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Dynamical systems

» Dynamical systems are composed of elementary units whose evolution
depends on their local features and interactions over time.!

ID. J. Watts and S. H. Strogatz. “Collective dynamics of small-world networks”. In: Nature
393.6684 (1998), pp. 440-442.
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Dynamical systems

» Dynamical systems are composed of elementary units whose evolution
depends on their local features and interactions over time.!

» The Earth is formed by dynamical subsystems interacting at different scales
in time and space (e.g., biosphere, atmosphere, etc.)
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1D. J. Watts and S. H. Strogatz. “Collective dynamics of small-world networks”. In: Nature
393.6684 (1998), pp. 440-442.
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Dynamical systems

» Dynamical systems are composed of elementary units whose evolution
depends on their local features and interactions over time.*

» The heart is a dynamical system at different scales (electrical and physical)

Sinoatrial Atrioventricular

1311

Purkinje fiber Heart apex
(2) An electrical impulse (b) The impulse reaches (<) Bundle branches (d) The signal spreads
travels from the sinoatrial the atrioventricular cary signals from the through the ventricle
node to the walls of the node, which delays it by atrioventricular node walls, causing them to
atria, causing them to about 0.1 second. to the heart apex. contract.
contract.

1D. J. Watts and S. H. Strogatz. “Collective dynamics of small-world networks”. In: Nature

393.6684 (1998), pp. 440-442.
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Dynamical systems

» Dynamical systems are composed of elementary units whose evolution
depends on their local features and interactions over time.!

> The heart is a dynamical system at different scales (electrical and physical)

Atrial
musculature

Ventricular
musculature

1D. J. Watts and S. H. Strogatz. “Collective dynamics of small-world networks”. In: Nature
393.6684 (1998), pp. 440-442.
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Dynamical systems

» Dynamical systems are composed of elementary units whose evolution
depends on their local features and interactions over time.!

» Omnipresent in science and engineering.

Earth and its geophysical systems (atmosphere, oceans)
heart electro-dynamics

popluation ecology (pray-predator interactions)

climate

brain

robotics with target tracking, positioning, navigation
wireless communications in automobiles

financial markets

VYVVVYYVYYVYY

ID. J. Watts and S. H. Strogatz. “Collective dynamics of small-world networks”. In: Nature
393.6684 (1998), pp. 440-442.
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Motivation

» Dynamical systems:

» dynamics governed by some system laws (generally unknown)
» observed only partially (in space and time)

» Goals:

> understanding (causal) connections among complicated phenomena
» predicting the future, reconstructing the past

» Methodological approach:

1. model those complex systems through probabilistic, parametric models,
2. process observed time-series data to estimate unknowns

» statistics, machine learning, signal processing, ... Al?
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Time series: deterministic vs stochastic

> A time series is a collection of observations/measurements made
sequentially through time.

> A time series is said to be continuous when observations are made
continuously through time. The observations themselves may still be
discrete. discrete or continuous).

» A time series is said to be discrete when observations are made at discrete
time points (e.g. the air temperature measured each day). The
observations y; may be discrete or continuous.

> This lecture focus on discrete time series, with equally spaced times (e.g.
measurements are made at regular intervals).

» Notation: y; € R? made at times t = 1,2,3,...n.
» Remark: Time is measured in suitable units (e.g. minutes, days, years).

» Further reading:

» Prado, R., & West, M. (2010). Time series: modeling, computation, and
inference. CRC Press.
> Kitagawa, G. (2010). Introduction to time series modeling. CRC press.
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Time series: deterministic vs stochastic

» Successive observations in a time series are often not independent.

» This means that past observations can be used to predict future
observations.

» If, given the past observations y1,...y:—1, the observation y; can be
predicted exactly, the times series is known as deterministic.

» |f future observations cannot be predicted exactly, the time series is said to
be stochastic.

» In a stochastic series, future observations will have a probability
distribution.

> If the observations are dependent, then this probability distribution is
dependent on past observations in the series.

> p(yelyie—1)
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Monthly totals of international airline passengers in the USA, from January
1949 to December 1960.
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Examples
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Data on the monthly deaths from bronchitis, emphysema, and asthma in the
UK, 1974-1979
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Average air temperatures at Nottingham Castle in degrees Fahrenheit for 20
years, measured monthly.
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1. Modeling: state-space models (SSM)

> A SSM models a sequence of hidden states x; € RV=, t =1,...,T.
» it captures the state and dynamics of a system

» Time-series data are collected, y; € RNy, ¢=1,...,T:
» noisy and partial version of the system state

» Probabilistic notation of a (simple) Markovian SSM:
> state model — pg(xt|xt—1) = p(x¢|xt—1,0)
> observation model — pg(yi|xi) = p(yi|x:,0)
» prior on initial state — pg(x0) = p(x0|0)
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2. Estimation/inference problems

» We sequentially observe data y: related to the hidden state x:.
> At time ¢, we have accumulated ¢ observations, y1.: = {y1,..., ¥t}

» Wish list:

» prediction of future observations and estimation of states (with uncertainty
quantification)
> Filtering: pg(x:|y1.:) and joint pe(x1.t|y1:¢)
» State prediction: pg(x¢4+|y1:t), T>1
P> Observation prediction: pe(yi++|y1:t), T>1
» Smoothing: pe(x¢—+|y1:t), T>1

> estimation of model parameters (with interpretability)

» Bayesian/probabilistic inference:

> we compute or approximate pdfs of unknowns
when possible (instead of point-wise estimates)
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Bayesian filtering

» Bayesian rule for the joint:

p(yrr|xr)p(x1:7)
p(yr.r)

p(XlzT\yLT) =
» Filtering distribution as a marginal:
p(xr|yrr) = /p(X1:T\y1;T)dX1de...de,1

» Problems:

» Dimension: xi.p € RT 4
» When we receive y;, we don’t want to reprocess y1.t—1

Goal: efficient and sequential Bayesian inference ]
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Sequential optimal filtering

» Filtering Problem:

» Distribution of x¢ given all the obs. up to time ¢, p(x¢|y1.¢)
» Recursively from p(x;—1|y1..—1) updating with the new y;

» Optimal filtering:
1. Prediction step:

p(Xt|y1:t—1) = /p(xt|xt—l)])<xl—1‘y1:!,—1>dxt—1

2. Update step:
p(ye|xe)p(xe|yi:e—1)

p(ytly1:e—1)
> Interest in integrals of the form: I(f) = [ f(x¢)p(x:¢|y1.¢)dxe
> e.g., the mean, I(f) = fxt/)(x,\m 1 )dxy

]?(Xr\}’l/

State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh
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The linear-Gaussian model

» The linear-Gaussian model is arguably the most relevant SSM:
» Functional notation:

» Unobserved state — x¢ = Aix¢—1 + Q¢
» Observations — yt = Hix¢ +r¢

where q¢ ~ N(0,Q¢) and ry ~ N'(0, R¢).
» Probabilistic notation:

> Hidden state — p(xt|xt—1) = N (xt; Aexi—1, Qt)
> Observations — p(y¢|xt) = N(ye; Hixe, Ry)
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The linear-Gaussian model

» The linear-Gaussian model is arguably the most relevant SSM:
» Functional notation:

» Unobserved state — x¢ = Aix¢—1 + Q¢
» Observations — yt = Hix¢ +r¢

where q¢ ~ N(0,Q¢) and ry ~ N'(0, R¢).
» Probabilistic notation:
> Hidden state — p(x¢|xi—1) = N (x¢; Arxi—1, Qt)
> Observations — p(y¢|xt) = N(ye; Hixe, Ry)
» Kalman filter: obtains the filtering pdfs p(x:|y1.)at each t (if known 0)

» Gaussian pdfs (i.e., compute means and covariance matrices)
» Efficient processing of y; from p(x:—1|yi:¢+—1)

> only y; is processed at time t
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The linear-Gaussian model

» The linear-Gaussian model is arguably the most relevant SSM:
» Functional notation:
» Unobserved state —+ x; = Aix¢—1 + Q¢
» Observations — yt = Hix¢ +r¢
where q¢ ~ N(0,Q¢) and ry ~ N'(0, R¢).
» Probabilistic notation:
> Hidden state — p(x¢|xt—1) = N (x¢; Aexi—1, Qt)
» Observations — p(yi|xi) = N(ye; Hixe, Ry)
» Kalman filter: obtains the filtering pdfs p(x:|y1.)at each t (if known 0)
» Gaussian pdfs (i.e., compute means and covariance matrices)
» Efficient processing of y; from p(x;—1|y1:4—1)
> only y; is processed at time t
> Rauch-Tung-Striebel (RTS) smoother: obtains p(x:|y1.7)

» requires a backward reprocessing, refining the Kalman estimates
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Kalman Filter: a bit of history

» Rudolf E. Kalman (Hungary 1930 - USA 2016) developed the famous
Kalman filter algorithm?

» The second paper was rejected by an electrical engineering journal with a
comment of a referee saying it cannot possibly be true” (now it has +9k
citations)3

» The on-board computer that guided the descent of the Apollo 11 lunar
module to the moon had a Kalman filter to track its trajectory!

2R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In: Journal
of Basic Engineering 82 (1960), pp. 35-45.

3R. E. Kalman and R. S. Bucy. “New results in linear filtering and prediction theory”. In:
(1961).
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Kalman filter: Gaussian properties

» Gaussian distribution:
1. Product of two Gaussian distributions is still a Gaussian distribution:
p(alb)p(b) = p(a,b).

p(a, b) is Gaussian.
2. Marginalization of a joint Gaussian distribution is still Gaussian:

pla) = / p(b, a)db,

marginalizing b, p(a) is also Gaussian
3. Conditional of a joint Gaussian distribution is still Gaussian (equivalent to
first point):

p(a,b)

palt) = £ s

State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh 19/77



Kalman filter: Gaussian properties (graphical)

» Marginals of a bi-variate Gaussian distribution are Gaussian:
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Kalman Filter: prediction step

1. Prediction step (marginalization of Gaussian):
p(xtly1—1) = /p(xt|xt71)7)<xtfl Vii-1)dXe—1

» Suppose that filtered distribution at ¢ — 1 is Gaussian
P(X/—l|}’1;/—1) = J\"r(m/fl, Pl,fl)-
» Predictive distribution is also Gaussian p(x; |y 1) = N(x, . P,)
> Mean: x, = Am;_
» Variance: P, = APy 1A? + Q+

» Interpretation:
» The mean is projected by the propagation matrix A;

» The uncertainty is propagated through A, plus the variance of
the process noise

State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh
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Kalman filter: update step

2. Update step (product of Gaussians):

(Yt |Xe)p(Xe |y
])(Xf‘y|:1>:](y)| ))/ ‘ 1:4—1)
p(yt|y1:t—1)

> The filtered distribution at time ¢ is also Gaussian p(x;|y1..) = N (m,, P})

> Mean: m; =%, +K; (yt — H;x, )
» Variance: Py = (I — K:H;) P,
where K; = P, H{ (H,P, H/ + Rt)71 is the optimal Kalman gain.

7

» Interpretation:

» The mean is corrected w.r.t. the predictive in the direction of the
residual /error.

» The variance is propagated by H; and divided by the covariance of
the residual/error.

State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh 22/77



Kalman summary and RTS smoother
> Hidden state — p(x¢|xi—1) = N (xs; Arxi—1, Q)
» Observations — p(yi|x:) = N (y; Hixi, Re)

Kalman filter RTS smoother

» [nitialize: mg, Py > Fort="T,...,1
> Fort=1,...,T Smoothing stage:
Xpi1 = A:my
x, =Aym; Pt_+1 = AtP’AtT + Q¢
P, = AP, AT+Q; G =PA[ (P )7}
Update stage: my =my; + Ge(mg ) — %)

zt =yt — Hix, P =P+ Gi(P{, _Pt_le)G'tT
S¢ = HP; H] + Ry ’
K, =P, HS; '
my =x, + Kz
P, =P, — K:S:K,

v/ Filtering distribution: p(x;|y1.:) = N (x;;m,, Py)
v/ Smoothing distribution: p(x¢|y1.7) = N (x¢; mi, P$)

State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh 23/77



Kalman summary and RTS smoother
> Hidden state — p(x¢|xi—1) = N (xs; Arxi—1, Q)
» Observations — p(yi|x:) = N (y; Hixi, Re)

Kalman filter RTS smoother

» Initialize: my, Py > Fort="T,...,1

» Fort=1,...,T Smoothing stage:

xt_+1 = A;my

Xt_ = A.tlllf7| Pt_+1 = -‘Atl:)/-AtT + Qt

P, = AP, (AT +Q G =P:A] (P )}

m{ = mg + Gt(mf_H — xt_Jrl)

Update stage:
P; =P:+Gi(Pj,, — P, )G/

Zy =yt — Htxt_

S¢ = HP; H] + Ry
K, =P, HS; '
my =x, + Kz

P, =P, — K:S:K,

v/ Filtering distribution: p(x;|y1.:) = N (x;;m,, Py)
v/ Smoothing distribution: p(x¢|y1.7) = N (x¢; mi, P$)
X How to proceed if model parameters @ = [myo, Po, {A+, Q;, Hy, Ry }_1]

are unknown ?
> even constant @ = [mo, Po, A, Q, H, R| can be extremely challenging.
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Kalman filter and RTS smoother
Mini-project 2: KF



Mini-project 2: Kalman filter for 1D motion tracking (1/2)
Goal: Implement a Kalman filter (KF) for tracking the position and velocity of an object
moving in one dimension.

State-space model:
Hidden state:

= =[]
where:
P> p; is the position at time t,
P> v, is the velocity at time t.
State evolution: (constant acceleration model)

X =Ax:_1+4q:, aqr ~N(0,Q)

4 3
1 At AL 52 AL 52
_ — |~ 2
A= [O 1 } Q= |:At3 5 5
2 %a a

Observation model:

y: = Hx¢ +71¢, 16 ~N(0,R)
H=[1 0]

Simulation parameters:
> At=1,0,=05 R=1.
> Initial state: %o = [0,1]".

P Initial covariance: Py = 1015.

State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh 25177



Mini-project 2: Tasks (2/2)
Tasks:
1. Simulate the system:
> Generate a ground-truth trajectory x; over T' time steps.
» Simulate noisy position measurements ;.
2. Implement the Kalman filter:
> Use the standard prediction and update steps.
> Estimate position and velocity over time.
3. Evaluate the KF performance:
» Compare estimated position p; with the true p;.
» Compute the Mean Squared Error (MSE) of position estimates.
» You can also average over many data generation processes (recall KF is
deterministic given the data)
> Plot ground truth, noisy measurements, and KF estimates.
4. Beyond (some ideas):
» play with the model parameters, for instance the initial velocity or the
element A(2,2)
> extension to a 2D motion model (d; = 4)
» you can draw trajectories in the plane
» implement RTS smoother and compare MSE w.r.t. to true p¢
> experiment model misspecified/mismatch scenarios (e.g., consider in
inference values of 02 and R that are different than during data generation
process
Possible values ()please experiment!):
> T =50 At=1,0,=0.5 R=1.
> play with 2 and R (fix one and play with larger/smaller value of the other
one, interpret the results)

> %o =1[0,1]T, Py = 10I5.
State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh 26/77
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The world is not linear-Gaussian: Lorenz model

» There was a time where the universe “was” all linear-Gaussian but...
» solving real-world and interesting problems requires complicated models.

» Example: Lorenz system: non-linear and continuous time model
(stochastic version)*

dX; = —S(X1 —Y1)+U1,
dX2 = i’)(l—)(2—)(1)(3-}—(]27
dXs = X1Xo—bX3+Us,

» Uy, Us, Us are some noise process

> (s,r,b) = (10,28, %) are static model parameters broadly used in the
literature since they lead to a chaotic behavior.

» product of variables, continuous time, non-Markov behavior...

“lorenz1963deterministic.
State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh
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The world is not linear-Gaussian: Lorenz model

Chaos: When the present determines the future, but the approximate
present does not approximately determine the future.
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The world is not linear-Gaussian: discretized Lorenz model

» Continuous-time Lorenz model = discrete-time approximation
> Euler-Maruyama integration with integration step A = 1073

X1t = Xit-1—As(X1,e—1 — Xo—1) + VAU, 4,
Xot = Xop1 +A0X1 -1 —Xopo1— X1 -1 Xs6-1) + \/KUQ,ty
X3t = Xsi-1+AX1-1X04-1—bX3:-1) + \/ZUB,M

» {U; +}t=0,1,.... © = 1,2,3, are independent sequences of i.i.d. Gaussian
random variables with zero mean and unit variance.
» Markov model and also Gaussian, but still non-linear

State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh 30/77



The world is not linear-Gaussian: discretized Lorenz model

» Continuous-time Lorenz model = discrete-time approximation
> Euler-Maruyama integration with integration step A = 1073

Xip = Xio1—As(Xi, 1 — Xoy 1) + VAU,
Xow = Xop 1 +ACXy 0 —Xoy 1 — X1 0 X500) + \/KUQ,ty
X3 = Xauo1+AX1 1 X2, —bXs, 1)+ VAUs,,

» {U; +}t=0,1,.... © = 1,2,3, are independent sequences of i.i.d. Gaussian
random variables with zero mean and unit variance.
> model and also Gaussian, but still non-linear
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The world is not linear-Gaussian: discretized Lorenz model

» Continuous-time Lorenz model = discrete-time approximation
> Euler-Maruyama integration with integration step A = 1073

X1t = Xit-1—As(X1,e—1 — Xo—1) + VAU,
Xot = Xop1 +A0X1 -1 —Xopo1— X1 -1 Xs6-1) + VA ,
X3t = Xsi-1+AX1-1X04-1—bX3:-1) + VAU,

» {U; +}t=0,1,.... © = 1,2,3, are independent sequences of i.i.d. Gaussian
random variables with zero mean and unit variance.
» Markov model and also , but still non-linear
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The world is not linear-Gaussian: discretized Lorenz model

» Continuous-time Lorenz model = discrete-time approximation
> Euler-Maruyama integration with integration step A = 1073

X1t = Xit-1—As(X1,e—1 — Xo—1) + VAU, 4,
Xot = Xop1 +A0X 1 -1 —Xopo1— Xi 1 Xs01) + \/EUQ,M
X3t = Xsi—1+AX1:-1X04-1—bX3:-1) + \/ZUB,M

» {U; +}t=0,1,.... © = 1,2,3, are independent sequences of i.i.d. Gaussian
random variables with zero mean and unit variance.
» Markov model and also Gaussian, but still non-linear
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Kalman filtering for nonlinear systems

» The Kalman filter is exact for linear and Gaussian models only.
» However, Kalman-like approximations are possible for nonlinear models.
P> The most popular approaches include

» Linearisation: the extended Kalman filter (EKF)®

> Numerical integration: the unscented Kalman filter (UKF)®, and
quadrature/cubature Kalman filters (QKF)7.

» Monte Carlo & Kalman updates: ensemble Kalman filter®.

5B. D. O. Anderson and J. B. Moore. Optimal Filtering. Englewood Cliffs, 1979.

6S. J. Julier and J. Uhlmann. “Unscented filtering and nonlinear estimation”. In:
Proceedings of the IEEE 92.2 (Mar. 2004), pp. 401-422.

7]. Arasaratnam, S. Haykin, and R. J. Elliott. “Discrete-time nonlinear filtering algorithms
using Gauss—Hermite quadrature”. In: Proceedings of the IEEE 95.5 (2007), pp. 953-977,
I. Arasaratnam and S. Haykin. “Cubature kalman filters”. In: |[EEE Transactions on Automatic
Control 54.6 (2009), pp. 1254—-1269.

8G. Evensen. “The ensemble Kalman filter: Theoretical formulation and practical
implementation”. In: Ocean dynamics 53.4 (2003), pp. 343-367.
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Linearisation

» Nonlinear dynamical system:

xt = f(xt—1) + Qqt,

yi = h(x¢) +r¢

P The classical approach to nonlinear filtering is to linearise f(-) and h(-) using Taylor’s

theorem.

P> Example: if x; = Ayx¢—1 + q¢ but y: = h(x¢) + ry¢, then

=H;
——

ye & h(xy ) + Je(x, )(xe —x; ) +1¢

where J;(m, ) is the Jacobian matrix evaluated at x,,

Ohy
6“’1,n
dho
EET.

J, =

oh
dy
CESTY)

dhy

T2 n
dho
Bag.,,

Ohg,

8$2,n

8de n

ohy
CEF
kY

azdmn

ohg,

dy Xdg

P If the state equation is nonlinear, then we linearise it around m;_;.

State space models and Kalman filtering (L2)
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The extended Kalman filter

» Extended Kalman filter (EKF) for a nonlinear likelihood
xt = Apxpoi4a, ar~N(0,Qr)

ye &~ h(x;)+Ju(x;)(xe —x; ) +1e, 1~ N(O,Ry)
- = T
Prediction: { Pi = AP 1A +Qq
Xy = Am;
St = Julx, )Py Ju(x;)T + Ry
Update: me = x; P30 S (v - hee))
P = P;_P;Jf(x;)TszlJt(x:)P:

P Exercise: derive the EKF for nonlinear transition model
> check the EKF in® (or same book of 2023 edition, Section 7.2)

9S. Sarkka. Bayesian Filtering and Smoothing. Ed. by C. U. Press. 2013.
State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh
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Numerical integration with reference points

» Consider the problem of computing integrals w.r.t. a Gaussian pdf
[ 1@ (@sm. C)ae )

where N'(z; m, C) is the Gaussian pdf with mean m and covariance C.
P There are several schemes that enable the approximation of (1) using a deterministic set
of weighted points {z7, A’ };]:1, namely,

/f:v)N(mmC Z)\Jf(z

» Such approximations come in different “flavours™: o-points'®, quadrature methods®*
cubature schemes??

105, J. Julier and J. Uhlmann. “Unscented filtering and nonlinear estimation”. In:
Proceedings of the IEEE 92.2 (Mar. 2004), pp. 401-422, H. M. Menegaz, J. Y. Ishihara,
G. A. Borges, and A. N. Vargas. “A systematization of the unscented Kalman filter theory".
In: IEEE Transactions on automatic control 60.10 (2015), pp. 2583-2598.

11| Arasaratnam, S. Haykin, and R. J. Elliott. “Discrete-time nonlinear filtering algorithms
using Gauss—Hermite quadrature”. In: Proceedings of the IEEE 95.5 (2007), pp. 953-977.

12| Arasaratnam and S. Haykin. “Cubature kalman filters”. In: IEEE Transactions on
Automatic Control 54.6 (2009), pp. 1254-1269, B. Jia, M. Xin, and Y. Cheng. “High-degree
cubature Kalman filter”. In: Automatica 49.2 (2013), pp. 510-518.
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Numerical integration with reference points

» The key concept is the following:

» In MC and for a standard normal, we implicitly approximated the target
distribution by a set of random points that are more likely to be around the
mean.

» In the case of reference/quadrature/cubature/deterministic points, the
“samples” follow a similar principle but they are chosen deterministically:

P it is not possible to do a variance analysis nor there is a consistency results
(unless we have rules to take the number of points to infinity)

> Example: the spherical-radial cubature rule of degree 3'3. If 2 ~ N (m, C)
is d-dimensional, C' = SST and S; denotes j-th column of S, then

= m—l—\/gSj, j=1,...,d

@ = m—VdS;_a, j=d+1,...,2d
; 1

PR S

A= 24 Vi

13B. Jia, M. Xin, and Y. Cheng. “High-degree cubature Kalman filter”. In: Automatica 49.2
(2013), pp. 510-518.
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Kalman filtering with reference points

P General description of unscented/quadrature/cubature Kalman filters.
> Let Xo ~ N (mo, Pp) and assume the model
x¢ = f(x¢—1) +ar, ye=h(xe)+re, @ ~N(0,Qe), re~N(O,Ry).

P> Kalman filter with reference points

- Prediction: assume p(x¢—1|y1:t—1) & N (x¢—1;m¢_1,Pt_1); then
P> compute {x{_l, )\{_1};:1 from N (x¢t—1;m¢_1,P:_1) and
> et xi = f(xi_;)forj=1,...,J;
> predictive mean: x; = E‘jle N xd;
» predictive covariance: P, = ijl(xz —x; ) (xd, — x:)T)\{71 + Q.
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Kalman filtering with reference points

P Kalman filter w/ reference points (cont)

- Update:
> compute {xz_, N~ J_ from N (xy;x; ,P; ) and
let pi = h(x{")forj=1,....J;
predicted observation: y; = ijl Xl
cross-covariance P;"Y = j=1(x{7 —x ) —9)TAIT

VVVyVYVYYVYY

observation covariance: S; = Z‘fil(n{7 — )] —9) AT 4 Re
Kalman gain: K, = PFYS;!

mean: my =x, + Ky (y¢ — y¢);

covariance: P, = P; — K S, K, =P; — P/’S; 1 (P/")T
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Outline

Nonlinear Kalman filters
Mini-project



Mini-project: CKF for the Lorenz 63 model

» Design and implement a cubature Kalman filter (CKF) and an unscented Kalman filter
(UKF) for the stochastic Lorenz 63 model with nonlinear observations.

P State equation: stochastic Lorenz 63

dX; = —s(X;—Y1)+ cdWy,
dXo = rX; — Xo — X1 X3 + odWs,
dX3 = X1X2—bX3+O'C|W3,

where the W;(t)'s are standard Wiener processes, o is a constant, and the parameters
(s,m,b) = (10,28, §) yield chaotic dynamics. Discretised via Euler-Maruyama with
time-step h we have

X1t = Xi4-1—hs(X1,e-1 _X2,t—1)+0\/EZ1,t7
Xo: = Xot-1+h(@rXii—1—Xot-1 7X1,t—1X3,t—1)+U\/EZ2,tu
X3: = Xzs1+h(X1,:-1Xa:-1—bXz:-1)+0VhZss,

where Z;  ~ N(0,1). The state is x; = [X1,+, X2.¢, Xg)t]T.
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Mini-project: CKF for the Lorenz 63 model

» Observations:

1

Yie = Exl,th,tJrUuULt
1

Yo = EXI,tXS,tJFUuUZ,t

where o, is a constant and U; + ~ N (0,1). We denote y; = [Y7 ¢, YQ’t]T.

Assume that observations are collected only every B discrete-time steps (i.e., when
t=kP, k=1,2,...). In the absence of observations, only the prediction step of the
CKF has to be taken.

P> The simulation code should generate the ground-truth signal Xo.7 and the observations
Y1.7 for some time horizon T'. All model parameters should be user-selected, including
T, the time step h, o and o, B, and {s,r,b}.

P Initial mean & = [—5.9165; —5.5233; 24.5723]-r (a point in the attractor of the
deterministic Lorenz 63 with (s, r,b) = (10,28, $).
» Reference values: (s,r,b) = (10,28, §), initial covariance Py = 201, 0 = %, 0y, = 2,

time step h = 10~ >, gap between observations B = 20, length of the simulation
T = 20/h = 20, 000 discrete time units.
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Outline

Learning model parameters in SSMs



Learning model parameters in SSMs

» Options to learn model parameters 6 in general SSMs
(@ = [mo,Po, A, Q,H,R] in LG-SSM):
1. Maximum-likelihood (point-wise estimate )
» no prior knowledge is assumed

2. Maximum a posteriori (point-wise estimate 8)
P prior knowledge is incorporated and can help the inference
3. Fully Bayesian approach: compute the posterior p(0|y1.7)

» even more complicated problem
» Monte Carlo methods are generally used to obtain samples from p(0|y1.7)
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1. Maximum-likelihood estimation

» Goal:

T
0= argmax p(y1.r|0) = argmax p (y110) [ [ p(vilyre-1,0)  (2)
t=2

» partial normalizing constant p(y¢|y1:t—1,0):

» computed by KF in LG-SSMs
» approximated by PFs in other SSMs

> equivalent to minimize the energy function

©(0) = —log (p(y1:7(0)) (3)
T
= —log (p(yle) [ p(yelyre—1, 9)> 4)
t=2
T
= —log (p(y110)) + > —log (p(ytly1:t—1,0)) 5)
1(0) = 1(0)
T
= ¢(6) (6)
t=1
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1. Maximum-likelihood estimation

» Numerical approaches for ML estimation:
1. Gradient-based methods:

> Option A:** obtain gradient of the energy function (sensitivity equations)
Vop(0)

» Option B:*® through the Fisher identity (which uses the smoothing
distribution)

Ve@(e):/VB logp (x1:7,y1:7|0) p (X1.7|y1.7, 0) dX1.T 7)

2. Expectation-maximization (EM) algorithm:6

P turns a complicated optimization problem into a sequence of easier problems
» can be more stable numerically, ensures convergence, and may run faster

14D. Nagakura. “Computing exact score vectors for linear Gaussian state space models”. In:
Communications in Statistics-Simulation and Computation 50.8 (2021), pp. 2313-2326.

*®https:/ /www.almoststochastic.com /2014 /06 /fishers-identity.html

16R. H. Shumway and D. S. Stoffer. “An approach to time series smoothing and forecasting
using the EM algorithm”. In: Journal of Time Series Analysis 3.4 (1982), pp. 253-264.
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Expectation-maximization approach for ML

t max F(q;, )
2]

F(q:0) L(6)

O Oraa

(credit to M. N. Bernstein)
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Expectation-maximization approach for ML

> Expectation-maximization (EM): iterative ML estimate
> Algorithm introduced in 17
> Application to LG-SSMs in 18
» Based on the majorizing function property

log (p(y1:710)) > Flg(x0.1), 0], (8)

where
p(x0:7,y1.7/0)

q(xo.T) dxo:r ©

Fla(xoir),6) = [ atxor)log
for any arbitrary pdf g(x0.7).
> |t is possible to maximize log (p(y1.7|0)) by iteratively maximizing the
minorizing function Fq(x¢.T), 0
» equivalent to minimize ¢(6) by minimizing —F[q(x0:1), 0]

17A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood from Incomplete
Data via the EM Algorithm”. In: Journal of the Royal Statistical Society. Series B
(Methodological) 39.1 (1977), pp. 1-38. ISSN: 00359246. URL:
http://www.jstor.org/stable/2984875.

18R. H. Shumway and D. S. Stoffer. “An approach to time series smoothing and forecasting
using the EM algorithm”. In: Journal of Time Series Analysis 3.4 (1982), pp. 253-264.
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Expectation-maximization approach for ML

» Maximize the minorizing function F[q(x0.7), 0] w.r.t. functional ¢ and
parameter 0 via coordinate ascent:

> Initialization of 8(®) and function ¢(®.
> Fori=1,2,...

E-step ¢ = argmax F[q(x0.7), 0" V).
q

M-step 8 = argmax F[q"*~) (xq.1), 6].
e

> Possible to show that the E-step solution is the smoothing distribution®®

¢ (x0.r) = p(xor|yr.r,00 ") (10)

19R. M. Neal and G. E. Hinton. “A view of the EM algorithm that justifies incremental,
sparse, and other variants”. In: Learning in graphical models. Springer, 1998, pp. 355-368.
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Expectation-maximization approach for ML

> Then, plugging ¢V (x0.7) = p(xo.7|y1.7, 007 ) in (9), the M-step
consists in maximizing:

‘ — i — X0:T,¥Y1: 0)
F © T ,0 = / X0- i ’9(1 1) 1 p( 0:T", 1.T|‘ )
¢ (x0:1), 6] p(Xo.T|y1T ) log (orlys 60 1))dX0.T

= /p(XO:T\YLT, 6 ") log (p(x0.7, y1.710)) dxo.1

Q(6,0(i—1))

—/p(xO:TIy1:T,0(i_1))log (p(XO:T‘y1zT70(i_l))) dxo:T

constant w.r.t. 6

EM algorithm for ML in generic SSMs

» Initialization of 8(?.

» Fori=1,2,...

E-step compute Q(,0(~1)

M-step compute 90 = argglax Q(g,g(i—l))_
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Expectation-maximization approach

» M-step: maximize

(0,00 ") = /P(XO:T|Y1:T,9(FU)10€ (p(x0:7, y1:710)) dxo.7

> p(x0.7|y1:7, 00~ D): smoothing distribution given #(—1)

> p(xo:r, y1:710) = p(x0]6) TT/—s p(xtlxt—1) T/ P(yt|x¢): joint
distribution of states and observations (as a function of 8)

> We need:
> (E-step) Q(0,00~1) to be closed-form
. 20(0,00~ 1) . . s .
> (M-step) Solution to ====55——= = 0 (or iterative optimization method in
M-step)
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Expectation-maximization algorithm for LG-SSMs

> In LG-SSM:

> joint smoothing p(xq.7|y1.7, 00~ 1) is Gaussian
> tractable integral to obtain:

0 (0.00°V) = —% log [27P (8)] — glog 127 Q(8)] — glog 27 R(6)|
— 5t {Pg1(0) P4+ (mj — mo(0)) (m§ — mo(8) ] }
- gtr {Q*l(o) [z —CAT(6)—A@)CT + A(0)<I>AT(0)] }

- gtr {R*l(e) [D ~BH'(9) - H()B" + H(e)zHT(e)] } ,

where the following quantities are computed from the results of RTS smoother
run under parameter values (¢—1)

T

T
1 § X § 1 § § X
= g Pi + mj [m;]T7¢.:, g Pi_ | +mi_, [mi,l
= T

JT

)

T T T
1 1 - 1
B=_>"y:mj]",C=_>"PiG/,+mi[mi ;] ,D=_> wyiy;.
Tt*l Tt*l Tt*l
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Expectation-maximization algorithm for LG-SSMs

EM algorithm for generic LG-SSMs

» Initialization of (©.

» Fori=1,2,...

E-step run the RTS smoother and obtain closed-form Q(O,B(i_l))
M-step compute 6(%) = argrgnax Q(e,g(i—l))_

> If all parameters in @ are known except one, M-step has closed form solution

> otherwise more advanced optimisation methods are needed
(block-alternating, gradient descent, proximal methods,...)

> For instance, if only A is unknown, the M-step optimizes

0 (0.00°1) = 72 w{Q710) [5 - CAT(6) ~ AOCT + AO)AT(0)] } + et
with
T

ZPt+mt (m3] T, ZPS 1+mi_y [mf_ 1]T
Ti=

)

T
1
=7 ZP?GI_l + mj [mf_l]-r .
t=1

> the closed-form solution is A(?) = C®—!
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2. Maximum a posteriori (MAP) estimation

> MAP goal:
T
0= argmax p(@ly1.T) = argmax p(y1|6) Hp yt|y1:t—1,0)p(0) (11)
t=2
> equivalent to
6 = argmin (), (12)
2]
with
©(8) = —log (p(y1.716)) — log (p(8)) (13)
T
= —log <p(y19) Hp(ytb’l:t—lve)) — log (p(6)) (14)
t=2
T
= —log (p(y1160)) + Y _ —log (p(ytly1:t—1,6)) —log (p(6)) (15)
1(0) =2 ©¢(8)
T
Z — log (p(8)) (16)

» MAP requires similar numerical (gradient-based and EM-based) methods can be
used, with extra complications depending on p(0)
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3. Fully Bayesian approach

» It is possible to do augmented inference on all unknowns, p(8, xo.7|y1:7)
and the marginalize to obtain

p(@lyr.T) = /p(67X0:T|y1:T)dX0:T (17)

» the full posterior and the marginalization are in general intractable
» Many methods based on approximating p(@|y1i.7) by a particle
approximation p(8|y1.7) = + Zf:;l 8o, (8), e.g., particle MCMC?°

Particle Metropolis-Hastings algorithm

> Initialization of 6(0).
> Forn=1,2,...,N
1. Simulate a candidate sample 8™ ~ ¢(0]6,,—1)
2. Compute the acceptance probability
P(y1.710*)p(0*)q(8,,_110")
> p(y1:7100—1)P(0y_1)q(0%[6,,_1)
3. Simulate a uniform r.v. u ~ U (0,1) and set

5 = {9*, ifu<a

o= min{l

6,1, otherwise.

v

20C. Andrieu, A. Doucet, and R. Holenstein. “Particle markov chain monte carlo methods”.
In: Journal of the Royal Statistical Society Series B: Statistical Methodology 72.3 (2010),
pp. 269-342.

State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh 53/77



Outline

A doubly graphical perspective on LG-SSM



Goal

» LG-SSMs: goal is to learn the state model

> we consider H; and R¢ known and constant A; = A and Q; = Q
> goal: estimate 8 = [A; Q] through MAP

Xt= AXt71 + qt, q: ~ N(Oa Q)

This talk: modeling and inference approaches

> Sparse graphical model to represent (i) the (Granger) causal dependencies
among the states, and (ii) the correlation among the state noises.

> Majorization-minimization methodology to estimate A and Q
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A graphical perspective on A

» Goal. Estimation of matrix A (a) introducing prior knowledge, and (b)
under a novel interpretation of A:

xt= Ax;—1+qy, qr ~N(0,Q)

» A interpreted as a sparse directed graph

State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh 56/77



A graphical perspective on A

» Goal. Estimation of matrix A (a) introducing prior knowledge, and (b)
under a novel interpretation of A:

xt= Ax;—1+qy, qr ~N(0,Q)

» A interpreted as a sparse directed graph

e x; € RM* contains N, time-series
» each of them represents the latent
process in a node in the graph
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A graphical perspective on A

» Goal. Estimation of matrix A (a) introducing prior knowledge, and (b)
under a novel interpretation of A:

xt= Ax;—1+qy, qr ~N(0,Q)

» A interpreted as a sparse directed graph

e x; € RM* contains N, time-series
» each of them represents the latent
process in a node in the graph

e A(i,j) is the linear effect from node j at
time t — 1 to node ¢ at time t:

Ng

Tew =3 Al ))Ti-15 + G

j=1
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A graphical perspective on A

» Goal. Estimation of matrix A (a) introducing prior knowledge, and (b)
under a novel interpretation of A:

xt= Ax;—1+qy, qr ~N(0,Q)

» A interpreted as a sparse directed graph

0.9 0.7 0 0o o0

0 0 —-03 0 0

e x; € RV= contains N, time-series A= PO
» each of them represents the latent 0 0 05 0 0

process in a node in the graph

e A(i,j) is the linear effect from node j at
time t — 1 to node ¢ at time t:

Ng

Tew =3 Al ))Ti-15 + G

j=1

o A(i,j) #0 = x¢_1,; Granger-causes z ;.
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Granger causality

GBANGER

Disclaimer: Granger causality is a statistical test to determine if one time series
is useful to predict another one (controversial type of causality!)
> Let us consider two time-series y; = [y1,i,¥2,i, .-, yT,s] and
Yi = [¥1.5:¥25, - ¥1,]
» We say that y; Granger-causes y; (order p = 1) if
» when fitting the two auto-regressive (AR) models

> (A) yt,i =a1yi—1,i + €t
» (B) yt,s = a1yi—1,i +biye—1,; + 1t

> Var(y:) << Var(e¢)
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A graphical modeling P = Q!

xt= Axi—1 + qq, q: ~ N(0,Q)

e P = Q ' interpreted as sparse undirected graph (Gaussian graphical
models).

a:(n) 1L qi(@){ac(),j € 1,...,No\{n, £}} <= P(n.l) = P({,n) = 0.

2 0 —0.1 0 0
0 0.9 0.3 —0.2 0.5
P=Q != —0.1 0.3 0.8 0 0
0 —0.2 0 2 0
0 0.5 0 0 1.5
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Summary of the graphical interpretation

fffff > Mxerr(Df---~

Summary representation of the graphical model, for the example graphs A and P from the

two previous slides.

DGLASSO (dynamic graphical lasso) algorithm: maximum a posteriori
(MAP) estimator of A and P under lasso sparsity regularization on both
matrices, given the observed sequence y1.7.
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Outline

Estimation of A and Q in LG-SSM



Proposed penalized formulation
Goal. MAP estimate of A and P (P =Q'):

A", P" = argmax p(A,Plyi.r) = argmax p(A,P)p(yi.r|A,P)
AP A

= argmin —logp(A,P) —logp(y1.7|A,P) =

)

Lo(A,P) Li.7(A,P)
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Proposed penalized formulation
Goal. MAP estimate of A and P (P =Q'):

A", P" = argmax p(A,Plyi.r) = argmax p(A,P)p(yi.r|A,P)
AP A

= argmin —logp(A,P) —logp(y1.7|A,P) =

)

Lo(A,P) Li.7(A,P)

1. Lasso penalty (prior): we promote sparse matrices (A, P) for graph
interpretability:
Lo(A,P) = Xal|Allr + Ap[[P]]1,
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Proposed penalized formulation
Goal. MAP estimate of A and P (P =Q'):

A" P" = argmax p(A,Plyi.r) = argmax p(A,P)p(yr.T|A,P)
AP

= argmin —logp(A,P) —logp(y1.7|A,P) =
AP

Lo(A,P) Li.7(A,P)
1. Lasso penalty (prior): we promote sparse matrices (A, P) for graph

interpretability:
Lo(A,P) = Aal|Alls + Ar[[P]1,

2. log likelihood:

T
L7(A,P) :Z%log\%rs (A,P)| + zt(A P)'S.(A,P) 'z, (A, P).

> evaluation running KF with (A, P)
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Proposed penalized formulation
Goal. MAP estimate of A and P (P =Q'):

A" P" = argmax p(A,Plyi.r) = argmax p(A,P)p(yr.T|A,P)
AP

= argmin —logp(A,P) —logp(y1.7|A,P) =

)

Lo(A,P) Li.7(A,P)
1. Lasso penalty (prior): we promote sparse matrices (A, P) for graph

interpretability:
Lo(A,P) = Aal|Alls + Ar[[P]1,

2. log likelihood:
T
Z%log\%rs (A, P)| + zf(A P)'S.(A,P) 'z, (A, P).

> evaluation running KF with (A, P)
Challenges:
» Joint minimization with
» gradient-based solutions are challenging (unrolling KF recur5|on) and
numerically unstable
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EM-like approach

> EM-like approach:Initialize (A(®,P(®) and, at each iteration i > 0,
» Majorizing function (E-step):
> run KF/RTS smoother by setting (A, P()) ¢ RNeXNa Sy
» build majorizing function (Q(A. P; A P > L(A P), V(A,P)).
> Minimization step (M-step): Minimize O(A. P: A" P") w.rt. A and P
to obtain A1) and PU+D),
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DGLASSO algorithm

» Block alternating majorization-minimization technique:
Initialize (A, P®), and at each iteration i € N,

(a) Run RTS to build function (E-step)
(b) Update transition matrix (M-step):

. 1 .
AGHD)  argmin +AallAll A - AD |2
A 20 4
(c) Run RTS to build function (E-step)
(d) Update precision matrix (M-step):
) 1 N
POt = argmin +2p|IPli+—— [P — P2
P 20p

> Proximal terms, with stepsizes (64,6p) > 0, to stabilize the minimization
process and guarantee convergence of iterates.

» Convenient bi-convex structure of Q(-, -; 11, f’):

> step (b) is a lasso-like regression problem
> step (d) is a GLASSO-like problem?!
> both optimization steps (b) and (d) require modern optmisation algorithms

21). Friedman, T. Hastie, and R. Tibshirani. “Sparse inverse covariance estimation with the
graphical lasso”. In: Biostatistics 9.3 (2008), pp. 432-441.
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Convergence theorem

Assuming exact resolution of both inner steps (b) and (d), the sequence
{A(”,P(Z)}igN produced by DGLASSO algorithm:

» satisfies

(VieN) £AT POy < £(AD PD) and

> converges to a critical point of L.

.

e Proof based on the work??

e In practice, inner mininimization steps (b) and (d) using a Dykstra proximal

splitting solver.3

22D, N. Phan, N. Gillis, et al. “An inertial block majorization minimization framework for
nonsmooth nonconvex optimization”. In: Journal of Machine Learning Research 24.18 (2023),
pp. 1-41.
23H. H. Bauschke and P. L. Combettes. “A Dykstra-like algorithm for two monotone
operators”. In: Pacific Journal of Optimization 4.3 (2008), pp. 383-391.
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Summary of the GraphEM algorithm

» DGLASSO generalises our previous GraphEM,?* where only A is unknown.

GraphEM algorithm

> Initialization of A().

» Fori=1,2,...

E-step Run the Kalman filter and RTS smoother by setting A’ := AG=1) and
construct Q(A; A(=1),

M-step Update A () = argmin (Q(A; A(i_l))) using Douglas-Rachford algorithm
(simpler version) or monotone+skew (MS) algorithm (generalized version).

> Flexible approach, valid as long as the proximity operators of (fm)2<m<m
are available, with £y = ZM 1 [m

m=

24\/. Elvira and E. Chouzenoux. “Graphical Inference in Linear-Gaussian State-Space
Models”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757-4771.
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SpaRJ algorithm

> SpaRJ?® (sparse reversible jump) is a fully probabilistic algorithm for the
estimation of A, i.e., obtains samples from p(A|yi.7).

25B. Cox and V. Elvira. “Sparse Bayesian Estimation of Parameters in Linear-Gaussian
State-Space Models”. In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.
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SpaRJ algorithm

> SpaRJ?® (sparse reversible jump) is a fully probabilistic algorithm for the
estimation of A, i.e., obtains samples from p(A|yi.7).
» The sparsity is imposed by transitioning among models of different
complexity, defined hierarchically:
> M, € {0,1}N=*Nx: sparsity pattern sample
> An: matrix A sample, with non-zero elements, A(¢,5) for

{(&,9) : Mn(4,5) = 1}

25B. Cox and V. Elvira. “Sparse Bayesian Estimation of Parameters in Linear-Gaussian

State-Space Models”. In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.
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SpaRJ algorithm

> SpaRJ?® (sparse reversible jump) is a fully probabilistic algorithm for the
estimation of A, i.e., obtains samples from p(A|yi.7).
» The sparsity is imposed by transitioning among models of different
complexity, defined hierarchically:
> M, € {0,1}N=*Nx: sparsity pattern sample
> An: matrix A sample, with non-zero elements, A(¢,5) for
{@@,5) : Mn(4,j) = 1}
> We use reversible jump MCMC (RJ-MCMC) to explore p(Aly1.7).2°

» MCMC algorithm to simulate in spaces of varying dimension, e.g., the
number of ones in the sparsity pattern, |My]|.

25B. Cox and V. Elvira. “Sparse Bayesian Estimation of Parameters in Linear-Gaussian
State-Space Models". In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.
26p_ J. Green. “Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination”. In: Biometrika 82.4 (1995), pp. 711-732.
State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh 66/77



SpaRJ algorithm

> SpaRJ?® (sparse reversible jump) is a fully probabilistic algorithm for the
estimation of A, i.e., obtains samples from p(A|yi.7).
» The sparsity is imposed by transitioning among models of different
complexity, defined hierarchically:
> M, € {0,1}N=xNz: sparsity pattern sample
> A,: matrix A sample, with non-zero elements, A(%, j) for
{@@,5) : Mn(4,j) = 1}
> We use reversible jump MCMC (RJ-MCMC) to explore p(A|y1.1).%°
> MCMC algorithm to simulate in spaces of varying dimension, e.g., the
number of ones in the sparsity pattern, |My]|.
» |t requires to define:

> transition kernels for the model jumps
» mechanism to set values when jumping to a more complex model.

25B. Cox and V. Elvira. “Sparse Bayesian Estimation of Parameters in Linear-Gaussian
State-Space Models". In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.

26p_ J. Green. “Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination”. In: Biometrika 82.4 (1995), pp. 711-732.

State space models and Kalman filtering (L2) Victor Elvira University of Edinburgh 66/77



Pseudocode of SpaRJ

Input: Known SSM parameters {Xo, Po, Q, R, H}, observations {yt}zzl,
hyper-parameters, number of iterations N, initial value Ag
Output: Set of sparse samples {A,}N_;
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Pseudocode of SpaRJ

Input: Known SSM parameters {Xo, Po, Q, R, H}, observations {yt}zzl,
hyper-parameters, number of iterations N, initial value Ag
Output: Set of sparse samples {A,}N_;
Initialization
Initialize My as fully dense (all ones) and Ag
Run Kf obtaining lo := log(p(y1.7|A0))p(Ao)
forn=1,...,N do
Step 1: Propose model
Propose a new sparsity pattern M’, obtaining a symmetry correction of c.
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Pseudocode of SpaRJ

Input: Known SSM parameters {Xo, Po, Q, R, H}, observations {yt}zzl,
hyper-parameters, number of iterations N, initial value Ag
Output: Set of sparse samples {A,}N_;
Initialization
Initialize My as fully dense (all ones) and Ag
Run Kf obtaining lo := log(p(y1.7|A0))p(Ao)
forn=1,...,N do
Step 1: Propose model
Propose a new sparsity pattern M’, obtaining a symmetry correction of c.
Step 2: Propose A’
Propose A’ using an MCMC sampler conditional on M’
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Pseudocode of SpaRJ

Input: Known SSM parameters {Xo, Po, Q, R, H}, observations {yt}zzl,
hyper-parameters, number of iterations N, initial value Ag
Output: Set of sparse samples {A,}N_;
Initialization
Initialize My as fully dense (all ones) and Ag
Run Kf obtaining lo := log(p(y1.7|A0))p(Ao)
forn=1,...,N do
Step 1: Propose model
Propose a new sparsity pattern M’, obtaining a symmetry correction of c.
Step 2: Propose A’
Propose A’ using an MCMC sampler conditional on M’
Step 3: MH accept-reject
Evaluate Kalman filter with A := A’
Set " := log(p(y1.7|A"))p(A")
Compute log(ar) := ' —l,—1 + ¢ and Accept w.p. ar:
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Pseudocode of SpaRJ

Input: Known SSM parameters {Xo, Po, Q, R, H}, observations {yt}zzl,
hyper-parameters, number of iterations N, initial value Ag
Output: Set of sparse samples {A,}N_;
Initialization
Initialize My as fully dense (all ones) and Ag
Run Kf obtaining lo := log(p(y1.7|A0))p(Ao)
forn=1,...,N do
Step 1: Propose model
Propose a new sparsity pattern M’, obtaining a symmetry correction of c.
Step 2: Propose A’
Propose A’ using an MCMC sampler conditional on M’
Step 3: MH accept-reject
Evaluate Kalman filter with A := A’
Set " := log(p(y1.7|A"))p(A")
Compute log(ar) := ' —l,—1 + ¢ and Accept w.p. ar:
if Accept then
Set My, :=M’', A, :=A’, I, :=log(p(y1.7|A"))p(A’)
else
Set My, := Mn—l,An = An—l:ln =lp_1
end if
end for
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Experimental results of estimating A with GraphEM

e Four synthetic datasets with H = Id and block-diagonal matrix A, composed
with b blocks of size (bj)i1<;<p, so that Ny = N, = Z§:1 bj. We set T = 10°,

Q =o3ld, R =0ogld, Py = opld.

|

| Dataset H Ny [ (bj)1<j<b [ (0q,0R,0P)

A 9 | (3,3,3) | (10,10 5,10 %)
B 9 (3,3,3) (1,1,107%)
C 16 | (3,5,5,3) | (10-5, 1071, 10° %)
D 16 | (3,5,5,3) (1,1,107%)
Victor Elvira University of Edinburgh 68/77
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Experimental results of estimating A with GraphEM

e Four synthetic datasets with H = Id and block-diagonal matrix A, composed
with b blocks of size (bj)i1<;<p, so that Ny = N, = Zﬁ.:l bj. We set T = 10°,

Q =o3ld, R =0ogld, Py = opld.

| Dataset || No [ (bj)i<j<s |

(0Q,oR,0P)

A 9 (3,3,3) [ (10711071, 107%)
B 9 (3,3,3) (1,1,107%)
C 16 | (3,5,5,3) | (10-5, 1071, 10° %)
D 16 | (3,5,5,3) (1,1,107%)

e GraphEM (DGLASSO with known Q) is compared with:
> Maximum likelihood EM (MLEM)?"

» Granger-causality approaches: pairwise Granger Causality (PGC) and
conditional Granger Causality (CGC)?®

27S. Sarkka. Bayesian Filtering and Smoothing. Ed. by C. U. Press. 2013,

28D, Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. "Hierarchical
algorithms for causality retrieval in atrial fibrillation intracavitary electrograms”. In: |EEE

Journal of biomedical and health informatics 23.1 (2018), pp. 143-155.
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Experimental results of estimating A with GraphEM

True graph associated to A (left) and GraphEM estimate (right) for dataset C.




Experimental results of estimating A with GraphEM

method RMSE | accur. prec. recall spec. F1
GraphEM 0.081 | 0.9104 | 0.9880 | 0.7407 | 0.9952 | 0.8463

A MLEM 0.149 | 0.3333 | 0.3333 1 0 0.5
PGC - 0.8765 | 0.9474 | 0.6667 | 0.9815 | 0.7826
CGC - 0.8765 1 0.6293 1 0.7727
GraphEM 0.082 | 0.9113 | 0.9914 | 0.7407 | 0.9967 | 0.8477

B MLEM 0.148 | 0.3333 | 0.3333 1 0 0.5

PGC - 0.8889 1 0.6667 1 0.8

CGC - 0.8889 1 0.6667 1 0.8
GraphEM 0.120 | 0.9231 | 0.9401 0.77 0.9785 | 0.8427
C MLEM 0.238 | 0.2656 | 0.2656 1 0 0.4198
PGC - 0.9023 | 0.9778 | 0.6471 | 0.9949 | 0.7788
CGC - 0.8555 | 0.9697 | 0.4706 | 0.9949 | 0.6337
GraphEM 0.121 | 0.9247 | 0.9601 | 0.7547 | 0.9862 | 0.8421
D MLEM 0.239 | 0.2656 | 0.2656 1 0 0.4198
PGC - 0.8906 0.9 0.6618 | 0.9734 | 0.7627
CGC - 0.8477 | 0.9394 | 0.4559 | 0.9894 | 0.6139
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Experimental results: Realistic weather datasets

"

DGLASSO
GRAPHEM PGC CGC

Graph inference results on an example from WeathN5a dataset.?®

29). Runge, X.-A. Tibau, M. Bruhns, J. Mufioz-Mari, and G. Camps-Valls. “The causality
for climate competition”. In: NeurlPS 2019 Competition and Demonstration Track. Pmlr.

2020, pp. 110-120.
Victor Elvira  University of Edinburgh



Computational complexity of DGLASSO

' 10%
10" F—e=MLEM 025 —o—NLEM —o—NLEM
——DGLASSO) —o—DGLASSO —o—DGLASSO

CNMSE(st*, 1)

RMSE(A", A)

“ -

o

0 1000 2000 3000 4000 5000 0 1000 2000 8000 4000 5000 0 1000 2000 3000 4000 5000
K K K

Figure 6: Evolution of the complexity time (left), RMSE(A*,A) (middle) and
cNMSE(p*, ) (right) metrics, as a function of the time series length K, for experiments

on dataset A averaged over 50 runs.
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Convergence of SpaRJ and GarphEM with data
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Figure: 3 x 3 system with known isotropic state covariance.
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Convergence of SpaRJ with iterations
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Figure: Progression of sample metrics in a 12 x 12.
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SpaRJ with real world data

@London
A

@ Paris
|\

® Rome

@ Houston
-

® Rio

® Melbourne

Figure: Average daily temperature of 324 cities from 1995 to 2021, curated by the
United States Environmental Protection Agency.
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Conclusion

» SSMs are very powerful tools but still underdeveloped due to conceptual
and computational limitations.

» Even LG-SSMs require significant research for modeling and parameter
estimation.
» Novel graphical interpretation on matrices A and Q in LG-SSMs.
> Algorithms to estimate sparse model parameters: GraphEM, DGLASSO
(point-wise) and SpaRJ (fully Bayesian).
> strong model interpretation
» theoretical guarantees
» good performance
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Conclusion

» SSMs are very powerful tools but still underdeveloped due to conceptual
and computational limitations.

» Even LG-SSMs require significant research for modeling and parameter
estimation.
» Novel graphical interpretation on matrices A and Q in LG-SSMs.

> Algorithms to estimate sparse model parameters: GraphEM, DGLASSO
(point-wise) and SpaRJ (fully Bayesian).

> strong model interpretation

» theoretical guarantees

» good performance

» This is a challenging problem with many exciting ongoing methodological
and applied avenues ahead!
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Useful book: S. Sarkka and L. Svensson. Bayesian filtering and smoothing. Vol. 17.
Cambridge university press, 2023.

GraphEM paper: V. Elvira, E. Chouzenoux, “Graphical Inference in Linear-Gaussian
State-Space Models", IEEE Transactions on Signal Processing, Vol. 70, pp.
4757-4771, 2022.

SpaRJ: B. Cox and V. Elvira, “Sparse Bayesian Estimation of Parameters in
Linear-Gaussian State-Space Models”, IEEE Transactions on Signal Processing, vol.
71, pp. 1922-1937, 2023.

DGLASSO: E. Chouzenoux and V. Elvira, “Sparse Graphical Linear Dynamical
Systems, submitted, 2023. https://arxiv.org/abs/2307.03210

GraphlT paper: E. Chouzenoux and V. Elvira, “Iterative reweighted ¢1 algorithm for
sparse graph inference in state-space models”, IEEE International Conf. on Acoustics,
Speech, and Signal Processing (ICASSP 2023), Rhodes, Greece, June, 2023.

Non-Markovian models: E. Chouzenoux and V. Elvira, “Graphical Inference in
Non-Markovian Linear-Gaussian State-space Models”, IEEE International Conf. on
Acoustics, Speech, and Signal Processing (ICASSP 2024), Seoul, Korea, April, 2024.
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