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ABSTRACT

Importance Sampling (IS) methods approximate a targeted
distribution with a set of weighted samples, drawn from a
proposal distribution. Unfortunately, a mismatch between
the proposal and the targeted distribution may endanger the
performance of the estimators. In this paper, we focus on the
so-called nonlinear IS (NIS) framework, where a nonlinear
function is applied to the standard importance weights (IWs).
The aim of this transformation is to mitigate the well-known
problem of the degeneracy of the IWs by controlling the
weight variability. We consider the clipping transformation
and test its robustness with respect to the choice of the clip-
ping value. We also propose a novel NIS methodology, where
not only a subset of weights is modified a posteriori, but also
the corresponding samples are moved. We compare these
NIS schemes with standard IS and Monte Carlo methods by
means of illustrative numerical examples.

Index Terms— Monte Carlo methods, Importance Sam-
pling, Bayesian Inference, Parameter Estimation, Variance
Reduction methods

1. INTRODUCTION

Many relevant problems in statistical signal processing in-
volve the numerical approximation of complicated multidi-
mensional integrals which have neither a closed-form expres-
sion nor an accurate analytic approximation. Importance sam-
pling (IS) is a well-known class of Monte Carlo methods,
widely applied in signal processing [1, 2, 3, 4, 5]. IS meth-
ods approximate moments of a random variable of interest by
sets of N samples, drawn from a proposal probability density
function (pdf) different from the targeted one, and weights,
assigned to the samples in order to measure their adequacy in
approximating the target pdf.

In the literature, several advanced and adaptive IS schemes
can be found [6, 7, 8, 9, 10, 11, 12, 13]. In this work, we fo-
cus on a recent improvement of the standard IS approach,
the so-called nonlinear IS method (NIS) [5, 14, 15]. NIS
applies a nonlinear transformation of the importance weights
in order to prevent the degeneracy problem of conventional

importance samplers and thereby avert their degradation in
performance.

We consider two different “clipping” transformations that
consist in clipping a certain number, NC  N , of highest im-
portance weights. In the first one, the NC highest weights are
set equal to their empirical mean. In the second one, the NC

highest weights are set equal to their minimum value. It is
possible to show that if NC 

p
N , the resulting estimators

are consistent [5, 15] (i.e., the estimator converge to the true
value as N ! 1). We point out that a scheme related to the
clipping strategy is the so-called truncated IS technique [10]
(see also [9] and [16, 17, 12] for further related discussions).
Furthermore, we extend the NIS approach combining it with
another recent contribution, the Group Importance Sampling
(GIS) technique [18]. In GIS, a single weighted sample is
used for compressing the information contained in a popula-
tion of weighted samples. The NIS scheme based on GIS con-
sists in clipping the NC highest weights (using their empirical
mean) and move all the corresponding samples (particles) to
a suitable summary sample. In this way, the estimators of the
normalizing constant of the target and of the expected value
of the target are the same as that of the standard IS approach.
In this work, we compare all the previous schemes by numer-
ical simulations in order to clarify the performance, strengths
and drawbacks of the different methodologies.

The paper is organized as follows. In the next section
we formulate the problem and provide some background on
importance sampling. In Section 3, we propose two novel NIS
schemes and in Section 4 we present numerical results that
show their performances. We make our concluding remarks
in Section 5.

2. PROBLEM STATEMENT AND BACKGROUND

2.1. Bayesian Inference

In many applications, the interest lies in obtaining the pos-
terior density function (pdf) of set of unknown parameters
given the observed data. More specifically, denoting the vec-
tor of unknowns as x 2 D ✓ Rd

x and the observed data as



y 2 Rd
y , the posterior pdf is defined as

⇡̄(x|y) =
`(y|x)g(x)

Z(y)
/ ⇡(x|y) = `(y|x)g(x), (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf,
and Z(y) is the so-called marginal likelihood.1 Generally,
we need to compute the expected value of some function of
x, f(x), with respect to the posterior pdf of x, ⇡̄(x), i.e.,

I(f) =
1
Z

Z

D
f(x)⇡(x)dx, (2)

where f(x) : D ! Rd
x can be any integrable transforma-

tion of x. As an example, if f(x) = x, then the integral I(x)
represents the expected value of the target pdf; since ⇡̄(x) is
a posterior pdf, then its expected value is the so-called Mini-
mum Mean Square Error (MMSE) estimator.

2.2. The Monte Carlo method

In many practical scenarios, we cannot obtain an analytical
solution of Eq. (2) and Monte Carlo methods are used to ap-
proximate it [2, 3]. If we are able to draw samples directly
from ⇡̄(x), we can apply the ideal Monte Carlo approach
shown in Table 1. When drawing directly from ⇡̄(x) is not
possible, the Importance Sampling (IS) approach given in Ta-
ble 2 can be applied.2 In this case, the samples are gener-
ated from a proposal pdf q(x), and then suitable importance
weights (IWs) are assigned to each sample in order to pro-
vide a final consistent estimator. Moreover, the approach IS
provides an unbiased estimator, b

Z = 1
N

PN
n=1 wn, of the

marginal likelihood Z.

Table 1: Standard Monte Carlo method

- Initialization: Choose N 2 N+.
1. Draw xn ⇠ ⇡̄(x), n = 1, ..., N .

2. Return {xn}N
n=1 or b

I(f) = 1
N

PN
n=1 f(xn).

3. NONLINEAR IMPORTANCE SAMPLING (NIS)

The key feature of NIS approach is to compute a set of trans-
formed importance weights (TIWs) by applying a nonlinear
function to the standard IWs [14] (see also [10]). The aim
of this transformation is to mitigate the well-known problem
of degeneracy of the IWs (common to many IS methods, see
[14]) by controlling the weight variability. Several possibili-
ties exist for the choice of the nonlinear transformation. Here
we present two.

1From now on, we remove the dependence on y to simplify the notation.
2Differents sampling algorithms are also available, such as rejection sam-

pling schemes and Markov Chain Monte Carlo (MCMC) methods [3, 19].
However, in this work, we focus on importance sampling.

Table 2: Importance Sampling

- Initialization: Choose q(x) and N 2 N+.
1. Draw xn ⇠ q(x), n = 1, ..., N .

2. Assign the weights wn = ⇡(x
n

)
q(x

n

) , and normalize
them as

w̄n =
wnPN
j=1 wj

, (3)

for n = 1, . . . , N .

3. Return {xn, w̄n}N
n=1 or b

I(f) =
PN

n=1 w̄nf(xn).

3.1. NIS based on Clipping

First we consider a clipping transformation that consists in
clipping the standard weights that are above a certain thresh-
old. More specifically, the weights with highest values are
modified, setting all these weights to a constant value ⌘. As a
consequence, a sufficient number of “flat” (modified) weights
is guaranteed in the regions of the space of x where the stan-
dard weights were larger. The clipping strategy automati-
cally increases the approximated Effective Sample Size (ESS)
function [20].

In this work, instead of choosing a threshold, we decide a
certain number NC  N of weights to be clipped. It is pos-
sible to show that if NC 

p
N , then the resulting estimators

are consistent, i.e., they converge to I as N !1 [5, 15]. The
NIS algorithm based on clipping is shown Table 3.

We consider two possibilities for the choice of ⌘ (see step
4): either the empirical mean or the minimum value of the
set weights to be transformed. With the former choice, NIS
keeps unaltered the estimator b

Z of the marginal likelihood
with respect to the standard IS approach [15]. In the latter, the
transformed weights introduce a bias in b

Z (see [14] for more
details). Note that the positions of the particles xn remains
unchanged with respect to the standard IS method.

3.2. NIS based on Group Importance Sampling

As a second NIS scheme, we consider the application of NIS
jointly with the so-called Group Importance Sampling (GIS)
[18]. GIS considers the assignation of a single weighted
sample which compresses the information contained in a
population of weighted samples. Namely, the information
contained in different sets of weighted samples is compressed
by using only one, yet properly selected, sample (particle),
and one suitable weight. In this case, we consider only
one group, containing the particles corresponding to the NC

greatest IWs. The resulting algorithm is shown in Table 4.
As in NIS of Table 3, the highest weights are set equal to
⌘ = 1

N
C

PN
C

i=1 wj
i

where wj1 � wj2 � ... � wj
N

. The
corresponding particles are moved, setting e

xj
i

= µ where
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Fig. 1: MSE in estimation of the first 5 non-central moments of the target pdf (shown in semilog scale), averaged over 5 · 105 independent
runs. We vary the mean of the proposal pdf µp 2 [0.1, 3], set N = 20 and consider different values of �p{0.5, 1, 5}: in (a) �p = 0.5, in (b)
�p = 1, and in (c) �p = 5.

Table 3: Nonlinear Importance Sampling (NIS) based on Clip-
ping

- Initialization: Choose q(x), N 2 N+ and NC  N .
1. Draw xn ⇠ q(x), n = 1, ..., N .

2. Assign the weights wn = ⇡(x
n

)
q(x

n

) , for n = 1, . . . , N .

3. Sort the weights in descending order,

wj1 � wj2 � ... � wj
N

. (4)

4. Compute ⌘ = 1
N

C

PN
C

i=1 wj
i

or, alternatively, ⌘ =
min{wj1 , . . . , wj

N

C

}.

5. Set ewj
i

= ⌘ for i = 1, . . . , NC , and set ewj
i

= wj
i

for i = NC + 1, . . . , N .

6. Normalize the clipped weights

w̄n =
ewnPN

j=1 ewj

, (5)

for n = 1, . . . , N .

7. Return {xn, w̄n}N
n=1 or b

I(f) =
PN

n=1 w̄nf(xn).

µ = 1P
N

C

k=1 w
j

k

PN
C

i=1 wj
k

xj
i

. The positions of the remaining

samples is unchanged. Furthermore, note that NIS based on
GIS keeps unaltered the estimator b

Z (i.e., the estimator of
the marginal likelihood) and b

I(x) (i.e., the estimator of the
expected value of the target) with respect to the standard IS
approach [15]. It is possible to show that if NC 

p
N , then

the resulting estimators are consistent exactly as in NIS based
on clipping (e.g., see [5]). Indeed, the rate N

C

N =
p

N
N ! 0

as N ! +1, so that the NIS scheme approaches the perfor-

mance of a standard IS method if NC 
p

N .

Table 4: NIS based on GIS

- Initialization: Choose q(x), N 2 N+ and NC  N .
1. Draw xn ⇠ q(x), n = 1, ..., N .

2. Assign the weights wn = ⇡(x
n

)
q(x

n

) , for n = 1, . . . , N .

3. Sort the weights in descending order,

wj1 � wj2 � ... � wj
N

. (6)

4. Compute ⌘ = 1
N

C

PN
C

i=1 wj
i

and

µ =
1

PN
C

k=1 wj
k

N
CX

i=1

wj
k

xj
i

.

5. Set ewj
i

= ⌘, e
xj

i

= µ, for i = 1, . . . , NC , and set
ewj

i

= wj
i

, e
xj

i

= xj
i

, for i = NC + 1, . . . , N .

6. Normalize the clipped weights

w̄n =
ewnPN

j=1 ewj

, (7)

for n = 1, . . . , N .

7. Return {exn, w̄n}N
n=1 or b

I(f) =
PN

n=1 w̄nf(exn).

4. NUMERICAL RESULTS

We test the different Monte Carlo techniques on a toy example
where the ground truth is known. We consider a univariate
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Fig. 2: MSE in estimation of the first 5 non-central moments of the target pdf (shown in semilog scale), averaged over 5 · 105 independent
runs. We vary the mean of the proposal pdf µp 2 [0.1, 3], set N = 2000 and consider different values of �p{0.5, 1, 5}:in (a) �p = 0.5, in
(b) �p = 1 and in (c) �p = 5,

standard Gaussian density as target pdf,

⇡̄(x) = N (x; 0, 1), (8)

and also a Gaussian proposal pdf,

q(x) = N (x;µp, �
2
p), (9)

with mean µp and variance �

2
p. We address the problem of es-

timating the first 5 non-central moments of ⇡̄(x), i.e., f(x) =
x

r with r = 1, 2, 3, 4, 5. In this case, the true values of
I(xr) =

R
R x

r
⇡̄(x)dx are I(x) = 0, I(x2) = 1, I(x3) = 0,

I(x4) = 3, and I(x5) = 0 (we know analytically the ground-
truth since the target is Gaussian). We test the different IS
schemes and the standard Monte Carlo for approximating the
five integrals I(xr) using N samples. We compute the Mean
Square Error (MSE) in the estimation, averaged over the five
integrals and over 5 · 105 independent runs. We compare

• the standard Monte Carlo scheme of Table 1, drawing
samples directly from ⇡̄(x) (denoted as Ideal MC),

• the standard IS technique in Table 2 (denoted as IS),

• the NIS method based on clipping using the value ⌘ =
1

N
C

PN
C

i=1 wj
i

for the transformed weights (denoted as
ClipIS),

• the NIS method based on clipping with ⌘ = minwj
i

with i = 1, ..., NC the transformed weights (denoted
as ClipIS-min).

• the NIS method based on GIS (denoted as GIS).

We fix the value of �p 2 {0.5, 1, 5} and N 2 {20, 2000} and
vary µp 2 [0.1, 3], computing the MSE in each scenario. We
set NC = N

5 . Note that if µp = 0 and �p = 1, we have
the ideal Monte Carlo case, q(x) ⌘ ⇡̄(x). As µp increases,
the proposal becomes more different from ⇡̄. The results are

shown in Figures 1-2 (in each figure, we have a specific value
of �p and N ).

The clipping schemes provide good performance when
there is a small discrepancy between the proposal and the tar-
get functions. Moreover, they work better with high number
of samples N . ClipIS outperforms ClipIS-min in most of the
cases. GIS seems the better scheme with smaller N . Note
that the standard IS method provides the best results only
when N = 2000 and �p = 5. We can also observe that,
in several cases, the IS strategies provide smaller MSE than
the ideal Monte Carlo method. The IS schemes have always a
bias (the ideal MC estimator is unbiased) but, in those cases,
present a considerable reduction on the variance of the esti-
mators (much smaller than the ideal MC estimator).

5. CONCLUSIONS

In this work, we have introduced a novel NIS method based
on the GIS approach. Furthermore, we have compared differ-
ent advanced IS schemes by means of numerical simulations.
We have tested three different NIS schemes, jointly with the
classical IS technique and the standard Monte Carlo methods.
The NIS technique using the marginal likelihood estimation
as clipped value outperforms the corresponding NIS scheme
using the minimum value of the weights. The NIS method
based on GIS seems to work better than the other IS schemes,
when a smaller number of the samples, N , is used and when
the discrepancy between proposal and target is high. In some
scenario, the IS algorithms are even able to outperform the
standard MC scheme due to a sensible reduction of the vari-
ance of the final estimators. As future line, we consider the
design of extended NIS strategies applying the clipping idea
to different group of samples. Another possible future study
consists in generalizing the GIS technique for keeping unal-
tered further moment approximations with respect to the stan-
dard IS method.
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