

In this work, we have shown that the efficiency of the
Gibbs estimators can be improved including some generated
auxiliary samples, without any extra computational cost. The
consistency of the resulting estimators is ensured since the
novel MRG scheme is equivalent to an alternative formulation
of the well-known chain rule method.
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