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ABSTRACT
Recently, a novel MIMO transceiver architecture, which avoids the
costly conversion to/from baseband through parallel RF chains, has
been proposed. Despite its obvious advantages, the limitations of
the analog combining architecture makes necessary to develop spe-
cific transmission schemes. For instance, in the case of perfect chan-
nel state information (CSI) at the receiver, and correlation CSI at
the transmitter, the space and time encoders must operate separately
(the former works in the RF domain and the latter works in base-
band), and at different time scales: the spatial encoder or RF beam-
former must remain fixed during the transmission of a probably large
number of symbols, whereas the time encoder can work at the sym-
bol rate. In this paper we propose a transmission scheme for this
scenario with the goal of minimizing the pairwise error probabil-
ity (PEP). In particular, with the proposed scheme the symbols are
time-precoded with a unitary discrete Fourier transform (DFT) ma-
trix, and then are successively transmitted using a set of RF weights
(beamformers). The optimal spatial precoding matrix containing the
RF beamformers is obtained by matching its left eigenspace with
the eigenspace of the channel correlation matrix, applying standard
power water-filling along these directions, and choosing its right
eigenspace as any unitary matrix with unit-norm elements such as
the DFT matrix. Numerical examples illustrate the good perfor-
mance of the proposed scheme.

1. INTRODUCTION

The last years have witnessed a steady trend to move the baseband of
digital communications systems as close as possible to the antenna.
However, for multiple-input multiple-output (MIMO) systems, the
conversion to/from baseband through parallel RF chains implies that
the system cost, size and power consumption is multiplied by the
number of transmitting or receiving antennas. In order to mitigate
these drawbacks it is interesting to re-think about the pros and cons
of moving some processing from the baseband to the radio frequency
(RF) front-end.

In previous works we have proposed a novel architecture for ana-
log antenna combing in the RF domain, which is shown in Fig. 1.
With this topology, after RF signal combining, only one signal path
is required for the second mixer/intermediate-frequency chain, the
ADCs and the baseband, which obviously translates into a lower sys-
tem cost and power consumption than that of conventional MIMO

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement n◦ 213952 (MIMAX), and by the Spanish Govern-
ment (MICINN) under projects TEC2007-68020-C04-02 (MultiMIMO) and
TEC2007-30929-E.
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Fig. 1. Analog antenna combining in the RF path for MIMO com-
munications systems. Exemplarily shown for a direct-conversion re-
ceiver.

architectures. The development of this type of analog weighting RF
circuits in SiGe-BiCMOS technology [1] suitable for mass fabrica-
tion is currently being pursued within the EU funded project MI-
MAX (MIMO Systems for Maximum Reliability and Performance).
Specifically, the proposed analog RF topologies allow to achieve pre-
cise phase shifters with 360o control range and an amplitude control
with a dynamic margin of at least 20 dB.

From a signal processing point of view, one of the distinguish-
ing features of the novel topology is that the space and time encoders
operate separately and at different time scales. Specifically, beam-
forming (here also referred to as spatial encoder) is performed in
the radio frequency domain by the adaptive combiner, whereas time
encoding is carried out in the baseband. On the other hand, the com-
plex weights in the RF path change at a much slower rate than the
time encoder, which typically works at the symbol rate. Addition-
ally, we must point out that, by performing adaptive combining in the
radio frequency domain, the multiplexing gain of the MIMO system
is always limited to one. However, it has been recently shown [2–4]
that other important benefits of the MIMO channel such as spatial
diversity or array gain can be retained by the new architecture.

In this paper, we consider the design of the time and space en-
coders for minimizing the pairwise error probability (PEP) under
perfect channel state information (CSI) at the receiver, and corre-
lation CSI at the transmitter side. Firstly, we show that by using
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Fig. 2. Transmission scheme. The time-precoded symbols are trans-
mitted using nT different beamformers.

the optimal (maximal ratio combining) receive beamfomers, our RF-
MIMO scheme can be written as a set of single-input single-output
(SISO) channels, which are orthogonal in time. Therefore, our prob-
lem reduces to finding separate optimal time and space encoders.
Specifically, the optimal full-diversity time encoder consists of a
shifted version of the discrete Fourier transform (DFT) matrix. On
the other hand, the design of the space encoder resembles the con-
ventional problem of optimal precoding for correlated MIMO chan-
nels and, in fact, the solution is rather similar: statistical waterfilling
over the strongest modes of the transmit covariance matrix. How-
ever, a direct application of this solution to the analog combining
architecture would require to change the energy of the RF transmit
beamformers through time and, therefore, is not adequate for imple-
mentation. To avoid this problem, an additional set of constraints en-
forcing transmit beamformers of constant energy must be introduced
in the optimization problem. These new constraints are satisfied by
mixing the strongest modes of the transmit correlation matrix by a
unitary matrix with unit-norm elements (the DFT matrix is again
used for this purpose). Finally, some simulation examples illustrate
the performance of the proposed space-time precoding scheme.

Throughout this paper we will use bold-faced upper case letters
to denote matrices, bold-faced lower case letters for column vector,
and light-faced lower case letters for scalar quantities. The super-
scripts (·)T and (·)H denote transpose and Hermitian. ‖A‖, Tr(A)
and |A|will denote the Frobenius norm, trace and determinant of the
matrix A. Finally, diag(a) denotes the diagonal matrix with vector
a in its diagonal and I is the identity matrix of the required dimen-
sions.

2. RF-MIMO SCHEME

2.1. Transmission Scheme

In this paper we consider a flat-fading single-carrier MIMO system
with nT transmit and nR receive antennas. The MIMO channel is
assumed to be static during the transmission of a frame composed of
L symbols, which are transmitted using a set of nT different transmit
beamformers,1 which are successively applied.

As we already pointed out, due to technological limitations of
the RF circuitry, the beamformer weights must remain fixed during
the transmission of a probably large number of symbols. The trans-

1The results in the paper can be easily generalized to any other number of
transmit beamformers. However, we choose nT because this is the minimum
number of transmit beamformers to achieve full spatial diversity.
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Fig. 3. Frame structure: the grey columns form an nT × nT code-
word that conveys nT time-precoded symbols transmitted through
nT different beamformers.

missions scheme and frame structure are depicted in Figs. 2 and 3.
Specifically, we assume that a block of P time-precoded symbols are
transmitted with each beamformer (i.e.,L = PnT ), which yields the
following transmission model

ck[n] = wT [n]xk[n], k = 1, . . . , P, n = 1, . . . , nT ,

where wT [n] = [wT,1[n], . . . , wT,nT [n]]T is the n-th transmit beam-
former (RF weights) and xk[n] is the k-th symbol in the n-th block.

Defining now the nT ×nT transmit beamformer matrix (or spa-
tial encoder)

WT = [wT [1] · · ·wT [nT ]] ,

and grouping the k-th columns of each block within a frame (the
grey columns in Fig. 3), we form the following nT × nT codeword

Ck = [ck[1] · · · ck[nT ]] = WT diag(xk),

where

xk = [xk[1], . . . , xk[nT ]]T = Gsk, k = 1, . . . , P,

are the time-precoded symbols, G ∈ CnT×nT is the time encod-
ing matrix, and sk = [sk[1], . . . , sk[nT ]]T contains the information
symbols to be transmitted. Note that with this scheme each code-
word Ck can be coded and decoded independently from others.

2.2. Received Signals

The signals associated to one codeword at the nR receive antennas
are2

Y = HC + N = HWT diag(Gs) + N, (1)

where H ∈ CnR×nT is the MIMO channel, which is assumed to be
perfectly known at the receiver, and N ∈ CnR×nT is the complex
Gaussian i.i.d. noise.

Although the receiver does not have direct access to Y due to the
analog combining architecture, it is easy to prove that, independently
of the time and space encoders used at the transmiter, the optimal
receiver is based on the maximal ratio combining (MRC) technique3,
which applies the receive beamformers

wR[n] =
HwT [n]

‖HwT [n]‖ n = 1, · · · , nT .

2In the rest of the paper and for notational simplicity, we will omit the
codeword index k.

3Notice that MRC beamforming can be applied since we are assuming
perfect CSI at the receiver.
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Using the MRC receive beamformer, the observations at the out-
put of the RF combiner are given by

y =


‖HwT [1]‖ 0 · · · 0

0 ‖HwT [2]‖
. . .

...
...

. . .
. . . 0

0 · · · 0 ‖HwT [nT ]‖

Gs + n,

(2)
where n ∈ CnT×1 is the noise component after MRC beamforming,
and y ∈ CnT×1 is a sufficient statistic for the signals Y in (1).

3. DESIGN OF THE TIME AND SPACE ENCODERS

In this section we describe the main contribution of this paper, which
is the design of the time (G) and space (WT ) encoders that mini-
mize the averaged PEP when correlation channel state information
is available at the transmitter. In particular, the channel model is
written as

H = H̃R1/2,

where H̃ ∈ CnR×nT has zero-mean unit-variance i.i.d. complex
Gaussian elements and R represents the transmit antenna correla-
tion.

Our optimization problem can be written as

Minimize
G,WT

P (s→ ŝ), (3)

subject to GHG = I,

‖wT [n]‖ = 1, n = 1, . . . , nT ,

where P (s→ ŝ) denotes the average PEP between two information
vectors and the constraints guarantee a constant transmit power.

As will be shown next, an important particularity of the RF-
MIMO architecture is that the design of the time encoder G and
the spatial encoder WT are uncoupled problems and can be treated
separately.

3.1. Design of the Time Encoder G

From the data model in (2), it is easy to see that, for any choice of
the transmit beamformers, our communication system reduces to a
set of orthogonal SISO channels, which resembles the conventional
orthogonal frequency division multiplexing (OFDM) scheme. Thus,
in order to achieve full diversity, it is necessary to spread the infor-
mation symbols s over the nT time instants and the nT antennas.
This spreading is performed by the time encoding matrix G, which
can be designed following the ideas discussed in [5–8]. Specifically,
assuming maximum likelihood (ML) decoding and QAM constella-
tions, the optimal G is independent of the specific spatial encoder
WT , and it is given by a shifted version of the Fourier matrix

G =
1√
nT

FHDα, (4)

where F is the nT×nT Fourier matrix whose k-th column is f(ωk) =

[1, exp(−jωk), · · · , exp(−jωk(nT − 1))]T , with ωk = 2π(k −
1)/nT ; and Dα is a diagonal matrix that shifts the frequencies of
the Fourier grid an amount α,4 i.e.,

Dα = diag
(
[1, e−jα, . . . , e−j(nT−1)α]

)
.

4The optimal value of α depends on the codeword size [5, 6].

3.2. Design of the Space Encoder WT

Taking into account that y is a sufficient statistic for Y, the analysis
of the pairwise error probability can be based on the signals before
receive beamforming. Thus, upper-bounding the PEP by means of
the Chernoff bound [9] we obtain

P (s→ ŝ|H) ≤ exp
(
−γ

4
‖HWT diag (G(s− ŝ))‖2

)
, (5)

where γ is the signal to noise ratio. Now, the average of (5) over the
channel fading statistics yields [10]

P (s→ ŝ) ≤
∣∣∣I +

γ

4
R1/2Es,ŝR

1/2
∣∣∣−nR

,

where Es,ŝ is the codeword distance product matrix

Es,ŝ = WT diag (G(s− ŝ)) diag (G(s− ŝ))H WH
T .

Obviously, the averaged PEP (and therefore the choice of WT )
depends on the specific pair of information vectors (s, ŝ) considered.
However, it seems reasonable5 to minimize the averaged PEP be-
tween the true information vector s and its closest neighbors ŝ, i.e.,
those vectors which only differ from s in one element. With this
choice, and taking into account that the optimal G has constant norm
entries, the codeword distance product reduces to

Es,ŝ =
d2

nT
WTWH

T ,

where d is the Euclidean distance between closest symbols in the
particular constellation of s. Thus, the optimization problem in (3)
reduces to

Maximize
WT

∣∣∣∣I +
γd2

4nT
WH

T RWT

∣∣∣∣ , (6)

subject to ‖wT [n]‖ = 1, n = 1, . . . , nT .

which resembles the precoder design problem in conventional MIMO
systems [11], with the additional constraint in the energy of the
columns of WT .

Fortunately, the individual energy constraints can be easily sat-
isfied. In particular, writing the singular value decomposition (SVD)

WT = UTΛVH
T ,

where UT , VT are nT × nT unitary matrices and

Λ = diag([λ1, . . . , λnT ]),

contains the singular values, it is easy to see that the determinant in
(6) does not depend on the singular vectors VT . Therefore, we can
choose VT as any unitary matrix with constant norm elements, such
as the Fourier matrices in (4) or the Walsh-Hadamard matrix, which
ensures [12]

‖wT [n]‖2 =
Tr(Λ2)

nT
n = 1, . . . , nT .

With this choice of VT , (6) can be rewritten as

Maximize
UT ,Λ

∣∣∣∣I +
γd2

4nT
Λ2UH

T RUT

∣∣∣∣ s.t. Tr(Λ2) = nT ,

5For instance, it is easy to prove that for low SNR values, these errors
dominate the actual error probability.
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Fig. 4. Spatial power distribution under three different scenarios.
a) nT = 2, dA = 0.1λ. b) nT = 4, dA = 0.1λ. c) nT = 4,
dA = 0.25λ.

and its solution is obtained from standard majorization results [12].
Specifically, writing the eigenvalue (EV) decomposition of R as

R = URΣ2UH
R ,

the optimal beam directions are directly given by UT = UR, whereas
the optimal power allocation is obtained from a standard water-filling
technique [13]

λ2
n =

(
κ− 4nT

γd2σ2
n

)
+

, n = 1, . . . , nT ,

where σ2
n are the eigenvalues of R, (x)+ = max(0, x), and κ is the

water level, which is chosen to satisfy Tr(Λ2) =
∑nT
n=1 λ

2
n = nT .

Here we must note that, if the number of active modes (r) is
lower than nT , i.e., if the optimal WT is rank-deficient, we can
obtain similar results by means of only r beamformers. However,
this would require the change of the time-precoding matrix G. On
the other hand, the rank-deficiency of WT does not suppose any
major problem to transmit nT symbols in nT channel uses.

To summarize, the proposed scheme resembles the statistical
waterfilling approach for conventional MIMO systems, i.e., water-
filling over the channel correlation matrix. However, we only trans-
mit a stream of data, and the optimal directions are combined by
means of the matrix VT . Finally, it is interesting to point out that, in
the case of uncorrelated channels or very high signal to noise ratios
γ, the optimal space encoder is given by any unitary matrix WT .
In these cases, the proposed scheme is equivalent to the orthogonal
beam division multiplexing (OBDM) technique presented in [2] for
the case of i.i.d. (spatially uncorrelated) MIMO Rayleigh channels,
which provides full-diversity and maximum coding gain.

4. SIMULATION RESULTS

In this section, the performance of the proposed transmission scheme
is evaluated by means of simulations. We consider a block-fading
model in which the propagation coefficients remain constant for a
coherence interval of L = PnT symbols (i.e., the frame duration in
Fig. 3). The transmit correlation matrix has been obtained from the
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Fig. 5. BER curves for a system with nT = 2 antennas spaced
dA = 0.1λ and ML decoding.

Jakes model with antenna spacing of dA = 0.1λ or dA = 0.25λ,
where λ is the wavelength. In all the examples we have used QPSK
signals, and the performance of the proposed scheme has been com-
pared with a SISO system; with the OBDM technique [2], which
uses the optimal time encoder G but does not take into account
the spatial correlation (i.e., WT is unitary); and with conventional
MIMO systems using well-known space-time block codes (STBCs),
which can be linearly precoded in order to exploit the transmit cor-
relation [11].

The spatial power distribution provided by the water-filling tech-
nique under three different scenarios is illustrated in Fig. 4. As can
be seen, the transmission scheme varies from pure beamforming for
very low SNRs, which means using nT identical beamformers, to
isotropic radiation for high SNRs, which is equivalent to the OBDM
scheme (WT unitary).

In the first example, we have considered a system with nT = 2
transmit antennas spaced dA = 0.1λ and ML decoding. The sim-
ulation results are shown in Fig. 5, where we also show the results
for the well-known Alamouti scheme [14]. As can be seen, the per-
formance of the proposed scheme is almost identical to that of the
Full-MIMO system with Alamouti coding. However, as previously
pointed out, the proposed scheme only requires one RF chain at the
transmitter and receiver. Finally, as expected, the gain provided by
the knowledge of the transmit correlation decreases with the SNR.

In the second example, we have evaluated the performance of
the proposed scheme in a 4× 4 MIMO system with antenna spacing
at the transmitter side of dA = 0.1λ. In this case we have em-
ployed linear MMSE receivers to show that, although the proposed
scheme has been obtained assuming optimal ML receivers, it also
provides good results when a suboptimal receiver is used.6 The re-
sults, which are compared to that of a Full-MIMO system using a
quasi-orthogonal STBC (QSTBC) [15] are shown in Fig. 6, where
we can observe that the performance of the proposed scheme is al-
most identical to that of the QSTBC design with optimum linear
precoding.

Finally, the impact of the antenna spacing is illustrated in Fig. 7,
where the previous experiment has been repeated for dA = 0.25λ.

6Of course, the optimal transceiver under the assumption of linear re-
ceivers can differ from the solution presented in this paper.
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As expected, the gap between the proposed scheme and OBDM de-
creases with dA. However, for dA = 0.25λ and practical BER val-
ues, the gain provided by the proposed scheme is about 5 dB.

5. CONCLUSION

In this paper we have proposed a Tx-Rx scheme for a novel MIMO
transceiver that performs signal combining in the radio-frequency
domain. The main advantage of this topology is that, after com-
bining in the RF path, there is only one signal stream for baseband
processing. Consequently, the power consumption, size and system
cost can be significantly reduced compared to a conventional (full
baseband) MIMO system. In particular, we have considered the case
of perfect channel state information (CSI) at the receiver and sta-
tistical CSI at the transmitter. The proposed scheme is based on
two different encoders. On the one hand, the time encoder oper-
ates at the symbol rate and distributes the information symbols by
means of a shifted version of the Fourier matrix. On the other hand,
the spatial encoder provides the optimal directions (beamformers or
RF weights) for the transmission of the time-precoded symbols. In
summary, equipped with the proposed algorithms, the RF adaptive
antenna combining architecture is an interesting, low cost, and com-
pact solution for MIMO processing; which provides much better per-
formance than a single antenna system and can even be competitive
with full MIMO designs in some realistic scenarios.
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