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Dynamical systems

▶ Dynamical systems are composed of elementary units whose evolution
depends on their local features and interactions over time.1

1D. J. Watts and S. H. Strogatz. “Collective dynamics of small-world networks”. In: Nature
393.6684 (1998), pp. 440–442.
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Dynamical systems

▶ Dynamical systems are composed of elementary units whose evolution
depends on their local features and interactions over time.1

▶ Omnipresent in science and engineering.
▶ Earth and its geophysical systems (atmosphere, oceans)
▶ heart electro-dynamics
▶ popluation ecology (pray-predator interactions)
▶ climate
▶ brain
▶ robotics with target tracking, positioning, navigation
▶ wireless communications in automobiles
▶ financial markets

1D. J. Watts and S. H. Strogatz. “Collective dynamics of small-world networks”. In: Nature
393.6684 (1998), pp. 440–442.
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Motivation

▶ Dynamical systems:
▶ dynamics governed by some system laws (generally unknown)
▶ observed only partially (in space and time)

▶ Goals:
▶ understanding (causal) connections among complicated phenomena
▶ predicting the future, reconstructing the past

▶ Methodological approach:
1. model those complex systems through probabilistic, parametric models,
2. process observed time-series data to estimate unknowns

▶ statistics, machine learning, signal processing, ... AI?
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Time series: deterministic vs stochastic

▶ A time series is a collection of observations/measurements made
sequentially through time.

▶ A time series is said to be continuous when observations are made
continuously through time. The observations themselves may still be
discrete. discrete or continuous).

▶ A time series is said to be discrete when observations are made at discrete
time points (e.g. the air temperature measured each day). The
observations yt may be discrete or continuous.
▶ This lecture focus on discrete time series, with equally spaced times (e.g.

measurements are made at regular intervals).
▶ Notation: yt ∈ Rdy made at times t = 1, 2, 3, . . . n.
▶ Remark: Time is measured in suitable units (e.g. minutes, days, years).

▶ Further reading:
▶ Prado, R., & West, M. (2010). Time series: modeling, computation, and

inference. CRC Press.
▶ Kitagawa, G. (2010). Introduction to time series modeling. CRC press.
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Time series: deterministic vs stochastic

▶ Successive observations in a time series are often not independent.
▶ This means that past observations can be used to predict future

observations.
▶ If, given the past observations y1, . . . yt−1, the observation yt can be

predicted exactly, the times series is known as deterministic.
▶ If future observations cannot be predicted exactly, the time series is said to

be stochastic.
▶ In a stochastic series, future observations will have a probability

distribution.
▶ If the observations are dependent, then this probability distribution is

dependent on past observations in the series.
▶ p(yt|y1:t−1)
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Monthly totals of international airline passengers in the USA, from January
1949 to December 1960.
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Data on the monthly deaths from bronchitis, emphysema, and asthma in the
UK, 1974-1979
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Average air temperatures at Nottingham Castle in degrees Fahrenheit for 20
years, measured monthly.
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1. Modeling: state-space models (SSM)

▶ A SSM models a sequence of hidden states xt ∈ RNx , t = 1, ..., T .
▶ it captures the state and dynamics of a system

▶ Time-series data are collected, yt ∈ RNy , t = 1, ..., T :
▶ noisy and partial version of the system state

xt−1 xt xt+1

yt−1 yt yt+1

... ...
pθ(xt|xt−1) pθ(xt+1|xt)

pθ(yt−1|xt−1) pθ(yt|xt) pθ(yt+1|xt+1)

▶ Probabilistic notation of a (simple) Markovian SSM:
▶ state model → pθ(xt|xt−1) = p(xt|xt−1,θ)
▶ observation model → pθ(yt|xt) = p(yt|xt,θ)
▶ prior on initial state → pθ(x0) = p(x0|θ)
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2. Estimation/inference problems

▶ We sequentially observe data yt related to the hidden state xt.
▶ At time t, we have accumulated t observations, y1:t ≡ {y1, ...,yt}.

▶ Wish list:
▶ prediction of future observations and estimation of states (with uncertainty

quantification)
▶ Filtering: pθ(xt|y1:t) and joint pθ(x1:t|y1:t)
▶ State prediction: pθ(xt+τ |y1:t), τ ≥ 1
▶ Observation prediction: pθ(yt+τ |y1:t), τ ≥ 1
▶ Smoothing: pθ(xt−τ |y1:t), τ ≥ 1

▶ estimation of model parameters (with interpretability)

▶ Bayesian/probabilistic inference:
▶ we compute or approximate pdfs of unknowns

when possible (instead of point-wise estimates)

State space models and Kalman filtering (L2) Víctor Elvira University of Edinburgh 12/77



Bayesian filtering

▶ Bayesian rule for the joint:

p(x1:T |y1:T ) =
p(y1:T |x1:T )p(x1:T )

p(y1:T )

▶ Filtering distribution as a marginal:

p(xT |y1:T ) =

∫
p(x1:T |y1:T )dx1dx2...dxT−1

▶ Problems:
▶ Dimension: x1:T ∈ RT ·dx
▶ When we receive yt, we don’t want to reprocess y1:t−1

Goal: efficient and sequential Bayesian inference
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Sequential optimal filtering

▶ Filtering Problem:
▶ Distribution of xt given all the obs. up to time t, p(xt|y1:t)
▶ Recursively from p(xt−1|y1:t−1) updating with the new yt

▶ Optimal filtering:
1. Prediction step:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

2. Update step:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

▶ Interest in integrals of the form: I(f) =
∫
f(xt)p(xt|y1:t)dxt

▶ e.g., the mean, I(f) =
∫
xtp(xt|y1:t)dxt
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The linear-Gaussian model

▶ The linear-Gaussian model is arguably the most relevant SSM:
▶ Functional notation:

▶ Unobserved state → xt = Atxt−1 + qt
▶ Observations → yt = Htxt + rt

where qt ∼ N (0,Qt) and rt ∼ N (0,Rt).
▶ Probabilistic notation:

▶ Hidden state → p(xt|xt−1) ≡ N (xt;Atxt−1,Qt)
▶ Observations → p(yt|xt) ≡ N (yt;Htxt,Rt)

▶ Kalman filter: obtains the filtering pdfs p(xt|y1:t)at each t (if known θ)
▶ Gaussian pdfs (i.e., compute means and covariance matrices)
▶ Efficient processing of yt from p(xt−1|y1:t−1)

▶ only yt is processed at time t

▶ Rauch-Tung-Striebel (RTS) smoother: obtains p(xt|y1:T )
▶ requires a backward reprocessing, refining the Kalman estimates
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Kalman Filter: a bit of history

▶ Rudolf E. Kálmán (Hungary 1930 - USA 2016) developed the famous
Kalman filter algorithm2

▶ The second paper was rejected by an electrical engineering journal with a
comment of a referee saying “it cannot possibly be true” (now it has +9k
citations)3

▶ The on-board computer that guided the descent of the Apollo 11 lunar
module to the moon had a Kalman filter to track its trajectory!

2R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In: Journal
of Basic Engineering 82 (1960), pp. 35–45.

3R. E. Kalman and R. S. Bucy. “New results in linear filtering and prediction theory”. In:
(1961).
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Kalman filter: Gaussian properties

▶ Gaussian distribution:
1. Product of two Gaussian distributions is still a Gaussian distribution:

p(a|b)p(b) = p(a, b).

p(a, b) is Gaussian.
2. Marginalization of a joint Gaussian distribution is still Gaussian:

p(a) =

∫
p(b, a)db,

marginalizing b, p(a) is also Gaussian
3. Conditional of a joint Gaussian distribution is still Gaussian (equivalent to

first point):

p(a|b) = p(a, b)

p(b)
.

State space models and Kalman filtering (L2) Víctor Elvira University of Edinburgh 19/77



Kalman filter: Gaussian properties (graphical)

▶ Marginals of a bi-variate Gaussian distribution are Gaussian:

▶ Conditionals of a bi-variate Gaussian distribution are Gaussian:

p(x|y = 2) p(y|x = 2)
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Kalman Filter: prediction step

1. Prediction step (marginalization of Gaussian):

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

▶ Suppose that filtered distribution at t− 1 is Gaussian
p(xt−1|y1:t−1) ≡ N (mt−1,Pt−1).

▶ Predictive distribution is also Gaussian p(xt|y1:t−1) ≡ N (x−
t ,P

−
t )

▶ Mean: x−
t = Atmt−1

▶ Variance: P−
t = AtPt−1AT

t +Qt

▶ Interpretation:
▶ The mean is projected by the propagation matrix At

▶ The uncertainty is propagated through At, plus the variance of
the process noise
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Kalman filter: update step

2. Update step (product of Gaussians):

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

▶ The filtered distribution at time t is also Gaussian p(xt|y1:t) ≡ N (mt,Pt)

▶ Mean: mt = x−
t +Kt

(
yt −Htx

−
t

)
▶ Variance: Pt = (I −KtHt)P

−
t

where Kt = P−
t H

T
t

(
HtP

−
t H

T
t +Rt

)−1 is the optimal Kalman gain.

▶ Interpretation:
▶ The mean is corrected w.r.t. the predictive in the direction of the

residual/error.
▶ The variance is propagated by Ht and divided by the covariance of

the residual/error.
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Kalman summary and RTS smoother
▶ Hidden state → p(xt|xt−1) ≡ N (xt;Atxt−1,Qt)

▶ Observations → p(yt|xt) ≡ N (yt;Htxt,Rt)

Kalman filter
▶ Initialize: m0, P0

▶ For t = 1, . . . , T

Predict stage:
x−
t = Atmt−1

P−
t = AtPt−1A⊤

t +Qt

Update stage:
zt = yt −Htx

−
t

St = HP−
t H⊤

t +Rt

Kt = P−
t H⊤

t S−1
t

mt = x−
t +Ktzt

Pt = P−
t −KtStK⊤

t

RTS smoother
▶ For t = T, . . . , 1

Smoothing stage:
x−
t+1 = Atmt

P−
t+1 = AtPtA⊤

t +Qt

Gt = PtA⊤
t (P−

t+1)
−1

ms
t = mt +Gt(ms

t+1 − x−
t+1)

Ps
t = Pt +Gt(Ps

t+1 −P−
t+1)G

⊤
t

✓ Filtering distribution: p(xt|y1:t) = N (xt;mt,Pt)

✓ Smoothing distribution: p(xt|y1:T ) = N (xt;m
s
t ,P

s
t )

✗ How to proceed if model parameters θ = [m0,P0, {At,Qt,Ht,Rt}Tt=1]
are unknown ?
▶ even constant θ = [m0,P0,A,Q,H,R] can be extremely challenging.
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Mini-project 2: Kalman filter for 1D motion tracking (1/2)
Goal: Implement a Kalman filter (KF) for tracking the position and velocity of an object
moving in one dimension.

State-space model:
Hidden state:

xt =

[
pt

vt

]

where:
▶ pt is the position at time t,
▶ vt is the velocity at time t.

State evolution: (constant acceleration model)

xt = Axt−1 + qt, qt ∼ N (0,Q)

A =

[
1 ∆t
0 1

]
, Q =

[
∆t4

4 σ2
a

∆t3

2 σ2
a

∆t3

2 σ2
a ∆t2σ2

a

]

Observation model:

yt = Hxt + rt, rt ∼ N (0, R)

H =
[
1 0

]

Simulation parameters:
▶ ∆t = 1, σa = 0.5, R = 1.
▶ Initial state: x̂0 = [0, 1]⊤.
▶ Initial covariance: P0 = 10I2.
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Mini-project 2: Tasks (2/2)
Tasks:

1. Simulate the system:
▶ Generate a ground-truth trajectory xt over T time steps.
▶ Simulate noisy position measurements yt.

2. Implement the Kalman filter:
▶ Use the standard prediction and update steps.
▶ Estimate position and velocity over time.

3. Evaluate the KF performance:
▶ Compare estimated position p̂t with the true pt.

▶ Compute the Mean Squared Error (MSE) of position estimates.
▶ You can also average over many data generation processes (recall KF is

deterministic given the data)
▶ Plot ground truth, noisy measurements, and KF estimates.

4. Beyond (some ideas):
▶ play with the model parameters, for instance the initial velocity or the

element A(2, 2)
▶ extension to a 2D motion model (dx = 4)

▶ you can draw trajectories in the plane
▶ implement RTS smoother and compare MSE w.r.t. to true pt
▶ experiment model misspecified/mismatch scenarios (e.g., consider in

inference values of σ2 and R that are different than during data generation
process)

Possible values (please experiment!):
▶ T = 50, ∆t = 1, σa = 0.5, R = 1.

▶ play with σ2 and R (fix one and play with larger/smaller value of the other
one, interpret the results)

▶ x̂0 = [0, 1]⊤, P0 = 10I2.
State space models and Kalman filtering (L2) Víctor Elvira University of Edinburgh 26/77



Outline

Dynamical systems

State-space models (SSMs)

Linear-Gaussian model and Kalman filter

Kalman filter and RTS smoother

Nonlinear Kalman filters
Mini-project

Learning model parameters in SSMs

A doubly graphical perspective on LG-SSM

Estimation of A and Q in LG-SSM



The world is not linear-Gaussian: Lorenz model

▶ There was a time where the universe “was” all linear-Gaussian but...
▶ solving real-world and interesting problems requires complicated models.

▶ Example: Lorenz system: non-linear and continuous time model
(stochastic version)4

dX1 = −s(X1 − Y1) + U1,

dX2 = rX1 −X2 −X1X3 + U2,

dX3 = X1X2 − bX3 + U3,

▶ U1, U2, U3 are some noise process
▶ (s, r, b) =

(
10, 28, 8

3

)
are static model parameters broadly used in the

literature since they lead to a chaotic behavior.
▶ product of variables, continuous time, non-Markov behavior...

4lorenz1963deterministic.
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The world is not linear-Gaussian: Lorenz model

Chaos: When the present determines the future, but the approximate
present does not approximately determine the future.
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The world is not linear-Gaussian: discretized Lorenz model

▶ Continuous-time Lorenz model ⇒ discrete-time approximation
▶ Euler-Maruyama integration with integration step ∆ = 10−3

X1,t = X1,t−1 −∆s(X1,t−1 −X2,t−1) +
√
∆U1,t,

X2,t = X2,t−1 +∆(rX1,t−1 −X2,t−1 −X1,t−1X3,t−1) +
√
∆U2,t,

X3,t = X3,t−1 +∆(X1,t−1X2,t−1 − bX3,t−1) +
√
∆U3,t,

▶ {Ui,t}t=0,1,..., i = 1, 2, 3, are independent sequences of i.i.d. Gaussian
random variables with zero mean and unit variance.

▶ Markov model and also Gaussian, but still non-linear
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The world is not linear-Gaussian: discretized Lorenz model

▶ Continuous-time Lorenz model ⇒ discrete-time approximation
▶ Euler-Maruyama integration with integration step ∆ = 10−3

X1,t = X1,t−1 −∆s(X1,t−1 −X2,t−1) +
√
∆U1,t,

X2,t = X2,t−1 +∆(rX1,t−1 −X2,t−1 −X1,t−1X3,t−1) +
√
∆U2,t,

X3,t = X3,t−1 +∆(X1,t−1X2,t−1 − bX3,t−1) +
√
∆U3,t,

▶ {Ui,t}t=0,1,..., i = 1, 2, 3, are independent sequences of i.i.d. Gaussian
random variables with zero mean and unit variance.

▶ Markov model and also Gaussian, but still non-linear
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Kalman filtering for nonlinear systems

▶ The Kalman filter is exact for linear and Gaussian models only.
▶ However, Kalman-like approximations are possible for nonlinear models.

▶ The most popular approaches include
▶ Linearisation: the extended Kalman filter (EKF)5
▶ Numerical integration: the unscented Kalman filter (UKF)6, and

quadrature/cubature Kalman filters (QKF)7.
▶ Monte Carlo & Kalman updates: ensemble Kalman filter8.

5B. D. O. Anderson and J. B. Moore. Optimal Filtering. Englewood Cliffs, 1979.
6S. J. Julier and J. Uhlmann. “Unscented filtering and nonlinear estimation”. In:

Proceedings of the IEEE 92.2 (Mar. 2004), pp. 401–422.
7I. Arasaratnam, S. Haykin, and R. J. Elliott. “Discrete-time nonlinear filtering algorithms

using Gauss–Hermite quadrature”. In: Proceedings of the IEEE 95.5 (2007), pp. 953–977,
I. Arasaratnam and S. Haykin. “Cubature kalman filters”. In: IEEE Transactions on Automatic
Control 54.6 (2009), pp. 1254–1269.

8G. Evensen. “The ensemble Kalman filter: Theoretical formulation and practical
implementation”. In: Ocean dynamics 53.4 (2003), pp. 343–367.
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Linearisation

▶ Nonlinear dynamical system:

xt = f(xt−1) + qt, yt = h(xt) + rt

▶ The classical approach to nonlinear filtering is to linearise f(·) and h(·) using Taylor’s
theorem.

▶ Example: if xt = Atxt−1 + qt but yt = h(xt) + rt, then

yt ≈ h(x
−
t ) +

=Ht︷ ︸︸ ︷
Jt(x

−
t )(xt − x

−
t ) + rt

where Jt(m
−
t ) is the Jacobian matrix evaluated at x−

t ,

Jt =




∂h1
∂x1,n

∂h1
∂x2,n

. . .
∂h1

∂xdx,n
∂h2

∂x1,n

∂h2
∂x2,n

. . .
∂h2

∂xdx,n

...
...

. . .
...

∂hdy
∂x1,n

∂hdy
∂x2,n

. . .
∂hdy

∂xdx,n




dy×dx

▶ If the state equation is nonlinear, then we linearise it around mt−1.
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The extended Kalman filter

▶ Extended Kalman filter (EKF) for a nonlinear likelihood

xt = Atxt−1 + qt, qt ∼ N (0,Qt)

yt ≈ h(x
−
t ) + Jt(x

−
t )(xt − x

−
t ) + rt, rt ∼ N (0,Rt)

Prediction:
{

P−
t = AtPt−1A

⊤
t + Qt

x−
t = Atmt−1

Update:





St = Jt(x
−
t )P−

t Jt(x
−
t )⊤ + Rt

mt = x−
t + P−

t Jt(x
−
t )⊤S−1

t

(
yt − h(x−

t )
)

Pt = P−
t − P−

t Jt(x
−
t )⊤S−1

t Jt(x
−
t )P−

t

▶ Exercise: derive the EKF for nonlinear transition model
▶ check the EKF in9 (or same book of 2023 edition, Section 7.2)

9S. Sarkka. Bayesian Filtering and Smoothing. Ed. by C. U. Press. 2013.
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Numerical integration with reference points

▶ Consider the problem of computing integrals w.r.t. a Gaussian pdf
∫

f(x)N (x;m,C)dx (1)

where N (x;m,C) is the Gaussian pdf with mean m and covariance C.
▶ There are several schemes that enable the approximation of (1) using a deterministic set

of weighted points {xj , λj}J
j=1, namely,

∫
f(x)N (x;m,C)dx ≈

J∑

j=1

λ
j
f(x

j
).

▶ Such approximations come in different “flavours”: σ-points10, quadrature methods11,
cubature schemes12.

10S. J. Julier and J. Uhlmann. “Unscented filtering and nonlinear estimation”. In:
Proceedings of the IEEE 92.2 (Mar. 2004), pp. 401–422, H. M. Menegaz, J. Y. Ishihara,
G. A. Borges, and A. N. Vargas. “A systematization of the unscented Kalman filter theory”.
In: IEEE Transactions on automatic control 60.10 (2015), pp. 2583–2598.

11I. Arasaratnam, S. Haykin, and R. J. Elliott. “Discrete-time nonlinear filtering algorithms
using Gauss–Hermite quadrature”. In: Proceedings of the IEEE 95.5 (2007), pp. 953–977.

12I. Arasaratnam and S. Haykin. “Cubature kalman filters”. In: IEEE Transactions on
Automatic Control 54.6 (2009), pp. 1254–1269, B. Jia, M. Xin, and Y. Cheng. “High-degree
cubature Kalman filter”. In: Automatica 49.2 (2013), pp. 510–518.
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Numerical integration with reference points

▶ The key concept is the following:
▶ In MC and for a standard normal, we implicitly approximated the target

distribution by a set of random points that are more likely to be around the
mean.

▶ In the case of reference/quadrature/cubature/deterministic points, the
“samples” follow a similar principle but they are chosen deterministically:

▶ it is not possible to do a variance analysis nor there is a consistency results
(unless we have rules to take the number of points to infinity)

▶ Example: the spherical-radial cubature rule of degree 313. If x ∼ N (m,C)
is d-dimensional, C = SS⊤ and Sj denotes j-th column of S, then

xj = m+
√
dSj , j = 1, . . . , d

xj = m−
√
dSj−d, j = d+ 1, . . . , 2d

λj =
1

2d
∀j

13B. Jia, M. Xin, and Y. Cheng. “High-degree cubature Kalman filter”. In: Automatica 49.2
(2013), pp. 510–518.
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Kalman filtering with reference points

▶ General description of unscented/quadrature/cubature Kalman filters.
▶ Let X0 ∼ N (m0,P0) and assume the model

xt = f(xt−1) + qt, yt = h(xt) + rt, qt ∼ N (0,Qt), rt ∼ N (0,Rt).

▶ Kalman filter with reference points

- Prediction: assume p(xt−1|y1:t−1) ≈ N (xt−1;mt−1,Pt−1); then
▶ compute {xj

t−1, λ
j
t−1}

J
j=1 from N (xt−1;mt−1,Pt−1) and

▶ let χj
t = f(xj

t−1) for j = 1, . . . , J ;
▶ predictive mean: x−

t =
∑J

j=1 λj
t−1χ

j
n;

▶ predictive covariance: P−
t =

∑J
j=1(χ

j
t − x−

t )(χj
n − x−

t )⊤λj
t−1 + Qt.
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Kalman filtering with reference points

▶ Kalman filter w/ reference points (cont)

- Update:
▶ compute {xj−

t , λj−
t }J

j=1 from N (xt;x
−
t ,P−

t ) and
▶ let ηj

t = h(xj−
t ) for j = 1, . . . , J ;

▶ predicted observation: ŷt =
∑J

j=1 λj−
t ηj−

t ;
▶ cross-covariance Pxy

t =
∑J

j=1(x
j−
t − x−

t )(ηj
t − ŷt)

⊤λj−
t

▶ observation covariance: St =
∑J

j=1(η
j−
t − ŷt)(η

j
t − ŷt)

⊤λj−
t + Rt

▶ Kalman gain: Kt = Pxy
t S−1

t
▶ mean: mt = x−

t + Kt (yt − ŷt);
▶ covariance: Pt = P−

t − KtStK
⊤
t = P−

t − Pxy
t S−1

t (Pxy
t )⊤
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Mini-project: CKF for the Lorenz 63 model

▶ Design and implement a cubature Kalman filter (CKF) and an unscented Kalman filter
(UKF) for the stochastic Lorenz 63 model with nonlinear observations.

▶ State equation: stochastic Lorenz 63

dX1 = −s(X1 − Y1) + σdW1,

dX2 = rX1 − X2 − X1X3 + σdW2,

dX3 = X1X2 − bX3 + σdW3,

where the Wi(t)’s are standard Wiener processes, σ is a constant, and the parameters
(s, r, b) =

(
10, 28, 8

3

)
yield chaotic dynamics. Discretised via Euler-Maruyama with

time-step h we have

X1,t = X1,t−1 − hs (X1,t−1 − X2,t−1) + σ
√
hZ1,t,

X2,t = X2,t−1 + h (rX1,t−1 − X2,t−1 − X1,t−1X3,t−1) + σ
√
hZ2,t,

X3,t = X3,t−1 + h (X1,t−1X2,t−1 − bX3,t−1) + σ
√
hZ3,t,

where Zi,t ∼ N (0, 1). The state is xt = [X1,t, X2,t, X3,t]
⊤.
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Mini-project: CKF for the Lorenz 63 model

▶ Observations:

Y1,t =
1

10
X1,tX2,t + σuU1,t

Y2,t =
1

10
X1,tX3,t + σuU2,t

where σu is a constant and Ui,t ∼ N (0, 1). We denote yt = [Y1,t, Y2,t]
⊤.

Assume that observations are collected only every B discrete-time steps (i.e., when
t = kP , k = 1, 2, ...). In the absence of observations, only the prediction step of the
CKF has to be taken.

▶ The simulation code should generate the ground-truth signal X0:T and the observations
Y1:T for some time horizon T . All model parameters should be user-selected, including
T , the time step h, σ and σu, B, and {s, r, b}.

▶ Initial mean x̂0 = [−5.9165;−5.5233; 24.5723]⊤ (a point in the attractor of the
deterministic Lorenz 63 with (s, r, b) = (10, 28, 8

3 ).

▶ Reference values: (s, r, b) = (10, 28, 8
3 ), initial covariance P0 = 20I, σ = 1

2 , σu = 2,
time step h = 10−3, gap between observations B = 20, length of the simulation
T = 20/h = 20, 000 discrete time units.
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Learning model parameters in SSMs

▶ Options to learn model parameters θ in general SSMs
(θ = [m0,P0,A,Q,H,R] in LG-SSM):

1. Maximum-likelihood (point-wise estimate θ̂)
▶ no prior knowledge is assumed

2. Maximum a posteriori (point-wise estimate θ̂)
▶ prior knowledge is incorporated and can help the inference

3. Fully Bayesian approach: compute the posterior p(θ|y1:T )
▶ even more complicated problem
▶ Monte Carlo methods are generally used to obtain samples from p(θ|y1:T )

State space models and Kalman filtering (L2) Víctor Elvira University of Edinburgh 42/77



1. Maximum-likelihood estimation

▶ Goal:

θ̂ = argmax
θ

p(y1:T |θ) = argmax
θ

p(y1|θ)
T∏

t=2

p(yt|y1:t−1,θ) (2)

▶ partial normalizing constant p(yt|y1:t−1,θ):
▶ computed by KF in LG-SSMs
▶ approximated by PFs in other SSMs

▶ equivalent to minimize the energy function

φ(θ) = − log (p(y1:T |θ)) (3)

= − log

(
p(y1|θ)

T∏
t=2

p(yt|y1:t−1,θ)

)
(4)

= − log (p(y1|θ))︸ ︷︷ ︸
φ1(θ)

+
T∑

t=2

− log (p(yt|y1:t−1,θ))︸ ︷︷ ︸
φt(θ)

(5)

=
T∑

t=1

φt(θ) (6)
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1. Maximum-likelihood estimation

▶ Numerical approaches for ML estimation:
1. Gradient-based methods:

▶ Option A:14 obtain gradient of the energy function (sensitivity equations)
∇θφ(θ)

▶ Option B:15 through the Fisher identity (which uses the smoothing
distribution)

∇θφ(θ) =

∫
∇θ log p (x1:T ,y1:T |θ) p (x1:T |y1:T , θ) dx1:T (7)

2. Expectation-maximization (EM) algorithm:16

▶ turns a complicated optimization problem into a sequence of easier problems
▶ can be more stable numerically, ensures convergence, and may run faster

14D. Nagakura. “Computing exact score vectors for linear Gaussian state space models”. In:
Communications in Statistics-Simulation and Computation 50.8 (2021), pp. 2313–2326.

15https://www.almoststochastic.com/2014/06/fishers-identity.html
16R. H. Shumway and D. S. Stoffer. “An approach to time series smoothing and forecasting

using the EM algorithm”. In: Journal of Time Series Analysis 3.4 (1982), pp. 253–264.
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Expectation-maximization approach for ML

(credit to M. N. Bernstein)
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Expectation-maximization approach for ML

▶ Expectation-maximization (EM): iterative ML estimate
▶ Algorithm introduced in 17

▶ Application to LG-SSMs in 18

▶ Based on the majorizing function property

log (p(y1:T |θ)) ≥ F [q(x0:T ),θ], (8)

where

F [q(x0:T ),θ] =

∫
q(x0:T ) log

p(x0:T ,y1:T |θ)
q(x0:T )

dx0:T (9)

for any arbitrary pdf q(x0:T ).
▶ It is possible to maximize log (p(y1:T |θ)) by iteratively maximizing the

minorizing function F [q(x0:T ),θ]
▶ equivalent to minimize φ(θ) by minimizing −F [q(x0:T ), θ]

17A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood from Incomplete
Data via the EM Algorithm”. In: Journal of the Royal Statistical Society. Series B
(Methodological) 39.1 (1977), pp. 1–38. ISSN: 00359246. URL:
http://www.jstor.org/stable/2984875.

18R. H. Shumway and D. S. Stoffer. “An approach to time series smoothing and forecasting
using the EM algorithm”. In: Journal of Time Series Analysis 3.4 (1982), pp. 253–264.
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Expectation-maximization approach for ML

▶ Maximize the minorizing function F [q(x0:T ),θ] w.r.t. functional q and
parameter θ via coordinate ascent:

Generic EM
▶ Initialization of θ(0) and function q(0).
▶ For i = 1, 2, . . .

E-step q(i) = argmax
q

F [q(x0:T ), θ(i−1)].

M-step θ(i) = argmax
θ

F [q(i−1)(x0:T ), θ].

▶ Possible to show that the E-step solution is the smoothing distribution19

q(i)(x0:T ) = p(x0:T |y1:T ,θ
(i−1)) (10)

19R. M. Neal and G. E. Hinton. “A view of the EM algorithm that justifies incremental,
sparse, and other variants”. In: Learning in graphical models. Springer, 1998, pp. 355–368.
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Expectation-maximization approach for ML

▶ Then, plugging q(i)(x0:T ) = p(x0:T |y1:T ,θ
(i−1)) in (9), the M-step

consists in maximizing:

F [q(i)(x0:T ),θ] =

∫
p(x0:T |y1:T ,θ

(i−1)) log
p(x0:T ,y1:T |θ)

p(x0:T |y1:T ,θ(i−1))
dx0:T

=

∫
p(x0:T |y1:T ,θ

(i−1)) log (p(x0:T ,y1:T |θ)) dx0:T︸ ︷︷ ︸
Q(θ,θ(i−1))

−
∫

p(x0:T |y1:T ,θ
(i−1)) log

(
p(x0:T |y1:T ,θ

(i−1))
)
dx0:T︸ ︷︷ ︸

constant w.r.t. θ

EM algorithm for ML in generic SSMs

▶ Initialization of θ(0).
▶ For i = 1, 2, . . .

E-step compute Q(θ,θ(i−1))

M-step compute θ(i) = argmax
θ

Q(θ,θ(i−1)).
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Expectation-maximization approach

▶ M-step: maximize

Q(θ,θ(i−1)) =

∫
p(x0:T |y1:T ,θ

(i−1)) log (p(x0:T ,y1:T |θ)) dx0:T

▶ p(x0:T |y1:T ,θ(i−1)): smoothing distribution given θ(i−1)

▶ p(x0:T ,y1:T |θ) = p(x0|θ)
∏T

t=2 p(xt|xt−1)
∏T

t=1 p(yt|xt): joint
distribution of states and observations (as a function of θ)

▶ We need:
▶ (E-step) Q(θ,θ(i−1)) to be closed-form
▶ (M-step) Solution to ∂Q(θ,θ(i−1))

∂θ
= 0 (or iterative optimization method in

M-step)
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Expectation-maximization algorithm for LG-SSMs

▶ In LG-SSM:
▶ joint smoothing p(x0:T |y1:T ,θ(i−1)) is Gaussian
▶ tractable integral to obtain:

Q
(
θ,θ(i−1)

)
= −1

2
log |2πP0(θ)| −

T

2
log |2πQ(θ)| − T

2
log |2πR(θ)|

− 1

2
tr
{
P−1

0 (θ)
[
Ps

0 + (ms
0 −m0(θ)) (m

s
0 −m0(θ))

⊤
]}

− T

2
tr
{
Q−1(θ)

[
Σ−CA⊤(θ)−A(θ)C⊤ +A(θ)ΦA⊤(θ)

]}
− T

2
tr
{
R−1(θ)

[
D−BH⊤(θ)−H(θ)B⊤ +H(θ)ΣH⊤(θ)

]}
,

where the following quantities are computed from the results of RTS smoother
run under parameter values θ(i−1) :

Σ =
1

T

T∑
t=1

Ps
t +ms

t [m
s
t]
⊤ ,Φ =

1

T

T∑
t=1

Ps
t−1 +ms

t−1

[
ms

t−1

]⊤
,

B =
1

T

T∑
t=1

yt [m
s
t]
⊤ ,C =

1

T

T∑
t=1

Ps
tG

⊤
t−1 +ms

t

[
ms

t−1

]⊤
, D =

1

T

T∑
t=1

yky
⊤
k .
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Expectation-maximization algorithm for LG-SSMs

EM algorithm for generic LG-SSMs

▶ Initialization of θ(0).
▶ For i = 1, 2, . . .

E-step run the RTS smoother and obtain closed-form Q(θ,θ(i−1))

M-step compute θ(i) = argmax
θ

Q(θ,θ(i−1)).

▶ If all parameters in θ are known except one, M-step has closed form solution
▶ otherwise more advanced optimisation methods are needed

(block-alternating, gradient descent, proximal methods,...)
▶ For instance, if only A is unknown, the M-step optimizes

Q
(
θ,θ(i−1)

)
= −T

2
tr
{
Q−1(θ)

[
Σ−CA⊤(θ)−A(θ)C⊤ +A(θ)ΦA⊤(θ)

]}
+ ct/A

with

Σ =
1

T

T∑
t=1

Ps
t +ms

t [m
s
t]
⊤ ,Φ =

1

T

T∑
t=1

Ps
t−1 +ms

t−1

[
ms

t−1

]⊤
,

C =
1

T

T∑
t=1

Ps
tG

⊤
t−1 +ms

t

[
ms

t−1

]⊤
.

▶ the closed-form solution is A(i) = CΦ−1
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2. Maximum a posteriori (MAP) estimation
▶ MAP goal:

θ̂ = argmax
θ

p(θ|y1:T ) = argmax
θ

p(y1|θ)
T∏

t=2

p(yt|y1:t−1,θ)p(θ) (11)

▶ equivalent to

θ̂ = argmin
θ

φ(θ), (12)

with

φ(θ) = − log (p(y1:T |θ))− log (p(θ)) (13)

= − log

(
p(y1|θ)

T∏
t=2

p(yt|y1:t−1,θ)

)
− log (p(θ)) (14)

= − log (p(y1|θ))︸ ︷︷ ︸
φ1(θ)

+
T∑

t=2

− log (p(yt|y1:t−1,θ))︸ ︷︷ ︸
φt(θ)

− log (p(θ)) (15)

=
T∑

t=1

φt(θ)− log (p(θ)) (16)

▶ MAP requires similar numerical (gradient-based and EM-based) methods can be
used, with extra complications depending on p(θ)
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3. Fully Bayesian approach
▶ It is possible to do augmented inference on all unknowns, p(θ,x0:T |y1:T )

and the marginalize to obtain

p(θ|y1:T ) =

∫
p(θ,x0:T |y1:T )dx0:T (17)

▶ the full posterior and the marginalization are in general intractable
▶ Many methods based on approximating p(θ|y1:T ) by a particle

approximation p(θ|y1:T ) =
1
N

∑N
n=1 δθn(θ), e.g., particle MCMC20

Particle Metropolis-Hastings algorithm
▶ Initialization of θ(0).
▶ For n = 1, 2, . . . , N

1. Simulate a candidate sample θ∗ ∼ q(θ|θn−1)
2. Compute the acceptance probability

α = min

{
1,

p(y1:T |θ∗)p(θ∗)q(θn−1|θ∗)

p(y1:T |θn−1)p(θn−1)q(θ∗|θn−1)

}

3. Simulate a uniform r.v. u ∼ U(0, 1) and set

θn =

{
θ∗, if u ≤ α

θn−1, otherwise.

20C. Andrieu, A. Doucet, and R. Holenstein. “Particle markov chain monte carlo methods”.
In: Journal of the Royal Statistical Society Series B: Statistical Methodology 72.3 (2010),
pp. 269–342.
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Goal

▶ LG-SSMs: goal is to learn the state model
▶ we consider Ht and Rt known and constant At = A and Qt = Q
▶ goal: estimate θ = [A;Q] through MAP

xt= Axt−1 + qt, qt ∼ N (0,Q)

This talk: modeling and inference approaches
▶ Sparse graphical model to represent (i) the (Granger) causal dependencies

among the states, and (ii) the correlation among the state noises.
▶ Majorization-minimization methodology to estimate A and Q

State space models and Kalman filtering (L2) Víctor Elvira University of Edinburgh 55/77



A graphical perspective on A

▶ Goal. Estimation of matrix A (a) introducing prior knowledge, and (b)
under a novel interpretation of A:

xt= Axt−1 + qt, qt ∼ N (0,Q)

▶ A interpreted as a sparse directed graph

• xt ∈ RNx contains Nx time-series
▶ each of them represents the latent

process in a node in the graph

• A(i, j) is the linear effect from node j at
time t− 1 to node i at time t:

xt,i =

Nx∑
j=1

A(i, j)xt−1,j + qt,i

• A(i, j) ̸= 0 ⇒ xt−1,j Granger-causes xt,i.

A =

 0.9 0.7 0 0 0
0 0 −0.3 0 0
0 0 0 0 0.8
0 −0.1 0 0 0
0 0 0.5 0 0


Chouzenoux and Elvira

A =

0
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0.9 0.7 0 0 0
0 0 �0.3 0 0
0 0 0 0 0.8
0 �0.1 0 0 0
0 0 0.5 0 0

1
CCCA

(a) Matrix A.

supp(A) =

0
BBB@

1 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

1
CCCA

(b) Binary support.

1

2
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5

4

A(1, 2)

A(2, 3)A(4, 2)

A(5, 3)

A(3, 5)

A(1, 1)

(c) Associated directed graph.

Figure 1: Graphical model associated to (18). Matrix A (a), its binary support (b) and
associated reflexive directed graph (c). The edges are defined as non-zero entries of A>.
Their thickness is proportional to the absolute entries of A>.

3.1.2 State noise precision matrix

Matrix Q denotes the noise covariance in the state Eq. (2). Since the noise is assumed to
be Gaussian, this matrix, and more precisely, the associated precision matrix P = Q�1,
also has a direct interpretation in terms of graphical modeling, using the notion of Gaussian
graphical model (GGM) (Bühlmann and Van De Geer, 2011, Section 13.4)(Uhler, 2017).
Since we consider Q constant during the whole time series, let us denote the multivariate
state noise r.v. at any time step as q ⇠ N (0,Q). The GGM consists in a graphical modeling
of the independence (or not) between the scalar random variables q(1), . . . ,q(Nx). It is easy
to prove that

q(n) ?? q(`)|{q(j), j 2 1, . . . , Nx\{n, `}} () P(n, `) = P(`, n) = 0, (19)

i.e., the dimensions n and ` of q are independent given all other dimensions if and only if the
entry P(n, `) is zero (and obviously also P(`, n) since the precision matrix is symmetric).
Note that it is possible to condition in the l.h.s. of (19) only to the dimensions q(j) for
which P(n, j) 6= 0 and the equivalence would still hold. The GGM relies on an undirected
graph associated to a symmetric weight matrix equals to the inverse of the covariance matrix
P = ⌃�1. In particular, namely (n, `) /2 E if and only if P (n, `) = P (`, n) = 0.

This GGM construction is at the core of the famous GLASSO (Graphical Lasso) for-
mulation (Friedman et al., 2008)(Maathuis et al., 2019, Section 9.7), whose goal is to build
the maximum a posteriori estimator of P given realizations of the random vector q under
a sparsity assumption on matrix P. The sparsity is here interpreted as a way to eliminate
spurious edges in the graph associated to P.

Illustrative example. In Figure 2, we display an illustrative example on the GGM asso-
ciated to a given precision matrix P for Nx = 5. We show the associated binary support
matrix supp(P) and the resulting undirected graph under this interpretation. Although
self-loops (i.e., non-zero diagonal elements) occur, we removed them from the graphical
representation for ease of readability.

3.1.3 Proposed unifying view

We now summarize the graphical perspective on both A and Q and describe an unifying
approach, where sparsity plays a key role. Matrix A is interpreted as the weight matrix
of a directed graph with Nx vertices. Sparsity (i.e., absence of edge in the graph) in A is

10
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Granger causality

Disclaimer: Granger causality is a statistical test to determine if one time series
is useful to predict another one (controversial type of causality!)
▶ Let us consider two time-series yi = [y1,i,y2,i, ...,yT,i] and

yj = [y1,j ,y2,j , ...,yT,j ]
▶ We say that yj Granger-causes yi (order p = 1) if

▶ when fitting the two auto-regressive (AR) models
▶ (A) yt,i = a1yt−1,i + εt
▶ (B) yt,i = a1yt−1,i + b1yt−1,j + γt

▶ Var(γt) << Var(εt)
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A graphical modeling P = Q−1

xt= Axt−1 + qt, qt ∼ N (0,Q)

• P = Q−1 interpreted as sparse undirected graph (Gaussian graphical
models).

qt(n) ⊥⊥ qt(ℓ)|{qt(j), j ∈ 1, . . . , Nx\{n, ℓ}} ⇐⇒ P (n, ℓ) = P (ℓ, n) = 0.

P = Q−1 =




2 0 −0.1 0 0
0 0.9 0.3 −0.2 0.5

−0.1 0.3 0.8 0 0
0 −0.2 0 2 0
0 0.5 0 0 1.5




Sparse Graphical Linear Dynamical Systems
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1
CCCA

(a) Matrix P.

supp(P) =

0
BBB@

1 0 1 0 0
0 1 1 1 1
1 1 1 0 0
0 1 0 1 0
0 1 0 0 1

1
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(b) Support matrix.
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P (2, 5)
P (2, 3)

P (1, 3)

P (2, 4)

(c) Associated undirected graph.

Figure 2: Matrix P (a), its binary support (b), and the associated undirected graph (c)
with edge thickness proportional to the absolute entries of P.

interpreted as pair-wise partial/conditional independence, given a subset of the remaining
time series, for a one-step ahead prediction of the hidden state. Matrix P = Q�1 is
interpreted as the weight matrix of an undirected graph, related to a GGM describing
the noise in the latent space. Sparsity in P is interpreted as pair-wise partial/conditional
independence of two dimensions of the additive state noise, given a subset of the remaining
dimensions. Both graphs are reflexive, with Nx nodes and a maximum of N2

x edges for A
(Nx(Nx � 1) for P) associated to N2

x weights (i.e., the N2
x entries of A or P).

Our perspective in the state process of the LG-SSM in (2) is that A encodes the way
the information flows in consecutive time-steps between the nodes (state dimensions) of the
network (vector state). Thus, its properties shape how the energy/information is transferred
and dissipated (under the noise). In contrast, P = Q�1 encodes how information that is not
in the system at time k � 1 enters in the system at time k. In that respect, the interpreted
graph with weight matrix P encodes the dependency of the new information across the
nodes of the network.

We adopt the above perspective to estimate both A and Q by promoting properties
in both graphs. Specifically, we introduce sparsity priors on the matrices, as the sparsity
property is key to reach interpretability and compactness of the whole model. In particular,
it allows to understand the inner structure of the latent space. Moreover, it can be helpful
to speed up computations as the sparsity level is increased, e.g., when running the Kalman
filter and RTS smoother. Our proposed method DGLASSO (Dynamic Graphical Lasso)
hence aims at providing the maximum a posteriori (MAP) estimator of A and P (i.e.,
the weight matrices related to the graphical modeling of the latent state correlation and
causality) under Lasso sparsity regularization on both matrices, given the observed sequence
y1:K . A visual representation of DGLASSO graphical model is given in Figure 3. The figure
summarizes the relationships among the state entries of an LG-SSM using matrices (A,P)
from Figures 1 and 2.

Related works: Our approach DGLASSO generalizes important existing sparse graphi-
cal inference ones. For instance, our model with A = 0 (degenerate case) has no memory,
and all the energy/information of the system is lost at each time step, thus the state di-
mensions only incorporate exogenous energy/information through the additive noises. This
degenerate case is the same model than GLASSO (Friedman et al., 2008) in the case when
Rk ⌘ 0, and same than the robust GLASSO model (Benfenati et al., 2020, Sec.5.2) when
Rk ⌘ �2

RId. In contrast, if the state noise covariance matrix Q is known, DGLASSO coin-
cides with our recent GraphEM framework (Elvira and Chouzenoux, 2022). Probably the
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Summary of the graphical interpretation

Chouzenoux and Elvira

closer related work is (Ioannidis et al., 2019), which also introduces a joint graph modeling
within an LG-SSM, capturing order-one causal relationships and instantaneous influence
(i.e., order zero), through two sparse graphs. Their proposed inference method is an alter-
nating optimization technique, that infers the two graphs under Lasso prior, jointly with the
estimation of hidden state. In contrast with DGLASSO, in (Ioannidis et al., 2019), (i) the
state model follows a structural vector autoregressive model (SVAR) where instantaneous
causality and noise are distinguished, while DGLASSO assumes an order-one VAR in the
hidden state; and (ii) the cost function does not result from a Bayesian modeling, and as
such it is not related to a maximum a posteriori loss for the graph variables, (iii) the state
estimation is point wise defined as the solution of an handcrafted optimization problem,
while DGLASSO preserves a full Bayesian interpretation and hence allows the complete
characterization of the filtering/smoothing state distributions. In particular, (Ioannidis
et al., 2019) model does not recover GLASSO as a particular case.

xt�1(1)

xt�1(2)

xt�1(3)

xt�1(4)

xt�1(5)

xt(1)

xt(2)

xt(3)

xt(4)

xt(5)

xt+1(1)

xt+1(2)

xt+1(3)

xt+1(4)

xt+1(5)

Figure 3: Summary representation of the DGLASSO graphical model, for the example
graphs presented in Figs. 1 and 2. Blue (oriented) edges represent Granger causality between
state entries among consecutive time steps, encoded in matrix A (Fig. 1). Magenta edges
represent static (i.e., instantaneous) relationships between the state entries, at every time
step, due to correlated state noise described by matrix P (Fig. 2).

3.2 Optimization problem

The considered MAP inference problem reads as an optimization problem that we formu-
late hereafter. More specifically, let us denote the posterior of the unknown parameter,
p(A,P|y1:K), where the hidden states have been marginalized. It is direct to show, using
Bayes rule and composition with the (strictly increasing) logarithmic function, that the
maximum of p(A,P|y1:K) / p(A,P)p(y1:K |A,P), with p(A,P) some prior on the param-
eters A and P, coincides with the minimum of the following loss function:

(8A 2 RNx⇥Nx)(8P 2 SNx) L(A,P) , L1:K(A,P) + L0(A,P). (20)

12

Summary representation of the graphical model, for the example graphs A and P from the

two previous slides.

DGLASSO (dynamic graphical lasso) algorithm: maximum a posteriori
(MAP) estimator of A and P under lasso sparsity regularization on both
matrices, given the observed sequence y1:T .
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Proposed penalized formulation
Goal. MAP estimate of A and P (P = Q−1):

A∗,P∗ = argmax
A,P

p(A,P|y1:T ) = argmax
A

p(A,P)p(y1:T |A,P)

= argmin
A,P

− log p(A,P)︸ ︷︷ ︸
L0(A,P)

− log p(y1:T |A,P)︸ ︷︷ ︸
L1:T (A,P)

= L(A,P)

1. Lasso penalty (prior): we promote sparse matrices (A,P) for graph
interpretability:

L0(A,P) = λA∥A∥1 + λP ∥P∥1,

2. log likelihood:

L1:T (A,P) =

T∑
t=1

1
2
log |2πSt(A,P)|+ 1

2
zt(A,P)⊤St(A,P)−1zt(A,P).

▶ evaluation running KF with (A,P)

Challenges:
▶ Joint minimization with non-smooth and non-convex loss.
▶ gradient-based solutions are challenging (unrolling KF recursion) and

numerically unstable
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1. Lasso penalty (prior): we promote sparse matrices (A,P) for graph
interpretability:

L0(A,P) = λA∥A∥1 + λP ∥P∥1,

2. log likelihood:

L1:T (A,P) =

T∑
t=1

1
2
log |2πSt(A,P)|+ 1

2
zt(A,P)⊤St(A,P)−1zt(A,P).

▶ evaluation running KF with (A,P)

Challenges:
▶ Joint minimization with non-smooth and non-convex loss.
▶ gradient-based solutions are challenging (unrolling KF recursion) and

numerically unstable
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EM-like approach

▶ EM-like approach:Initialize (A(0),P(0)) and, at each iteration i ≥ 0,
▶ Majorizing function (E-step):

▶ run KF/RTS smoother by setting (A(i),P(i)) ∈ RNx×Nx × SNx

▶ build majorizing function (Q(A,P;A(i),P(i)) ≥ L(A,P), ∀(A,P)).
▶ Minimization step (M-step): Minimize Q(A,P;A(i),P(i)) w.r.t. A and P

to obtain A(i+1) and P(i+1).
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DGLASSO algorithm

▶ Block alternating majorization-minimization technique:
Initialize (A(0),P(0)), and at each iteration i ∈ N,
(a) Run RTS to build function Q(A,P;A(i),P(i)) (E-step)
(b) Update transition matrix (M-step):

A(i+1) = argmin
A

Q(A,P(i);A(i),P(i)) + λA∥A∥1+
1

2θA
∥A−A(i)∥2F

(c) Run RTS to build function Q(A,P;A(i+1),P(i)) (E-step)
(d) Update precision matrix (M-step):

P(i+1) = argmin
P

Q(A(i+1),P;A(i+1),P(i))+λP ∥P∥1+
1

2θP
∥P−P(i)∥2F

▶ Proximal terms, with stepsizes (θA, θP ) > 0, to stabilize the minimization
process and guarantee convergence of iterates.

▶ Convenient bi-convex structure of Q(·, ·; Ã, P̃):
▶ step (b) is a lasso-like regression problem
▶ step (d) is a GLASSO-like problem21

▶ both optimization steps (b) and (d) require modern optmisation algorithms

21J. Friedman, T. Hastie, and R. Tibshirani. “Sparse inverse covariance estimation with the
graphical lasso”. In: Biostatistics 9.3 (2008), pp. 432–441.
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Convergence theorem

Assuming exact resolution of both inner steps (b) and (d), the sequence
{A(i),P(i)}i∈N produced by DGLASSO algorithm:
▶ satisfies

(∀i ∈ N) L(A(i+1),P(i+1)) ≤ L(A(i),P(i)), and

▶ converges to a critical point of L.

• Proof based on the work22

• In practice, inner mininimization steps (b) and (d) using a Dykstra proximal
splitting solver.23

22D. N. Phan, N. Gillis, et al. “An inertial block majorization minimization framework for
nonsmooth nonconvex optimization”. In: Journal of Machine Learning Research 24.18 (2023),
pp. 1–41.

23H. H. Bauschke and P. L. Combettes. “A Dykstra-like algorithm for two monotone
operators”. In: Pacific Journal of Optimization 4.3 (2008), pp. 383–391.

State space models and Kalman filtering (L2) Víctor Elvira University of Edinburgh 64/77



Summary of the GraphEM algorithm

▶ DGLASSO generalises our previous GraphEM,24 where only A is unknown.

GraphEM algorithm

▶ Initialization of A(0).
▶ For i = 1, 2, . . .

E-step Run the Kalman filter and RTS smoother by setting A′ := A(i−1) and
construct Q(A;A(i−1)).

M-step Update A(i) = argminA
(
Q(A;A(i−1))

)
using Douglas-Rachford algorithm

(simpler version) or monotone+skew (MS) algorithm (generalized version).

▶ Flexible approach, valid as long as the proximity operators of (fm)2≤m≤M

are available, with L0 =
∑M

m=1 fm

24V. Elvira and É. Chouzenoux. “Graphical Inference in Linear-Gaussian State-Space
Models”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757–4771.
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SpaRJ algorithm

▶ SpaRJ25 (sparse reversible jump) is a fully probabilistic algorithm for the
estimation of A, i.e., obtains samples from p(A|y1:T ).

▶ The sparsity is imposed by transitioning among models of different
complexity, defined hierarchically:
▶ Mn ∈ {0, 1}Nx×Nx : sparsity pattern sample
▶ An: matrix A sample, with non-zero elements, A(i, j) for

{(i, j) : Mn(i, j) = 1}
▶ We use reversible jump MCMC (RJ-MCMC) to explore p(A|y1:T ).26

▶ MCMC algorithm to simulate in spaces of varying dimension, e.g., the
number of ones in the sparsity pattern, |Mn|.

▶ It requires to define:
▶ transition kernels for the model jumps
▶ mechanism to set values when jumping to a more complex model.

25B. Cox and V. Elvira. “Sparse Bayesian Estimation of Parameters in Linear-Gaussian
State-Space Models”. In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922–1937.

26P. J. Green. “Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination”. In: Biometrika 82.4 (1995), pp. 711–732.
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Pseudocode of SpaRJ

Input: Known SSM parameters {x̄0,P0,Q,R,H}, observations {yt}Tt=1,
hyper-parameters, number of iterations N , initial value A0

Output: Set of sparse samples {An}Nn=1

Initialization
Initialize M0 as fully dense (all ones) and A0

Run Kf obtaining l0 := log(p(y1:T |A0))p(A0)
for n = 1, ..., N do

Step 1: Propose model
Propose a new sparsity pattern M ′, obtaining a symmetry correction of c.
Step 2: Propose A′

Propose A′ using an MCMC sampler conditional on M ′

Step 3: MH accept-reject
Evaluate Kalman filter with A := A′

Set l′ := log(p(y1:T |A′))p(A′)
Compute log(ar) := l′ − ln−1 + c and Accept w.p. ar:
if Accept then

Set Mn := M ′, An := A′, ln := log(p(y1:T |A′))p(A′)
else

Set Mn := Mn−1,An := An−1, ln := ln−1

end if
end for
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Experimental results of estimating A with GraphEM

• Four synthetic datasets with H = Id and block-diagonal matrix A, composed
with b blocks of size (bj)1≤j≤b, so that Ny = Nx =

∑b
j=1 bj . We set T = 103,

Q = σ2
QId, R = σ2

RId, P0 = σ2
PId.

Dataset Nx (bj)1≤j≤b (σQ, σR, σP)

A 9 (3, 3, 3) (10−1, 10−1, 10−4)

B 9 (3, 3, 3) (1, 1, 10−4)

C 16 (3, 5, 5, 3) (10−1, 10−1, 10−4)

D 16 (3, 5, 5, 3) (1, 1, 10−4)

• GraphEM (DGLASSO with known Q) is compared with:
▶ Maximum likelihood EM (MLEM)27

▶ Granger-causality approaches: pairwise Granger Causality (PGC) and
conditional Granger Causality (CGC)28

27S. Sarkka. Bayesian Filtering and Smoothing. Ed. by C. U. Press. 2013.
28D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. “Hierarchical

algorithms for causality retrieval in atrial fibrillation intracavitary electrograms”. In: IEEE
journal of biomedical and health informatics 23.1 (2018), pp. 143–155.
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Experimental results of estimating A with GraphEM
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True graph associated to A (left) and GraphEM estimate (right) for dataset C.
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Experimental results of estimating A with GraphEM

method RMSE accur. prec. recall spec. F1

A

GraphEM 0.081 0.9104 0.9880 0.7407 0.9952 0.8463
MLEM 0.149 0.3333 0.3333 1 0 0.5
PGC - 0.8765 0.9474 0.6667 0.9815 0.7826
CGC - 0.8765 1 0.6293 1 0.7727

B

GraphEM 0.082 0.9113 0.9914 0.7407 0.9967 0.8477
MLEM 0.148 0.3333 0.3333 1 0 0.5
PGC - 0.8889 1 0.6667 1 0.8
CGC - 0.8889 1 0.6667 1 0.8

C

GraphEM 0.120 0.9231 0.9401 0.77 0.9785 0.8427
MLEM 0.238 0.2656 0.2656 1 0 0.4198
PGC - 0.9023 0.9778 0.6471 0.9949 0.7788
CGC - 0.8555 0.9697 0.4706 0.9949 0.6337

D

GraphEM 0.121 0.9247 0.9601 0.7547 0.9862 0.8421
MLEM 0.239 0.2656 0.2656 1 0 0.4198
PGC - 0.8906 0.9 0.6618 0.9734 0.7627
CGC - 0.8477 0.9394 0.4559 0.9894 0.6139
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Experimental results: Realistic weather datasets
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Graph inference results on an example from WeathN5a dataset.29

29J. Runge, X.-A. Tibau, M. Bruhns, J. Muñoz-Marí, and G. Camps-Valls. “The causality
for climate competition”. In: NeurIPS 2019 Competition and Demonstration Track. Pmlr.
2020, pp. 110–120.
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Computational complexity of DGLASSO

Chouzenoux and Elvira

Table 1: Results for the four considered datasets A to D, with an increasing conditioning
number of P∗ equals to log10(c) ∈ {0.1, 0.2, 0.1, 1}, respectively. We evaluate the methods
in terms of estimation quality for (A,P,Q), using either RMSE as defined in (63), and edge
detection scores (AUC, F1), as well as in terms of inference quality using cNMSE metrics
defined in (64).

Estimation of A Estimation of P Estim. Q State distrib. Predictive distrib.

Method RMSE AUC F1 RMSE AUC F1 RMSE cNMSE(µ∗, µ̂) cNMSE(µs∗, µ̂s) cNMSE(ν∗, ν̂) L1:K(Â, P̂)

D
a
ta

se
t

A DGLASSO 0.061 0.843 0.641 0.082 0.778 0.698 0.083 6.394 × 10−8 1.050 × 10−7 2.984 × 10−4 12 307.169

MLEM 0.076 0.817 0.500 0.105 0.857 0.500 0.102 1.095 × 10−7 1.803 × 10−7 4.843 × 10−4 12 341.205

GLASSO NA NA NA 0.818 0.804 0.496 1 073.510 4.485 × 10−6 7.180 × 10−6 1.000 28 459.294

rGLASSO NA NA NA 0.764 0.924 0.598 31.689 2.826 × 10−6 5.492 × 10−6 1.000 22 957.693

GRAPHEM 0.045 0.895 0.847 NA NA NA NA 4.364 × 10−6 6.944 × 10−6 2.980 × 10−4 29 035.030

D
a
ta

se
t

B DGLASSO 0.068 0.833 0.603 0.070 0.893 0.835 0.071 7.490 × 10−8 1.236 × 10−7 3.281 × 10−4 11 806.744

MLEM 0.080 0.815 0.500 0.106 0.898 0.500 0.100 1.299 × 10−7 2.133 × 10−7 4.619 × 10−4 11 833.448

GLASSO NA NA NA 0.827 0.826 0.505 341.873 5.069 × 10−6 8.072 × 10−6 1.000 27 744.964

rGLASSO NA NA NA 0.734 0.930 0.608 33.896 3.215 × 10−6 6.187 × 10−6 1.000 22 530.036

GRAPHEM 0.047 0.893 0.848 NA NA NA NA 5.158 × 10−6 8.036 × 10−6 2.912 × 10−4 29 031.412

D
a
ta

se
t

C DGLASSO 0.070 0.829 0.581 0.090 0.954 0.830 0.078 1.896 × 10−7 2.994 × 10−7 3.956 × 10−4 10 311.104

MLEM 0.081 0.810 0.500 0.097 0.974 0.500 0.094 2.583 × 10−7 4.180 × 10−7 5.053 × 10−4 10 326.410

GLASSO NA NA NA 0.901 0.805 0.489 3.926 × 1017 0.012 0.012 1.000 26 634.892

rGLASSO NA NA NA 0.805 0.928 0.614 29.530 7.195 × 10−6 1.320 × 10−5 1.000 21 322.247

GRAPHEM 0.049 0.892 0.857 NA NA NA NA 1.055 × 10−5 1.641 × 10−5 3.912 × 10−4 29 023.369

D
a
ta

se
t

D DGLASSO 0.073 0.835 0.575 0.083 1.000 0.598 0.080 5.127 × 10−7 8.243 × 10−7 3.373 × 10−4 7 911.943

MLEM 0.098 0.808 0.500 0.095 1.000 0.500 0.084 6.296 × 10−7 1.027 × 10−6 4.219 × 10−4 7 923.850

GLASSO NA NA NA 0.964 0.941 0.550 187.823 2.348 × 10−5 3.701 × 10−5 1.000 23 684.178

rGLASSO NA NA NA 0.882 0.956 0.645 28.703 1.886 × 10−5 3.239 × 10−5 1.000 20 100.491

GRAPHEM 0.061 0.892 0.864 NA NA NA NA 2.503 × 10−5 3.839 × 10−5 3.743 × 10−4 29 016.321
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Figure 6: Evolution of the complexity time (left), RMSE(A∗, Â) (middle) and
cNMSE(µ∗, µ̂) (right) metrics, as a function of the time series length K, for experiments
on dataset A averaged over 50 runs.

the price of an increased computational time. Interestingly, the regularization still yields
improved results for very large K.

5.2 Weather data

5.2.1 Experimental settings

We now evaluate our method on realistic graph datasets arising from causal discovery studies
in the field of weather variability tracking. Specifically, we consider two sets of 200 sparse
matrices A∗ ∈ RNx , with Nx = 5 or 10 respectively, representing the ground truth causal
graphs used to produce WEATH datasets in the Neurips 2019 data challenge (Runge et al.,

28
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Convergence of SpaRJ and GarphEM with data

Figure: 3× 3 system with known isotropic state covariance.
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Convergence of SpaRJ with iterations

Figure: Progression of sample metrics in a 12× 12.
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SpaRJ with real world data

London

Paris

Melbourne

Rome

Houston

Rio

Figure: Average daily temperature of 324 cities from 1995 to 2021, curated by the
United States Environmental Protection Agency.
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Conclusion

▶ SSMs are very powerful tools but still underdeveloped due to conceptual
and computational limitations.

▶ Even LG-SSMs require significant research for modeling and parameter
estimation.

▶ Novel graphical interpretation on matrices A and Q in LG-SSMs.
▶ Algorithms to estimate sparse model parameters: GraphEM, DGLASSO

(point-wise) and SpaRJ (fully Bayesian).
▶ strong model interpretation
▶ theoretical guarantees
▶ good performance

▶ This is a challenging problem with many exciting ongoing methodological
and applied avenues ahead!
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Useful book: S. Sarkka and L. Svensson. Bayesian filtering and smoothing. Vol. 17.
Cambridge university press, 2023.

GraphEM paper: V. Elvira, É. Chouzenoux, “Graphical Inference in Linear-Gaussian
State-Space Models”, IEEE Transactions on Signal Processing, Vol. 70, pp.
4757-4771, 2022.

SpaRJ: B. Cox and V. Elvira, “Sparse Bayesian Estimation of Parameters in
Linear-Gaussian State-Space Models”, IEEE Transactions on Signal Processing, vol.
71, pp. 1922-1937, 2023.

DGLASSO: E. Chouzenoux and V. Elvira, “Sparse Graphical Linear Dynamical
Systems, submitted, 2023. https://arxiv.org/abs/2307.03210

GraphIT paper: E. Chouzenoux and V. Elvira, “Iterative reweighted ℓ1 algorithm for
sparse graph inference in state-space models”, IEEE International Conf. on Acoustics,
Speech, and Signal Processing (ICASSP 2023), Rhodes, Greece, June, 2023.

Non-Markovian models: E. Chouzenoux and V. Elvira, “Graphical Inference in
Non-Markovian Linear-Gaussian State-space Models”, IEEE International Conf. on
Acoustics, Speech, and Signal Processing (ICASSP 2024), Seoul, Korea, April, 2024.
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