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Abstract—In this paper, we study beamforming schemes for
a novel MIMO transceiver, which performs adaptive signal
combining in the radio-frequency (RF) domain. Assuming perfect
channel knowledge at the receiver side, we consider the problem
of designing the transmit and receive RF beamformers under or-
thogonal frequency division multiplexing (OFDM) transmissions.
In particular, a general beamforming criterion is proposed, which
depends on a single parameter α. This parameter establishes a
tradeoff between the energy of the equivalent SISO channel (after
Tx-Rx beamforming) and its spectral flatness. The proposed
cost function embraces most reasonable criteria for designing
analog Tx-Rx beamformers. Hence, for particular values of
α the proposed criterion reduces to the minimization of the
mean square error (MSE), the maximization of the system
capacity, or the maximization of the received signal-to-noise ratio
(SNR). In general, the proposed criterion results in a non-convex
optimization problem. However, we show that the problem can
be rewritten as a convex cost function subject to a couple of
rank-one constraints, and hence it can be approximately solved
by semidefinite relaxation (SDR) techniques. Since the computa-
tional cost of SDR for this problem is rather high, and building
on the observation that the minima of the original problem must
be solutions of a pair of coupled eigenvalue problems, we propose
yet another simple and efficient gradient search algorithm which,
in practice, provides satisfactory solutions with a moderate
computational cost. Finally, several numerical examples show the
good performance of the proposed technique for both uncoded
and 802.11a coded transmissions.

Index Terms—Analog combining, pre-FFT beamforming, or-
thogonal frequency division multiplexing (OFDM), multiple-input
multiple-output (MIMO).

I. INTRODUCTION

TO exploit the benefits (e.g., diversity or multiplexing
gain) of multiple-input multiple-output (MIMO) wireless

communication systems, all antenna paths must be indepen-
dently acquired and processed at baseband. Consequently, the
hardware costs, size and power consumption of conventional
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MIMO systems are increased accordingly. These high costs
explain in part the delay in the commercial deployment of
multiple-antenna wireless transceivers, mainly in handsets or
small cost terminals.

A RF-MIMO receiver architecture, shown in Fig. 1, solves
some of these problems by shifting spatial signal processing
from the base band to the radio-frequency (RF) front-end. The
RF-MIMO transmitter operates analogously. The basic idea
consists of applying the complex weights w[n] (gain factor and
phase shift) to the received signals as shown in Fig. 1. In this
way, after combining the weighted RF signals a single stream
of data must be acquired and processed and thus the hardware
cost and the power consumption are significantly reduced [1].
Although the multiplexing gain of the RF-MIMO transceiver
is limited to one (since we transmit/receive a single data
stream), in [2] we have shown that other benefits of the MIMO
channel such as full spatial diversity or full array gain can
be retained by the proposed architecture if proper processing
is carried out. Finally, we must point out that, although the
details on the practical implementation of the overall system
are beyond the scope of this paper, the development of this
type of analogue weighting RF circuits in BiCMOS technology
suitable for mass fabrication is currently being pursued within
the EU funded project MIMAX (MIMO Systems for Maximum
Reliability and Performance) [3]. In particular, implementation
problems such as RF impairments and quantization of the RF
weights will translate into a small performance degradation
in comparison to other alternative systems, such as pre-FFT
processing schemes [4]–[7]. However, these limitations are
justified by the significant reduction in hardware cost and
power consumption of the analog combining architecture.

From a signal processing point of view, the adaptive antenna
combining architecture in Fig. 1 poses several challenging
design problems. Specifically, in the case of OFDM trans-
missions, a conventional MIMO-OFDM receiver can compute
the fast Fourier transform (FFT) of each baseband signal, and
hence it can apply the optimal processing independently for
each subcarrier. However, the new RF-MIMO transceiver uses
the same pair of RF weights (or beamformers) for all the
subcarriers and therefore the problem is inherently coupled.

In this paper we address the problem of selecting the
beamformers under OFDM transmissions with perfect channel
state information at the receiver side. In particular, assuming
that the channel remains fixed during a sufficiently long time
period, the receiver selects the optimal transmit and receive
beamformers, and provides the former to the transmitter by
means of an ideal feedback channel.
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Fig. 1. Analog antenna combining in the RF path for MIMO communications
systems. Exemplarily shown for a direct-conversion receiver.

A. Previous Work

In the case of conventional MIMO-OFDM systems, which
we also refer to as full MIMO systems or post-FFT processing
[6], the joint design of Tx-Rx beamformers has been widely
treated in the literature. In particular, in [8], [9] a number
of interesting design criteria have been solved in closed-form
within the powerful frameworks of convex optimization and
majorization [9]–[11].

From the point of view of beamforming design, our analog
combining architecture is similar to a pre-FFT scheme, which
has been widely studied in the literature [4]–[7]. The main
motivation behind pre-FFT schemes is to reduce the cost
due to FFT calculations and, to this end, beamforming is
shifted before FFT processing. However, most of these pre-
FFT schemes only consider receive beamforming, and the
design criterion reduces to the maximization of the received
SNR (MaxSNR). In this paper we show that other design
criteria can provide significantly better performance. Thus,
although the present work has been motivated by the novel
RF-combining architecture, the obtained results can be directly
applied to pre-FFT schemes.

Finally, the statistical eigen-beamforming transmission
mode defined in the WiMAX standard [12], [13] is also based
on the application of a common transmit beamformer to a set
of subcarriers. This idea allows a feedback reduction when
compared with a maximum ratio transmission (MRT) approach
[12]–[14]. However, analogously to the pre-FFT schemes,
the design of the beamformer only considers the MaxSNR
criterion.

B. Main Contributions

In this paper we propose a general beamforming criterion
which depends on a single parameter α. This parameter estab-
lishes a tradeoff between the energy and the spectral flatness
of the equivalent SISO channel (after Tx-Rx beamforming).
Furthermore, it allows us to obtain several interesting beam-
forming criteria, such as the maximization of the received SNR
(MaxSNR, α = 0) [4]–[7], the maximization of the system
capacity (MaxCAP, α = 1) [15], and the minimization of

the mean square error (MSE) associated to the optimal linear
receiver (MinMSE, α = 2) [16]. Interestingly, although all
the criteria reduce to the MaxSNR approach in the low SNR
regime, they significantly differ for moderate or high SNRs. In
particular, as α increases, the proposed criterion sacrifices part
of the received SNR in order to improve the response of the
worst data carriers, which translates into significant advantages
in terms of capacity, MSE, and bit error rate (BER).

Analogously to the MaxSNR approach for pre-FFT MIMO
schemes [5], the proposed beamforming criterion results in
a non-convex optimization problem and has no closed-form
solution. In this paper, we analyze the associated non-convex
optimization problem and show that, in certain cases, it can
be approximately solved by means of semidefinite relaxation
(SDR) techniques. Furthermore, in order to avoid the high
complexity cost associated to SDR techniques, we propose a
suboptimal gradient search algorithm which, in combination
with a very effective initialization technique, provides very
accurate results in most of the practical cases. Finally, several
simulation examples show the advantage of the proposed
technique over the MaxSNR approach for both coded and
uncoded transmissions.

C. Organization

The data model and problem statement are presented in
Section II. In Section III we present the general beamforming
criterion and discuss its main properties. The associated op-
timization problem is analyzed in Section IV, where we also
introduce the proposed beamforming algorithm. In Section V,
the good performance of the proposed method is illustrated
by means of several simulation examples. Finally, the main
conclusions are summarized in Section VI, whereas some
technical details have been relegated to the appendix.

II. PRELIMINARIES

A. Notation

Throughout this paper we will use bold-faced upper case
letters to denote matrices, bold-faced lower case letters for
column vector, and light-faced lower case letters for scalar
quantities. Superscripts (·)T , (·)H and (·)∗ denote transpose,
Hermitian and complex conjugate, respectively. ‖A‖, Tr(A),
rank(A) and vec(A) will denote, respectively, the Frobenius
norm, trace, rank, and column-wise vectorized version of
matrix A. A � 0 means that A is Hermitian and positive
semidefinite, whereas vmax(A) is the principal eigenvector of
the Hermitian positive semidefinite matrix A. Finally, I and 0
are the identity and zero matrices of the required dimensions,
and E[·] denotes the expectation operator.

B. Main Assumptions

The main assumptions in this paper are the following:
• We do not consider RF impairments such as I/Q imbal-

ance, imperfections in the RF circuitry, or quantization
errors in the RF weights. However, we must point out
that recent advances in RF integrated circuits designed in
SiGe-BiCMOS technology [17] have made feasible the



3

combination of RF signals using precise phase shifters
with 360◦ control range and an amplitude dynamic range
of more than 20 dB. Therefore, as it will be shown in the
simulations section, we should not expect a high impact
of RF impairments in the performance of the proposed
architecture.

• As shown in Fig. 1, we only consider one RF chain
(equivalently, one FFT in the pre-FFT processing sce-
nario) at the transmitter and receiver. The extension of
the results in this paper to the case of multiple data
streams using multiple analog beamformers in parallel,
each one followed by the corresponding RF chain and
FFT block, would follow the lines in [18], [19] for the
pre-FFT MaxSNR case, and will be considered in the
future.

• The MIMO channel and noise variance are perfectly
known at the receiver side. We do not consider channel
estimation errors due to the noise, the limited number of
pilots, or the channel estimation process. On the other
hand, note that the channel estimation process can be
reduced to the sequential estimation of several single-
input single-output (SISO) frequency selective channels.
Additionally, in the case of pre-FFT systems and for
the MaxSNR criterion, the optimal beamformers can be
extracted from the signal covariance matrix, i.e., the
knowledge of the channel and noise variance is not
required [5], [7].

• The channel is unknown at the transmitter. Analogously
to the WiMAX statistical eigen-beamforming transmis-
sion mode [12], [13], the only feedback from the re-
ceiver is the optimal transmit beamformer. Therefore,
the feedback is significantly reduced in comparison with
the transmission of all the coefficients of the frequency-
selective MIMO channel. On the other hand, we must
note that under this assumption, the transmitter cannot
apply adaptive power loading techniques. The design
of the beamformers under channel knowledge at the
transmitter side with adaptive power loading, constitutes
also an interesting topic for future research.

C. System Model

Let us consider a RF-MIMO system with nT transmit and
nR receive antennas, and with unit-energy transmit and receive
beamformers defined by the RF weights in Fig. 1. Assuming
a transmission scheme based on OFDM with Nc data-carriers
and using a cyclic prefix longer than the channel impulse
response, the communication system after Tx-Rx radio fre-
quency beamforming may be decomposed into the following
set of parallel and non-interfering single-input single-output
(SISO) equivalent channels

yk = hksk + nk, k = 1, . . . , Nc,

where yk ∈ C is the observation associated to the k-th data
carrier, nk represents the complex circular i.i.d. Gaussian noise
with zero mean and variance σ2, sk is the transmitted signal,
and hk is the equivalent channel after Tx-Rx beamforming,

which is given by

hk = wH
R HkwT , k = 1, . . . , Nc,

where wT ∈ CnT×1 and wR ∈ CnR×1 are the transmit
and receive beamformers, and Hk ∈ CnR×nT represents the
MIMO channel for the k-th data-carrier.

D. LMMSE Receiver

Although the results in this paper are not restricted to a par-
ticular receiver, it will be useful to review the linear minimum
mean square error (LMMSE) receiver. In particular, under
perfect knowledge of the equivalent channel, and assuming
unit transmit power per data carrier (E[|sk|2] = 1), the MMSE
estimate of sk is

ŝk =
h∗kyk

|hk|2 + σ2
,

which yields a per-carrier MSE

MSEk = E
[
|ŝk − sk|2

]
=

1
1 + γ|hk|2

, k = 1, . . . , Nc,

where γ = 1/σ2 is defined as the (expected) signal to noise
ratio (SNR) at the transmitter side.

E. Problem Statement

Conventional MIMO-OFDM baseband schemes have access
to the signals at each one of the transmitting/receiving anten-
nas and, consequently, can obtain a different pair of beam-
formers for each subcarrier. However, with the novel analog
RF combining architecture a per-carrier beamforming design
is not possible since all the orthogonal MIMO channels Hk

are affected by the same pair of beamformers. Notice that with
the RF combining architecture a single FFT must be computed
after the analog beamforming (at the receiver side), which
notably simplifies the hardware and the system computational
complexity, but also complicates the beamforming design
problem due to the coupling among subcarriers. This coupling
imposes some tradeoffs and represents the main challenge for
the design of the beamformers. In the following section, we
tackle the problem of joint Tx-Rx analog beamforming design
using a unifying cost function which, by changing a single
parameter, encompasses several interesting design criteria.

III. GENERAL ANALOG BEAMFORMING CRITERION

In this section we introduce a general criterion for the
design of the Tx-Rx beamformers under perfect knowledge
of the MIMO channel Hk, as well as the noise variance, at
the receiver side. Specifically, we propose to minimize the
following cost function

fα(wT ,wR) =
1

α− 1
log

(
1

Nc

Nc∑
k=1

MSEα−1
k

)
, (1)

where α is a real parameter which controls the overall system
performance. Thus, our optimization problem can be written
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as

arg min
wT ,wR

fα(wT ,wR) (2)

subject to ‖wT ‖ = 1,

‖wR‖ = 1.

It is interesting to mention that (1) structurally resembles
the definition of Renyi’s entropy of order α for a discrete
random variable [20]. This is a parametric family of entropy
measures that include conventional Shannon’s entropy defi-
nition as a limiting case when α tends to 1, and which has
recently been used by Principe and co-workers in a number
of applications such as blind source separation and blind
deconvolution/equalization [21], [22].

Before addressing the optimization problem, let us analyze
some interesting choices of α, which will help us to shed some
light into the properties of the cost function (1).

A. Particular Cases

1) MaxSNR (α = 0): If the parameter α is set to zero, the
optimization problem in (2) can be rewritten as

arg max
wT ,wR

1
Nc

Nc∑
k=1

|hk|2 s. t. ‖wT ‖ = ‖wR‖ = 1,

i.e., the proposed criterion reduces to the maximization of
the energy of the equivalent channel or, in other words, to
the maximization of the received SNR. This problem has
been previously addressed by other authors in the contexts
of analog combining [23] and pre-FFT schemes [4]–[7], and
it is also closely related to the statistical eigen beamforming
transmission mode defined in the WiMAX standard [12], [13].

2) MaxCAP (α = 1): When α approaches 1, it can be
easily shown by direct application of the L’Hopital’s rule, that
the proposed criterion reduces to

arg max
wT ,wR

1
Nc

Nc∑
k=1

log
(
1 + γ|hk|2

)
s. t. ‖wT ‖ = ‖wR‖ = 1,

which represents the capacity of the equivalent SISO channel
after beamforming.

3) MinMSE (α = 2): In this case, (2) is equivalent to

arg min
wT ,wR

1
Nc

Nc∑
k=1

MSEk s. t. ‖wT ‖ = ‖wR‖ = 1,

i.e., the proposed criterion amounts to minimizing the overall
MSE of the optimal linear receiver. Moreover, it can be proved
that, in the important case of quadrature amplitude modulation
(QAM) constellations, and under optimal linear precoding of
the information symbols, the minimization of the MSE is
equivalent to the minimization of the bit error rate (BER) [9],
[24].

Although in this paper we mainly focus on the three previ-
ous values of α, it should be noted that any other choice would
be in principle possible. In particular, two other interesting
cases are the following:

4) MaxMin (α = ∞): In this case, the summation in (1)
is dominated by the worst data-carrier, i.e., by that with the
smallest |hk|2. Therefore, for α →∞, the proposed criterion
reduces to the optimization of the worst data-carrier. Inter-
estingly, in the particular single-input multiple-output (SIMO)
and multiple-input single-output (MISO) cases, the proposed
criterion is mathematically identical to that of the MaxMin
fair multicast beamforming problem, which has been proven
to be NP-hard [25], [26].

5) MaxMax (α = −∞): For α < 1 the proposed criterion
can be rewritten as

arg max
wT ,wR

Nc∑
k=1

(
1 + γ|hk|2

)1−α
s. t. ‖wT ‖ = ‖wR‖ = 1,

then, it is easy to see that, when α → −∞, the summation
is dominated by the largest |hk|. Therefore, the proposed
criterion reduces to the optimization of the best data-carrier.1

Interestingly, in this case the optimal beamformers can be
obtained in closed-form as the left and right singular vectors
associated to the largest eigenvalue of all the MIMO channels
Hk (k = 1, . . . , Nc).

B. Main Properties

In this subsection, the main properties of the proposed
beamforming criterion are summarized. Let us start by an-
alyzing the performance of the proposed method in the low
SNR regime.

Property 1: In the low SNR regime (γ → 0), the proposed
criterion reduces to the MaxSNR approach regardless of α.

Proof: The proof is based on the first order Taylor series
approximation of fα(wT ,wR) with respect to γ

fα(wT ,wR) ' −γ

Nc∑
k=1

|hk|2.

Thus, the minimization of fα(wT ,wR) reduces to the max-
imization of the equivalent channel energy or received SNR.

Obviously, the different criteria significantly differ for mod-
erate or high SNRs. The following property ensures the
Pareto optimality (or efficiency) [10] of the obtained solutions.
Specifically, a feasible pair of beamformers (w̃T , w̃R) is said
to be Pareto optimal with respect to the individual channel
energies (|hk|2) or MSEs (MSEk) iff there does not exist
another feasible pair (wT , wR) satisfying

|wH
R HkwT |2 ≥ |w̃H

R Hkw̃T |2, k = 1, . . . , Nc, (3)

with at least one strict inequality.
Property 2: The solutions (w̃T , w̃R) of the proposed beam-

forming criterion are Pareto optimal points of the vector
optimization problem based on the individual channel energies
(|hk|2) or MSEs (MSEk).

Proof: The proof follows directly from the fact that
fα(wT ,wR) decreases with |hk|2 (k = 1, . . . , Nc). Thus, if

1This would be the optimal criterion for an adaptive power loading scheme
with only one active subcarrier.
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Fig. 2. Toy example with a 1×2 SIMO system with Nc = 2 subcarriers. The
figure shows the set of achievable points with ‖wR‖ = 1 (dotted line), the
Pareto optimal points (solid line), and the solutions associated to the proposed
criterion (the section of the curve marked with circles).

a feasible point wT , wR satisfies the inequalities in (3), then
fα(wT ,wR) < fα(w̃T , w̃R).

Here we must note that the converse of Property 2 is not true
in general, i.e., not all the Pareto optimal points (with respect
to the Nc channel energies |hk|2 or MSEs) are solutions of the
proposed criterion for some α. This fact is illustrated by means
of a toy example consisting of a SIMO system with Nc = 2
data carriers, nR = 2 receive antennas, real beamformers and
subcarrier channels given by

H1 =
[
1
0

]
, H2 =

[
0.35
−0.8

]
.

Fig. 2 shows the set of achievable points (|h1|2,|h2|2) with
unit energy beamformers wR, where we can see that the
solutions of the proposed criterion for different values of α
are only a subset of the Pareto optimal solutions. However, it
should be pointed out that those points in the Pareto boundary
that are not achievable by our criterion might not be of
practical interest. As an example, consider the Pareto points
in Fig. 2 near |h1|2 = 0.4, |h2|2 = 0.7. Clearly, these points
are worse solutions than those near |h1|2 = 0.8, |h2|2 = 0.4,
which are solutions of the proposed criterion for some α ' 0.

The above observation is a direct consequence of the fact
that the ordering of the energies is irrelevant for the perfor-
mance of the equivalent channel. A more sensible comparison
between feasible pairs of beamformers can be established with
the help of some standard majorization results [9], [11].

Property 3: Let us define Pβ =
∑Nc

k=1 MSEβ−1
k and the

vector pβ(wT ,wR) = [pβ,1, . . . , pβ,Nc
] with elements2

pβ,k =
MSEβ−1

k

Pβ
, k = 1, . . . , Nc.

2Note that, since 0 ≤ pβ,k ≤ 1 and
PNc

k=1 pβ,k = 1, pβ(wT ,wR) can
be seen as the probability mass function of a discrete random variable.

Then, the cost function fα(wT ,wR) can be rewritten as

fα(wT ,wR) = fβ(wT ,wR) + gα,β (pβ(wT ,wR)) , (4)

where gα,β(pβ(wT ,wR)) is a function satisfying the follow-
ing properties:

1) gα,β(pβ(wT ,wR)) = −gβ,α(pα(wT ,wR)).
2) gα,β(pβ(wT ,wR)) increases with α.
3) For α > β: gα,β(pβ(wT ,wR)) is a Schur-

convex function [9], [11], which attains its minimum
gα,β(pβ(wT ,wR)) = 0 iff pβ,k = 1/Nc (∀k).

Proof: See the appendix.
Property 3 allows us to shed some light into the effect of

the parameter α. Firstly, we must note that Pβ is a global
performance measure directly related to the cost function

fβ(wT ,wR) =
1

β − 1
log
(

Pβ

Nc

)
,

whereas pβ represents the distribution of Pβ along the data
carriers.

From eq. (4), we observe that fα(wT ,wR) can be seen as
a penalized version of the cost function fβ(wT ,wR). Further-
more, taking into account the Schur-convexity of the penalty
term for α > β, we can conclude that gα,β(pβ(wT ,wR))
penalizes the spreading of the elements of pβ(wT ,wR),
i.e., it can be interpreted as an alternative measure of the
spectral flatness of the equivalent channel [9], [11], [27]. On
the other hand, since the penalty term gα,β(pβ(wT ,wR))
increases with α, we can say that, when α increases, the
proposed beamforming criterion tends to flatten the equiv-
alent channel, i.e., the critical data carriers (those with
the smallest |hk|) are improved at the expense of a slight
degradation of fβ(wT ,wR). Finally, taking into account that
gα,β(pβ(wT ,wR)) = −gβ,α(pα(wT ,wR)), we can obtain
similar conclusions for the case α < β. In particular, as α
decreases, the proposed criterion allows a small increase in
fβ(wT ,wR) in order to obtain a higher spread of the terms
in pβ(wT ,wR).

As an example, consider the MaxSNR (α = 0), MaxCAP
(α = 1) and MinMSE (α = 2) cases. Thus, when the
parameter increases from α = 1 to α = 2, the worst
subcarriers are improved at the expense of a slight decrease
of the equivalent channel capacity. On the other hand, when
the design parameter decreases from α = 1 to α = 0, the
energy of the equivalent channel increases at the expense of a
reduction in the spectral flatness as well as in capacity.

IV. OPTIMIZATION PROBLEM AND PROPOSED ALGORITHM

In this section, the optimization problem derived from the
proposed beamforming criterion is analyzed. Although the
optimization problem is in general non-convex, approximate
solutions can be obtained by means of semidefinite relaxation
(SDR) techniques for α ≥ 0. However, the computational cost
associated to SDR techniques can be very high even for a
moderate number of data subcarriers and antennas. For this
reason, we propose a simple gradient search method which is
initialized using a closed-form approximation of the MaxSNR
solution. As it will be shown in Section V, this method
provides very accurate results.
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A. Optimization Problem

Let us start by rewriting the optimization problem in (2) as

arg min
W

1
α− 1

log

(
1

Nc

Nc∑
k=1

(
1 + γ |Tr(HkW)|2

)1−α
)

,

(5)
subject to ‖W‖ = 1,

rank(W) = 1,

where W = wT wH
R is the rank-one Tx-Rx beamforming

matrix.3 Although the solution of the above problem can be
obtained in closed-form in some particular cases (see Table
I), in general this is a very difficult problem due to the
two following reasons. Firstly, the rank-one constraint on the
beamforming matrix W is not convex. Secondly, although the
relaxation of the rank-one constraint will allow us to obtain
good initialization points for the beamvectors, in general
the cost function remains still non-convex for most values
of α,4 which precludes the application of standard convex
optimization techniques [10].

B. Analysis of the Cost Function Minima

Although the non-convexity of the optimization problem
precludes obtaining a closed-form solution, we can gain some
insight by applying the Lagrange multipliers method and thus
finding conditions that must be satisfied by any local minima.
In this subsection, we show that the local minima of our
optimization problem are closely related to that of a weighted
energy maximization problem. This relationship can be easily
established by combining the two following lemmas.

Lemma 1: The local minima of the optimization problem
in (2) are solutions of the following coupled eigenvalue (EV)
problems

RMISOαwT = λwT , RSIMOαwR = λwR, (6)

where λ =
∑Nc

k=1 MSEα
k |hk|2,

RMISOα
=

Nc∑
k=1

MSEα
khMISOk

hH
MISOk

, (7)

RSIMOα =
Nc∑
k=1

MSEα
khSIMOk

hH
SIMOk

, (8)

can be seen as weighted covariance matrices and

hMISOk
= HH

k wR, hSIMOk
= HkwT , (9)

are the MISO (SIMO) channels after fixing the receive (trans-
mit) beamformer.

Proof: Let us write the Lagrangian of (2) as

L(wT ,wR, λT , λR) = fα(wT ,wR)

+ λT

(
‖wT ‖2 − 1

)
+ λR

(
‖wR‖2 − 1

)
,

3Note that, given a solution W of (5), the transmit and receive beamformers
satisfying ‖wT ‖ = ‖wR‖ = 1 can be easily obtained as the singular vectors
of W.

4Specifically, the smoothness of the cost function decreases when |α|
increases.

where λT and λR are the Lagrange multipliers. Solving with
respect to wT and wR we obtain

∇w∗
T
fα(wT ,wR) = −λT wT , (10)

∇w∗
R
fα(wT ,wR) = −λRwR, (11)

where the gradient of the cost function fα(wT ,wR) with
respect to the transmit and receive beamformers is given by

∇w∗
T
fα(wT ,wR) = − γ∑Nc

k=1 MSEα−1
k

RMISOα
wT ,

∇w∗
R
fα(wT ,wR) = − γ∑Nc

k=1 MSEα−1
k

RSIMOαwR.

Now, left-multiplying (10) and (11) by wH
T and wH

R , and
taking into account the unit-energy constraint on the beam-
formers, we obtain

λT = γ
wH

T RMISOα
wT∑Nc

k=1 MSEα−1
k

, λR = γ
wH

R RSIMOα
wR∑Nc

k=1 MSEα−1
k

,

which combined with (10) and (11) yields

RMISOαwT =
(
wH

T RMISOαwT

)
wT ,

RSIMOα
wR =

(
wH

R RSIMOα
wR

)
wR.

Finally, from (7) and (8) it is easy to see that

wH
T RMISOα

wT = wH
R RSIMOα

wR =
Nc∑
k=1

MSEα
k |hk|2 = λ,

which implies λT = λR and proves (6).
Lemma 2: Consider the following weighted energy maxi-

mization problem5

arg min
wT ,wR

− 1
Nc

Nc∑
k=1

ck|hk|2 s. t. ‖wT ‖ = ‖wR‖ = 1,

(12)
with c = [c1, . . . , cNc

]T ∈ RNc×1. The local minima of (12)
are also solutions of the coupled EV problems

RMISOcwT = λwT , RSIMOcwR = λwR,

where λ =
∑Nc

k=1 ck|hk|2 and

RMISOc =
Nc∑
k=1

ckhMISOk
hH

MISOk
,

RSIMOc =
Nc∑
k=1

ckhSIMOk
hH

SIMOk
.

Proof: The proof is analogous to that of Lemma 1.
Combining the two previous lemmas, we can conclude that

the local minima of the proposed optimization problem are
also local minima of (12) with weights ck = MSEα

k . This
corroborates our previous finding about the proposed cost
function, i.e., for α > 0 the higher weights are given to
the subcarriers with a worst response (larger MSEk). In other
words, for α > 0 part of the SNR is sacrificed in order to
improve the worst data carriers, and the contrary happens for
α < 0.

5Note that in the case of equal weights (ck = c, ∀k) the weighted-energy
maximization problem reduces to the MaxSNR criterion.
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TABLE I
PARTICULAR CASES WITH CLOSED-FORM SOLUTIONS.

System wT wR

SIMO with α = 0 or γ ' 0 1 MRC
MISO with α = 0 or γ ' 0 MRT 1

MIMO flat fading MRT MRC

In general, the EV problems in (6) cannot be easily solved
due to the fact that the matrices RMISOα and RSIMOα depend
on the beamformers. However, in the particular MaxSNR
or low-SNR cases6 (α = 0 or γ ' 0, respectively) with
MISO or SIMO systems, the optimal solution can be obtained
in closed-form. Specifically, the transmit/receive beamformer
[4]–[7], [12], [13], [23] is given by the principal eigenvector
of the matrices RMISO0 and RSIMO0 defined in (7) and (8),
which resembles the maximum ratio transmission (MRT) or
maximum ratio combining (MRC) technique [14]. Finally, as
summarized in Table I, in the case of flat channels (Hk = H,
∀k), the optimal beamformers are given by the left and right
singular vectors of H, i.e., as expected, the optimal solution
reduces to the MRT-MRC MIMO beamforming technique
regardless of α.

C. Approximated Solution based on Semidefinite Relaxation

In this subsection we show that an approximated solution to
the non-convex optimization problem in (5) can be obtained
by applying semidefinite relaxation (SDR) techniques. Let us
start by introducing the following lemma, which presents a
reformulation of (5) suitable for SDR.

Lemma 3: The optimization problem in (5) is equivalent to

arg min
W,W̃,γ1,...,γNc

1
α− 1

Nc∑
k=1

(1 + γk)1−α
, (13)

subject to γTr(H̃kW̃) = γk, k = 1, . . . ,Nc

Tr(W̃) = 1,

W̃ � 0,

vec(W) = vmax(W̃),

rank(W̃) = 1,

rank(W) = 1,

where H̃k = hkhH
k , hk = vec(HH

k ) can be seen as a virtual
SIMO or MISO channel with nT nR antennas, w = vec(W),
and W̃ = wwH is the associated nT nR × nT nR rank-one
beamforming matrix. On the other hand, vmax(W̃) denotes
the eigenvector corresponding to the maximum eigenvalue of
W̃.

6Property 1 ensures that in the low SNR regime the proposed criterion
reduces to the MaxSNR approach regardless of α.

Proof: Taking into account the monotonicity of the log
function, the problem in (5) can be rewritten as

arg min
W,w

1
α− 1

Nc∑
k=1

(
1 + γ

∣∣hH
k w

∣∣2)1−α

,

subject to ‖w‖ = 1,

vec(W) = w,

rank(W) = 1,

or, equivalently,

arg min
W,w,W̃

1
α− 1

Nc∑
k=1

(
1 + γTr(H̃kW̃)

)1−α

,

subject to Tr(W̃) = 1,

W̃ = wwH ,

vec(W) = w,

rank(W) = 1.

Finally, introducing the Nc “slack” variables γk (k =
1, . . . , Nc) we obtain

arg min
W,w,W̃,γ1,...,γNc

1
α− 1

Nc∑
k=1

(1 + γk)1−α
,

subject to γTr(H̃kW̃) = γk, k = 1, . . . ,Nc

Tr(W̃) = 1,

W̃ = wwH ,

vec(W) = w,

rank(W) = 1,

and writing w as a function of W and W̃, the above problem
can be rewritten as (13).

Here we must note that Lemma 3 allows us to replace
an optimization problem with a non-convex cost function
and a rank-one constraint, by a problem with a convex (for
α ≥ 0) cost function and two rank-one constraints. Obviously,
these constraints still make the problem non-convex and very
difficult to solve. In particular, it can be proved that in the
MaxMin case (i.e., α = ∞), and with the relaxation of the
rank one constraint on W, the above optimization problem
is mathematically identical to the MaxMin fair multicast
beamforming problem [25], [26], which has been proved to
be NP-hard. Therefore, we can conclude that in general, our
optimization problem is at least as difficult as a NP-hard
problem, which precludes obtaining an optimal algorithm with
affordable computational complexity.

In order to obtain an approximated solution, we can drop the
two rank-one constraints in (13), which yields the following
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relaxed problem7

arg min
W̃,γ1,...,γNc

1
α− 1

Nc∑
k=1

(1 + γk)1−α
, (14)

subject to γTr(H̃kW̃) = γk, k = 1, . . . ,Nc

Tr(W̃) = 1,

W̃ � 0.

Now, for α ≥ 0, the problem in (14) is a convex optimization
problem, which can be solved by means of standard tech-
niques. In general, however, the solution W̃ of (14) will not
satisfy the original rank-one constraints, and we will have to
generate an approximated rank-one solution to (13) from W̃.
A common technique in optimization consists in a random-
ization process (see [25], [26] and the references therein),
which generates several candidate solutions and selects the
one providing minimum cost.

Although the above formulation allows us to obtain an
approximated solution to the original problem by means of
SDR techniques, in general the computational complexity of
the overall algorithm can be prohibitive for practical appli-
cations. As an example, let us consider a practical MIMO
system such as that used in the simulations (Nc = 64 data
carriers and nT = nR = 4 antennas). In this case, we have
Nc = 64 slack variables and a 16 × 16 positive semidefinite
matrix W̃. Thus, even assuming a linear cost function, the
computational cost of the problem in (14) can be as large
as O

(
(Nc + n2

T n2
R)3.5

)
≈ 5 · 108 [25], [26]. Furthermore,

the application of a randomization method with a sufficient
number of candidates (see [25], [26] for typical numbers of
randomizations used in a moderate-sized problem) would also
result in a prohibitive computational burden.

D. Proposed Beamforming Algorithm

In order to avoid the computational cost associated to the
SDR approach, we propose a simple iterative algorithm which,
equipped with an adequate initialization point that can be
obtained in closed form, provides good results in most prac-
tical cases. Let us start by briefly describing the initialization
method, which obtains an approximated MaxSNR solution
in closed form. In particular, for α = 0 (or γ ' 0) the
optimization problem in (5) can be rewritten as

arg max
W,w

Nc∑
k=1

wHH̃kw,

subject to ‖w‖ = 1,

vec(W) = w,

rank(W) = 1.

Thus, defining R =
∑Nc

k=1 H̃k and relaxing the rank-one
constraint we obtain

arg max
w

wHRw, subject to ‖w‖ = 1,

7Note that the matrix W can be removed because it only appears in the
constraint vec(W) = vmax(W̃).

whose solution is given by the principal eigenvector of R.
As previously pointed out, the matrix W obtained from the
solution w = vmax(R) will not be rank-one in general, and we
will have to apply a randomization step or a similar approach.
Here, we propose a simpler alternative, which obtains the best
(in the squared-norm sense) rank-one approximation of W,
i.e., we obtain the transmit and receive beamformers as the
left and right singular vectors of W.

After obtaining the initialization point, the proposed itera-
tive algorithm is based on the following updating rules

wT (t + 1) = wT (t) + µRMISOα
(t)wT (t), (15)

wR(t + 1) = wR(t) + µRSIMOα
(t)wR(t), (16)

where µ is a step-size (or regularization parameter) and t
denotes the iteration index. The above expressions, which can
be seen as a simple gradient search algorithm, are inspired by
the coupled EV problems in (6), and they can be interpreted
as iterations of a power method for obtaining the solution of
(6).8 Specifically, the power method is applied to the regu-
larized matrices I + µRMISOα(t) and I + µRSIMOα(t), where
the regularization factor avoids convergence problems due to
large variations of the matrices between consecutive iterations.
Thus, the overall technique, which includes a normalization
step to force the unit energy constraint on the beamformers,
is summarized in Algorithm 1.

Regarding the computational complexity, it is easy to
find that the initialization step has a complexity of order
O(n3

T n3
R + Ncn

2
T n2

R), whereas one iteration of the proposed
method comes at a cost of approximately O

(
Nc(nT + nR)2

)
.

Thus, 50 iterations of the proposed algorithm in the previous
example (Nc = 64 and nT = nR = 4) would have a cost
three orders of magnitude lower than that of the SDR approach
previous to the randomization technique.

Finally, analogously to other iterative techniques, the pro-
posed algorithm can suffer from local minima. Nevertheless,
we have verified by means of numerous simulations that,
thanks to the initialization in the approximated MaxSNR so-
lution, the proposed method provides very satisfactory results
in most cases. Additionally, although it is beyond the scope
of this paper, we must note that the convergence speed of the
proposed algorithm could be further improved by adaptively
changing the learning rate µ, and that the algorithm can be
easily modified to obtain a graduated nonconvexity technique
[29]. In particular, we can make a smooth transition from the
initialization point (α = 0 or γ ' 0) to the desired value of α
and γ (see [30] for an application of this idea in the context
of sparse representations).

V. SIMULATION RESULTS

The performance of the proposed technique is illustrated
in this section by means of Monte Carlo simulations. In
all the experiments, we consider a MIMO system with 64
subcarriers and nT = nR = 4 transmit and receive antennas.
An i.i.d. Rayleigh MIMO channel model with exponential

8The proposed iterative approach is also closely related to alternating
minimization methods [5], [7], [28].
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Select µ and α; initialize wT and wR.
repeat

Update of the transmit beamformer
Obtain the equivalent MISO channels hMISOk with (9).
Update hk and MSEk for k = 1, . . . , Nc.
Obtain the matrix RMISOα with (7).
Update the beamformer wT with (15).
Normalize the solution: wT = wT /‖wT ‖.
Update of the receive beamformer
Obtain the equivalent SIMO channels hSIMOk with (9).
Update hk and MSEk for k = 1, . . . , Nc.
Obtain the matrix RSIMOα with (8).
Update the beamformer wR with (16).
Normalize the solution: wR = wR/‖wR‖.

until Convergence

Algorithm 1: Proposed beamforming algorithm.

power delay profile has been assumed. In particular, the total
power associated to the l-th tap is

E
[
‖H[l]‖2

]
= (1− ρ)ρlnT nR, l = 0, . . . , Lc − 1,

where Lc is the length of the channel impulse response (Lc =
16 in the simulations), and the exponential parameter ρ has
been selected as ρ = 0.7. We have focused on the MaxSNR
(α = 0) [4]–[7], [12], [23], MaxCAP (α = 1) and MinMSE
(α = 2) approaches, which have been compared with a SISO
system and with a full MIMO scheme applying maximum ratio
transmission (MRT) and maximum ratio combining (MRC)
per subcarrier (denoted as Full-MIMO), which can be seen as
an upper bound for the performance of any analog antenna
combining system.

Each Monte Carlo simulation consists in the generation of
a channel realization, the obtention of the transmit and receive
beamformers, and the evaluation of the system performance,
which can be based on the analysis of the equivalent SISO
channel, or the transmission of one OFDM symbol. In all the
examples, we have performed a minimum of 10000 Monte
Carlo simulations. However, in those experiments involving
very low outage probabilities or BER values, the number of
simulations has been increased to guarantee a minimum of 10
outage situations (or 10 incorrectly decoded OFDM symbols).

In all the experiments, the step-size has been fixed to
µ = 0.1, and the convergence criterion is based on the
difference between the beamformers in two consecutive itera-
tions. Specifically, the algorithm finishes when the Euclidian
distance is lower than 10−3. With these values, the proposed
algorithm has never9 exceeded 50 iterations. As an example,
the convergence of the MaxSNR, MaxCAP and MinMSE
algorithms for a SNR of 10 dB is illustrated in Fig. 3. As can
be seen, with the initialization in the approximated MaxSNR
beamformers, the proposed algorithm converges very fast to
the desired solution.

A. Equivalent Channel Properties

In the first set of examples we analyze the equivalent chan-
nel after beamforming for a fully loaded system (Nc = 64).

9Note that, in the cases of low BERs or outage probabilities, we have
performed several millions of Monte Carlo simulations.
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Fig. 4. Channel response |hk| after beamforming for a channel realization.

Fig. 4 shows the frequency response of the equivalent channel
for a random channel realization and a SNR γ = 10dB. As
can be seen, the parameter α establishes a tradeoff between
the energy and the spectral flatness of the equivalent channel.
Furthermore, as expected, the performance of the proposed
analog combining schemes is between that of the SISO and
Full-MIMO systems.

This effect can be seen more clearly in Fig. 5, which
shows the probability density function (obtained from 10000
random channel realizations) of the squared amplitude of the
equivalent channel for a SNR of γ = 10 dB. As can be seen,
the MaxCAP and MinMSE approaches avoid values close to
zero at the expense of a slight degradation of the overall
SNR. Finally, Figs. 6 and 7 show the outage probability for
a capacity of 5 bps/Hz and the evolution of the total MSE
with the SNR. As expected, the best results are provided by
the MaxCAP and MinMSE approaches, respectively, whereas
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Fig. 6. Outage probability for a transmission rate of 5 bps/Hz.

the MaxSNR criterion suffers significant performance degra-
dations.

B. Uncoded Transmissions

The advantage of the proposed MaxCAP and MinMSE
criteria over the MaxSNR approach becomes clearer when
the system performance is evaluated in terms of BER. Fig.
8 shows the BER for uncoded QPSK transmissions with
Nc = 64 data carriers and LMMSE receivers. As can be
seen, the MinMSE approach outperforms the remaining analog
combining criteria, which is due to the fact that, for uncoded
transmissions, the overall system performance is dominated by
the worst data carriers. Therefore, since the MinMSE criterion
assigns the highest weights (MSE2

k) to these critical carriers,
it provides better results than those of the MaxCAP and
MaxSNR approaches.

Finally, Fig. 9 shows the BER when Nc = 64 QPSK
symbols are linearly precoded with the FFT matrix and the
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Fig. 7. Evolution of the total MSE with the SNR.
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Fig. 8. Bit error rate for the proposed criteria. Uncoded QPSK symbols.

receiver is based on the LMMSE criterion. In this case the
minimization of the BER is equivalent to the minimization of
the MSE [9], [24], which explains the good performance of
the MinMSE beamforming criterion.

C. Coded Transmissions

In this pair of examples, the proposed schemes have been
evaluated in a more practical situation. In particular, we have
adopted the 802.11a standard [31], which uses Nc = 48 out
of 64 subcarriers for data transmission. The information bits
are encoded with a convolutional code and block interleaved
as specified in the standard. Finally, the receiver is based on
a soft Viterbi decoder.

In the first example we have selected a transmission rate of
12 Mbps, which implies QPSK signaling and a convolutional
code of rate 1/2. Here, the introduction of a channel encoder
could induce us to think that the MaxCAP criterion will
outperform the remaining approaches. However, as can be
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Fig. 9. Bit error rate for the proposed criteria. QPSK symbols linearly
precoded with the FFT matrix.
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Fig. 10. BER for a 802.11a based system with transmission rate of 12 Mbps.
QPSK signaling and convolutional encoder of rate 1/2.

seen in Fig. 10, the best results are again provided by the
MinMSE beamformers. This is due to the fact that we are not
using an ideal channel encoder (note that the channel encoder
operates on an OFDM symbol basis), which implies that a
slight degradation in the capacity can be acceptable in order
to obtain a less frequency selective equivalent channel. Finally,
the same conclusions can be reached from the experiment
with transmission rate of 54 Mbps (64 QAM signaling and
3/4 convolutional encoder), whose results are shown in Fig.
11.

D. Effects of RF Impairments and Channel Estimation Errors

In the final example we have included RF impairments
and channel estimation errors. In particular, we have obtained
least-squares (LS) estimates of Hk (k = 1, . . . , Nc) and σ2 by
means of the sequential transmission (using different pairs of
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Fig. 11. BER for a 802.11a based system with transmission rate of 54 Mbps.
64QAM signaling and convolutional encoder of rate 3/4.

orthogonal transmit and receive beamformers) of nT nR = 16
training OFDM symbols. The estimated channel and noise
variance have been used to obtain the transmit and receive
beamformers, which are quantified with a resolution of 5
bits. Additionally, due to RF impairments, there exist a small
difference between the quantized weights and the actual values
applied in each antenna. This error is modeled as an i.i.d.
uniform noise with the same range as that of the quantization
error. The obtained results for the MinMSE (α = 2) case
and 802.11a coded transmissions with a rate of 12Mbps are
shown in Fig. 12, where we can see that the realistic RF-
combining system clearly outperforms the idealized SISO
system. Furthermore, its performance degradation with respect
to an idealized RF-combining system is of approximately 3 dB.
Finally, we have verified by means of simulations that the
3 dB gap is mainly due to the effect of the channel estimation
errors in the decoding process, and not to the small errors
in the beamformers. Therefore, we can conclude that similar
degradations would take place in a pre-FFT based system with
channel estimation errors.

VI. CONCLUSIONS

In this paper we have proposed a general beamforming
criterion for a novel MIMO transceiver, which performs
adaptive signal combining in the RF domain. With this new
combining architecture and under multicarrier transmissions,
the same pair of Tx-Rx beamformers must be applied to all
the subcarriers and, due to this coupling, the beamforming
design problem poses several new challenges in comparison
to conventional MIMO schemes. Considering the case of
perfect channel state information at the receiver side, we have
proposed a beamforming criterion which depends on a single
parameter α. This parameter establishes a tradeoff between
the energy and spectral flatness of the equivalent channel,
and allows us to obtain some interesting design criteria. In
particular, the proposed beamforming criterion can be reduced
to the maximization of the received SNR (MaxSNR, α = 0),
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Fig. 12. Performance of the MinMSE criterion in a 802.11a based system
with transmission rate of 12 Mbps including the effect of channel estimation
errors and RF impairments.

the maximization of the system capacity (MaxCAP, α = 1),
and the minimization of the MSE (MinMSE, α = 2) of
the optimal linear receiver. In general, the proposed crite-
rion results in a non-convex optimization problem. We have
shown that the noncovexity essentially comes from two rank-
one constraints that, when removed, allow us to apply SDR
techniques. Furthermore, to avoid the high computational cost
of SDR techniques, we have proposed a simple and efficient
algorithm which, with a proper initialization, provides very
good results in practical OFDM-based WLAN standards such
as 802.11a. Finally, the numerous simulation results allow us
to conclude that, in general, it is a good idea to increase the
spectral flatness of the equivalent SISO channel, even at the
expense of a slight degradation in the overall SNR.

APPENDIX
PROOF OF PROPERTY 3

A. Rewriting the Cost Function

Let us start by writing MSEk = (Pβpβ,k)
1

β−1 . Thus, the
cost function fα(wT ,wR) can be rewritten as

fα(wT ,wR) =
1

α− 1
log

(
1

Nc

Nc∑
k=1

(Pβpβ,k)
α−1
β−1

)
,

and after a straightforward manipulation we obtain

fα(wT ,wR) = fβ(wT ,wR) + gα,β (pβ(wT ,wR)) , (17)

with

gα,β(pβ(wT ,wR)) =
α− β

(α− 1)(β − 1)
log(Nc)

+
1

α− 1
log

(
Nc∑
k=1

p
α−1
β−1
β,k

)
.

Eq. (17) shows that the cost function for a given parameter
α can be written as the cost function for a different parameter
β, plus a penalty term that depends on α, β and pβ,k.

B. Analysis of the Penalty Term

1) Antisymmetry: From eq. (17), and interchanging the
values α and β, we can directly conclude that

gα,β (pβ) = −gβ,α (pα) ,

where, for notational simplicity, we have omitted the depen-
dency with the beamformers. Thus, we can restrict our study
to the case α > β.

2) Monotonicity: In order to prove that gα,β (pβ) increases
with α we evaluate its derivative

∂gα,β (pβ)
∂α

=
log(Nc)
(α− 1)2

+

∑Nc

k=1 p
α−1
β−1
β,k log

(
p

α−1
β−1
β,k

)
(α− 1)2

∑Nc

k=1 p
α−1
β−1
β,k

−
log
(∑Nc

k=1 p
α−1
β−1
β,k

)
(α− 1)2

,

which, after defining A =
∑Nc

k=1 p
α−1
β−1
β,k and ak =

p
α−1
β−1
β,k

A , can
be rewritten as

∂gα,β (pβ)
∂α

=
1

(α− 1)2

Nc∑
k=1

ak log(akNc).

Thus, taking into account that
∑Nc

k=1 ak = 1 (i.e., ak can be
seen as the probability mass function of a discrete random
variable), it is easy to prove that the above function is Schur-
convex with respect to ak (k = 1, . . . , Nc) [9], [11], i.e.,
it attains its minimum value for ak = 1

Nc
, which yields

∂gα,β(pβ)
∂α = 0. Therefore, we can conclude that the derivative

is non-negative and the function gα,β (pβ) increases with α.
3) Schur-Convexity of gα,β (pβ): The proof is based on the

two following observations. Firstly, for α > β, the function
Nc∑
k=1

p
α−1
β−1
β,k ,

is Schur-convex if α > 1 and Schur-concave if α < 1 [9],
[11]. Secondly, the function 1

α−1 log(·) is increasing for α > 1
and decreasing for α < 1. Thus, ∀α > β, the composite
function gα,β (pβ) is Schur-convex [9], [11], which implies
that it attains its minimum when

pβ,k =
1

Nc
, for k = 1, . . . , Nc.

Finally, when all the pβ,k are equal we have that gα,β (pβ) =
0, which implies that gα,β (pβ) is non-negative for α > β.
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