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Outline

Bayesian inference
Motivation: the bent coin example



Coin example: Maximum Likelihood (ML) Estimation

Motivating example on the importance of being Bayesian

* You toss a (maybe bent) coin N = 3 times with the observed result of
Y =83 ={H, H,T} (the order is unimportant).

¢ What is the probability of getting H in the next toss? Denoted as
h2 P(H)

* Binomial likelihood: p(Y|h) = RV# (1 — h)VT, with N = Ny + Np
° Maximum likelihood (ML) estimate:

h

argmax p(Y = Sz|h)
h

2
= argmax h2(1 —h) ==
h 3



Coin example: Maximum Likelihood (ML) Estimation

Motivating example on the importance of being Bayesian
* You toss a (maybe bent) coin N = 3 times with the observed result of
Y =83 ={H, H,T} (the order is unimportant).
¢ What is the probability of getting H in the next toss? Denoted as
h & P(H)
* Binomial likelihood: p(Y|h) = RV# (1 — h)VT, with N = Ny + Np

o Maximum likelihood (ML) estimate:

h o=

argmax p(Y = Sz|h)
h
2 2
= argmax h“(1—h)= -
h 3

e What if N =1, only one observation Y = &, = {H}
o ML estimate:

h

argmax p(Y = S1|h)
h

= argmax h=1
h

° Would you bet all your money (or honor) to a H in next toss?



Coin example: Maximum a Posteriori (MAP) Estimation

* We need to add prior information: “You can't do inference without making
assumptions” [MacKay13]

o Posterior of the parameter as

likelihood prior
posterior Pty

Pl

ZEL S0 _ ¥ e
hlY) = =

) =Ty T e mean

marginal likelihood

e With a uniform prior of the parameter p(h) = U([0, 1]), the maximum a
posterior (MAP):

~

P

argmax p(Y = SylWp(h) = 5 (N =3,8s = {H, H,T})
h

h =

Il
_

arg max p(Y = 81 |h)p(h) (N=1,8 ={H})

» We still obtain the same results (uninformative prior)

[MacKay13] D. MacKay, "Information theory, inference and learning algorithms." Cambridge university press,
2003.



Coin example: The Importance of a Good Prior

¢ The Beta distribution is a flexible prior for parameters in [0, 1].

I(a+B)

p(h) = Beta(hla §) = w0 5wz

RO — )P

° a >0 and 8 > 0 are hyper-parameters of the prior and correspond to “one
plus the pseudo-counts”

» The Beta distribution is a conjugate prior for the binomial likelihood.

o Conjugate? It means that the posterior is the same family (Beta in this
case) than the prior for that likelihood.

o Is this good news? Yes, it is: for most combinations of likelihood and prior,
the posterior has intractable form (no analytic solution).
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Coin example: Estimations are good, distributions are better
o If prior is p(h) = Beta(h|a, 8) and likelihood is B(Ng; N, k), the
posterior Is:
o p(h|Y) = Beta(h|aw + Ny, 8+ Nr)
(recall: Y contains the outcomes of tossing the coin N times)
e We set the prior p(h) = Beta(h|10,10)
o Casel: N=6, Ny =6, and Np =0
p(h|Y) = Beta(16,10) = h*(MAP) ~ 0,62
o Case 2: N = 4000, Ng = 2500, and N7 = 1500
p(h|Y) = Beta(2510,1510) = h*(MAP) ~ .62
a=10,3=10,N, =6,N =0 (N=6) a=10,3=10,N_ =2500, N, =1500 (N =4000)

p(pylY)
ppylY)

0 01 02 03 04 %5 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
H H



Coin example: Estimations are good, distributions are better
o If prior is p(h) = Beta(h|a, 8) and likelihood is B(Ng; N, k), the

posterior is:
> p(hlY) = Beta(hla+ Ny, B+ Nr)

(recall: Y contains the outcomes of tossing the coin N times)

e We set the prior p(h) = Beta(h|10,10)
o Casel: N=6, Ny =6, and Np =0
p(h|Y) = Beta(16,10) = h*(MAP) ~ 0,62
o Case 2: N = 4000, Ng = 2500, and N7 = 1500
p(h|Y) = Beta(2510,1510) = h*(MAP) ~ .62
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e In Case 1 (left), the coin can still be fair (h = 0.5).

o MAP estimator is blind to uncertainty in the estimation



Coin example: Estimations are good, distributions are better
o If prior is p(h) = Beta(h|a, 8) and likelihood is B(Ng; N, k), the
posterior is:
o p(h|Y) = Beta(h|aw + Ny, 8+ Nr)
(recall: Y contains the outcomes of tossing the coin N times)
e We set the prior p(h) = Beta(h|10,10)
o Casel: N=6, Ny =6, and Np =0
p(h|Y) = Beta(16,10) = h*(MAP) ~ 0,62
o Case 2: N = 4000, Ng = 2500, and N7 = 1500
p(h|Y) = Beta(2510,1510) = h*(MAP) ~ .62
a=10,8=10,N, =6,N =0 (N=6) a=10,3=10,N_ =2500, N, =1500 (N =4000)

p(pylY)
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e In Case 1 (left), the coin can still be fair (h = 0.5).

o MAP estimator is blind to uncertainty in the estimation

Solution = work with the full posterior = be fully Bayesian!
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The Bayesian approach: the posterior

e The posterior distribution for the model parameters given the observed
data, p(parameters|data), is the goal in Bayesian inference.

e It is obtained applying Bayes’ Rule:

p(data|parameters)p(parameters)
p(data)

p(parameters|data) =

where

o p(data|parameters): likelihood, it relates statistically the data with the
unknowns of the model. Most of our assumptions are there (e.g., if the
relation is linear, if the noise is additive, if the noise is Gaussian, etc)

o p(parameters): prior distribution, it contains all our knowledge about the
unknown parameter (similar to the regularization)

o p(data): model evidence, marginal likelihood, or normalizing constant
(very hard to compute sometimes)

» Following the previous notation in regression,

likelihood prior

posterior ——
m _ p(D|B) p(B)

p(D)

marginal likelihood

* We will see later how to use this posterior for predicting the output a new
sample in regression.



The Bayesian approach: workflow

¢ In supervised learning, for a new input x*, our prediction/estimation is
9" € R (a number).

Related questions:
o How certain are you that the true response is §*7?
o How much money would you dare to bet?

o How much probability would you assign to other responses different
from ¢*7

\ J

¢ Why not instead giving a probability associated for each possible outcome?
¢ The Bayesian/probabilistic approach:

1. We define a probabilistic model that expresses qualitative aspects of our
knowledge (e.g., forms of distributions, independence assumptions). The
model will have some unknown parameters (also beforel!).

2. We specify a prior probability distribution for these unknown parameters
that expresses our beliefs about which values are more or less likely, before
seeing the data.

3. We gather data.

4. We compute the posterior pdf for the parameters, given the observed
data.

5. We use this posterior pdf to:

* Reach scientific conclusions, properly accounting for uncertainty.
* Make predictions by averaging over the posterior distribution.
* Make decisions so as to minimize posterior expected loss.



The Bayesian approach: challenges
¢ Recall the posterior:

likelihood prior

posterior P A
m _ p(D|B) p(B)

p(D)
marginal likelihood

¢ Complex problems require complex models with complex distributions.
 Even for simple likelihood and simple (but not conjugate!) prior, the
posterior might be intractable:
° The marginal likelihood (denominator) p(D) = [ p(D|B)p(B)dB impossible
to obtain
° integrals on the posterior, [ f(8)p(8|D)dB, impossible to obtain
¢ Monte Carlo methods: A very general technique to represent the posterior
by simulating random samples from it. We can then:
o Visualize the distribution by viewing these sample values, or
low-dimensional projections of them.
o Make Monte Carlo estimates for probabilities or expectations with respect
to the distribution, by taking averages over these sample values.
e MAP: maximum a posteriori is a point-wise estimate, without uncertainty
quantification, as 8 = arg maxgz p(3|D).
o It is a popular a popular alternative to Monte Carlo, because it reduces to
an optimization problem, for which efficient algorithms often exist.
e Sampling from the posterior is usually more difficult, but this is
nevertheless the dominant approach in Bayesian/probabilitc ML.
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Relation between MAP estimates and regularized regression

* MAP estimation can be also interpreted in non-Bayesian terms, by
thinking of the log prior as a regularization, the penalty function added.

* In linear regression, we have training data D = {(x;, )}, for which we
fit a linear combination of basis function by using

y = f(x,B) + noise
Fx8) =Bo+ > Bid;(x) =BT ¢(x)

e Then we have seen that the maximum likelihood (ML) estimator of 3
(with Gaussian assumption of the noise term) was:

(,37 o) = argmax L(8,0) = argmin —log L(S3, o)
(B,0) (B,o)
e Then, introduced regularization to avoid overfitting with an extra penalty
function R(3)
B = argmin — log L(B,0) + AR(3)
B

e This penalty function can be interpreted as the negative log prior of 3:
o LASSO penalty < MAP estimate with Laplace Prior
o Squared penalty, )\Z;”:_ll 6]2, < MAP estimate with Gaussian Prior



Predictive Posterior Distribution

e The most obvious drawback of MAP estimation, and indeed of any other
point estimate such as the posterior mean or median, is that it does not
provide any measure of uncertainty.

¢ In many applications, it is important to know how much one can trust a
given estimate (and we had it with the posterior distribution)

e As a consequence, instead of §* (point estimate), we prefer to give the
predictive posterior distribution to make prediction at a new input point

x*:

p(y" %", D) = / p(y"x".8) p(BID) dB
——

from training

: _ p(DIB)p(B)

o allows to have a complete probabilistic information about the predicted
value (mean, variance, higher probability density regions, ...)

o marginalization of the model parameters (we take into account all possible
parameters instead of just ﬁ)



Inference at a Higher Level: Comparing Models
e Let us re-think our assumptions:
o We've assumed a model M; (e.g., polynomial linear regression with m = 5).
o What if we're unsure which model is right? (remember, all are wrong)
* We can compare models based on the marginal likelihood (aka, the
evidence) for each model, which is the probability the model assigns to the
observed data (denominator in Bayes).

p(D|M;) = / p(D18, M )p(6] M1 )d6

e Here, M; represents the condition that model M; is the correct one

(which previously we silently assumed).
e Similarly, we can compute p(D|Mj), for some other K models (which may
have a different parameter space).
o Option 1. Choose the model that gives higher probability to the data
o Option 2. Average predictions from all models with weights proportional to
the marginal likelihood times the model prior p(M;) (preference we have for
each model).

K K
p(y*[x*, D) = > p(y*, M;|x*, D) = > p(y*|x*, D, M;)p(M;|x*, D)

= i=1

f

M=

p(y™|x", D, M;) - p(M;|D)

(3

! predictive ofi-th model  posterior of i-th model

ith
! p(D|M;)p(M;)

M;|D) = — Y
PIMIP) = xS, ()
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Analytically-Tractable Bayesian Models

» For most Bayesian inference problems, the integrals needed to do inference
and prediction are not analytically tractable
o hence the need for numerical quadrature, Monte Carlo methods, or various
approximations.

e Most of the exceptions involve conjugate priors, which combine nicely with
the likelihood to give a posterior distribution of the same form. Examples:
1. Independent observations of Gaussian variables with Gaussian prior for the
mean, and either known variance or inverse-Gamma prior for the variance.
2. Linear regression with Gaussian prior for the regression coefficients, and
Gaussian noise, with known variance or inverse-Gamma prior if the variance
is unknown.

e It is nice when a tractable model and prior are appropriate for the problem.

o Unfortunately, people are tempted to use such models and priors even when
they are not appropriate.

* Traditionally, Gaussian distribution has been largely (over-)used because of its
good properties.
¢ Good books in Bayesian theory:

° Robert, C. (2007). The Bayesian choice: from decision-theoretic
foundations to computational implementation. Springer Science & Business
Media.

o Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT

o Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge
University Press.



Gaussian properties

¢ Univariate Gaussian distribution:

1 _(@—w)?
fx(@) = N(w;p,0°) = Norron 202

o Multivariate Gaussian distribution: Example in 2D, with 2 Gaussian r.v.'s
z1 and z2 in x = [z1,22] | € R**!

1

— L T )
det(27X)~ 2

fX(X) = N(X; I3 2)

where p € R**! is the mean and T € R?*? is the covariance matrix.
1. Marginalization of a joint Gaussian distribution is still Gaussian:

p(z1) = /p(a;g,a:l)d:zzg,

marginalizing x2, p(z1) is also Gaussian

2. Conditional of a joint Gaussian distribution is still Gaussian (equivalent to
first point):

p(z1,72)

Pl = S



Gaussian properties (cont)

1. Marginals of a bi-variate Gaussian distribution are Gaussian:




Gaussian Example: Tractable Bayesian Linear Regression

o Linear-Gaussian model:

yz’\xi;BNN(y;xiTﬁ,a?), i=1,...,N
B ~ N (B;m0, So)

2

o we consider 0%, mg, and Sg as known.

» The observation model is equivalent to the previous one (very important
to see this duality), i.e., y; = x! B + ¢, with € ~ NV (0,?).

¢ This Gaussian prior model will turn out to be conjugate, which means that
the posterior is analytical/exact/tractable

p(B|ID) =N (B;mp, Sp)
with
T T 2 -1
mp = SoX (XSOX +o I) (y — Xmy)
-1
Sp = So — SoXT (XSOXT + 021) XS,

o Exercise: compare this solution with the one of linear regression in L1,
with mo = 0 and identity So.
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Intractable Integrals

¢ The previous example is the dreamed scenario, but it is not usual.

o Usually, the posterior has not known form (not a known distribution), and
the normalizing constant p(D) cannot be computed.

e Moreover, the full Bayesian approach requires to integrate over the
posterior distribution,

o e.g., if we want the posterior mean,

wap = [ Bo(BID)IS
o When the posterior distribution is complex = this integral is intractable.

e There exists many different algorithms to approximate this integral:
o grid-based method = Complex as the dimension of the unknowns
parameters increases,
o variational algorithms: Approximate posterior distribution as a product of
exponential families distributions,
o Monte-Carlo techniques: one of the most used technique nowadays.
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Monte Carlo methods: a bit of history

e A methodology that comes to the rescue for solving most difficult
problems of inference is based on drawing/simulation of samples.
o e.g., in Bayesian inference, for most of models of interest, it is usually
impossible to find posteriors distributions nor simulate from them.
The Monte Carlo methods were born in Los Alamos, New Mexico (USA)
in the 1940s around the Manhattan project
o associated to the Electronic Numerical Integrator and Computer (ENIAC),
one of the first electronic general-purpose computers.
« Foundational works of Stanislaw Ulam (1909-1984) and John von
Neumann (1903-1957)
o they invented the inversion and accept-reject techniques

° independently developed by Enrico Fermi (1901-1954)
o beautiful story at!

Led to the Metropolis algorithm by Nicolas Metropolis in 1953

° the first Markov chain Monte Carlo (MCMC) algorithm

o listed among the "10 algorithms with the greatest influence on the
development of science and engineering in the 20th century”, by the
American Institute of Physics and the IEEE Computer Society in 2000.

ship/article /oppenhei | d-risk lytics-the-legacy-of.

https://poole.ncsu.edu/th

ary ing/
IN. Metropolis et al. “The beginning of the Monte Carlo method”. In: Los Alamos Science
15.584 (1987), pp. 125-130.



Monte Carlo basics

e Disclaimer: in Monte Carlo methods, x represents the variable to be
integrated (not the observed input of supervised learning).

¢ In real-world problems, we need to solve integrals that have no closed-form
solution:

I(f) = E. o [f(x)] = / F()7 (x)dx

¢ Monte Carlo methods:

o approximate distributions by N random samples (or particles)
° in that way, the integrals are approximated by sums

* Suppose we can draw N samples from 7(x), i.e.
x(™ ~ (%), n=1,..,N.

e Then, we can approximate the targeted distribution as

7

N
w(x) =7 Z x(m (




Monte Carlo basics

I N
V(%) = & Zney Gim (%)
where x(™) ~ 7i(x), n=1,...,N.

o T(X) T

o Example: 7(x) = N(0,1) = 7V (x) with N = 200.

04 e




Monte Carlo basics
e We can approximate any integral of 7(x): integral 4+ dirac = sum!

1) = B 0] = [ 100700dx ~ [ 697" codx~ [ 1) (% > 6X<n><x>) dx

ﬁ/f(x)&x(,, (x)dx
e
Z (x™) =1

e e.g. the mean of the distribution (f(x) = x) approximated by N = 200.

N
%= — [x7 ~ ™ — _0.05
x=E:[x] = /x“ (x)dx ~ N Z x" = —0.0561

n=1




Monte Carlo basics

e Summary: the integral
1) = B [£60] = [ £007 (0
is approximated by
;oo L = (n)
In(f) = Sf (X )

e It converges to the right quantity, and with a known rate 1/v/'N:
1. Due to the strong law of large numbers:

IN(f) = I(f), N—=oo
2. Due to the central limit theorem:
VN (In(f) = I(f))
af

— N(0,1), N — o



Mini-project 1: basic/direct/raw Monte Carlo

e Simulate N = 20 samples from a standard normal (zero mean, unit
variance) distribution (you can later play with different N).
° estimate the mean (f(z) = ), and the Pr(X > v), e.g., with v =3
(f(2) = Ljz|54(2))-
o characterize the estimator (variance, bias, and MSE): you will have to run
the estimator *many* times and then take empirical means.
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Random numbers
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Simulation of random variables

» Solving the previous problem requires the simulation of random numbers
according to some distribution (we called it 7(x)).

1. True random numbers are generated using a (well-studied) physical device
as the source of randomness.
o e.g., coin flipping, roulette wheels, white noise, and the count of particles
emitted by a radioactive source.

2. Pseudo-random numbers correspond to a deterministic sequence that
passes tests of randomness, generally generated by a computer. In two
steps:

2.1 generation of imitations of independent and identically distributed (i.i.d.)
random numbers having a uniform distribution, and

2.2 application of some transformation and/or selection techniques such that
these i.i.d. uniform samples are converted into variates from the target
probability distribution.

3. Quasi-random numbers correspond to a deterministic sequence that does
not pass tests of randomness.



Quasi-random numbers
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Random numbers

Real — Random
Numbers

Pseudo — Random
Numbers

Quasi — Random
Numbers

Pseudo— | Sampling
Random | methods

generators

el N

Direct Accept/reject
methods methods

MCMC

methods

Independent samples
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Inverse transform sampling

e The inverse transform sampling method uses uniform samples for
simulating the r.v. X ~ px(z), with CDF Fx (x)
¢ The method reads as follows:
1. generate a random number U ~ U/(0, 1)
2. find the inverse of the CDF Fx (), i.e., F);l(:r:).
3. compute X = F'(U), which follows px (z)

* the only requirement is that the CDF F'x(z) must be invertible
e Proof: the CDF of X obtained as in point 3 is:

Pr(X <z)=Pr (Fx'(U) < z)
=Pr(U < Fx(z))
= Fx(w),

since Pr(U < y) =y.



Inverse transform sampling: Example

e Example: We want samples from the exponential distribution
px (z) = e, which yields Fx(z) =1 — e =,
1. generate a random number U ~ 1/(0, 1)

2. the inverse of Fx(z) is x = F);l(u) = 7% log(1 — u)
3. X =F¢'(U) = —+1og(1 - U).
Y
1 e e e S
' F
0.75 - X
C
0.50 ¢
q
0.25 ¢
L
-‘0 o —f—eo—x
1 2
By X

[Source: Wikipedia]
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Importance Sampling basics

¢ Another method for drawing samples or approximating integrals when raw
Monte Carlo is not possible

o Importance sampling (IS) is a Monte Carlo method that allows to
approximate integrals over complicated distributions.

e Same problem:

I(f)=E /f dx—/f

where ¢(x) is the proposal density where the samples are now drawn

N
Raw MC estimator: In(f) = % Z f (x(”)) ; x™ ~ 7 (x)
n=1

N & <x(” \>
Basic IS estimator: Z ( (n)) — x"™ ~ q(x)

n:l



Importance Sampling basics

e Basic or aka unnormalized IS (UIS) estimator:

ZN: ( <n)) 7 (=) ™ g (x)

q(xm)’
o wm = w n=1 N, are the importance weights
/ q(x(”')) ) 3 erey il
o only constraint: 77(x) must be evaluated
¢ Unfortunately, sometimes we have only access to 7(x), where 7(x) = %

and Z is the normalizing constant (marginal likelihood / model evidence in
Bayesian inference) = basic IS estimator is not possible.

(<)

i (n) = 3/
° Alternative, w (<)

e Self-normalized IS (SNIS) estimator:

N
=S (™) X )
n=1
where ZA’,‘( v 7 are the normalized weights (Z;VII =1).



Importance Sampling: example

e IS simulation:
o Target: bi-modal density (sum of two Gaussians)
o Proposal density
o N = 1000 weighted samples samples

0.25 1.2
0.2 1
0.8
0.15
0.6
0.1
0.4
0.05 0.2
0 0
20-15-10 -5 0 5 10 15 20 -20 -15 -10 -5 )(2 5 10 15 20
X
Good proposal g1 = N (0, 25) Bad proposal g2 = N (-3, 25)

* The approximation converges in both cases, but a good proposal is key for
the efficiency of IS.



The variance in IS and the need of better proposals
e A good proposal ¢(x) is key for the efficiency of IS.

e Variance of the UIS estimator of I = ff(x)ﬂ-(x)dx:

2 fz(x r
Var, x) (1) d - =
arw( ) / X N

e optimal UIS proposal: ¢(x) o |f(x)|m(x )
e for a generic f(x), q(x) should be as close as possible to 7(x)




The variance in IS and the need of better proposals
e A good proposal ¢(x) is key for the efficiency of IS.

e Variance of the UIS estimator of I = ff(x)ﬂ-(x)dx:

2 fz(x r
Var, x) (1) d - =
arw( ) / X N

e optimal UIS proposal: ¢(x) o | f(x)|7(x )
e for a generic f(x), q(x) should be as close as possible to 7(x)

e Very difficult to find a good ¢(x) a priori:
o 7(x) can be only evaluated (up to a normalizing constant)
o m(x) may be multimodal, skewed, heavy tailed




The variance in IS and the need of better proposals

e A good proposal ¢(x) is key for the efficiency of IS.
e Variance of the UIS estimator of I = ff(x)ﬂ-(x)dx:

- 2 12
Varw(x) I /f (X dx — —

e optimal UIS proposal: ¢(x) o |f(x)|m(x )
e for a generic f(x), q(x) should be as close as possible to 7(x)

e Very difficult to find a good ¢(x) a priori:
o 7(x) can be only evaluated (up to a normalizing constant)
o m(x) may be multimodal, skewed, heavy tailed

o A posteriori metric: ESS = ﬁ although it presents serious

n=1

problems?

2V. Elvira, L. Martino, and C. P. Robert. “Rethinking the effective sample size”. In:
International Statistical Review 90.3 (2022), pp. 525-550.



The variance in IS and the need of better proposals

e A good proposal ¢(x) is key for the efficiency of IS.
e Variance of the UIS estimator of I = ff(x)ﬂ-(x)dx:

- 2 12
Varw(x) I /f (X dx — —

e optimal UIS proposal: ¢(x) o |f(x)|m(x )
e for a generic f(x), q(x) should be as close as possible to 7(x)

e Very difficult to find a good ¢(x) a priori:
o 7(x) can be only evaluated (up to a normalizing constant)
o m(x) may be multimodal, skewed, heavy tailed

o A posteriori metric: ESS = ﬁ although it presents serious

n=1

problems?

» Use multiple proposals (MIS) and explore the space (AlS).

2V. Elvira, L. Martino, and C. P. Robert. “Rethinking the effective sample size”. In:
International Statistical Review 90.3 (2022), pp. 525-550.




Mini-project MC: IS in one dimension (1/2)

e Option 1: again a standard normal target and a normal proposal with
mean = 0.5 and 0 =2
e Option 2: replicate the two examples in the previous slide:
° you can start with a target with just one Gaussian component (left mode)

* In any case, simulate N = 20 samples from the proposal (you can later
play with different N).

° estimate the target mean (f(z) = z), the target second moment (the target
mean (f(z) = 22), and the Pr(X > v), e.g., with vy = 2
(F@) = T 2r (2)).
o characterize the estimator (variance, bias, and MSE): you will have to run
the estimator ¥*many* times and then take empirical means.
e Play with the proposal’s mean and variance and display the effect in the
performance of both IS estimators (UIS and SNIS). Compare it with the
raw/direct MC estimator performance.



Mini-project: IS in higher dimensions (2/2)

e The mismatch between target and proposal gets more problematic in
higher dimensions:

o standard normal target of dimension d;: we start with d; = 2 but we can
play with larger dimensions later
o select a proposal with also isotropic/diagonal covariance (you can generalize
the proposal above)
o do the sampling and weighting of IS, but select a sampling method in which
you sequentially simulate each dimension
* if isotropic/diagonal proposal covariance, the conditionals are equal to the
marginals
* if both proposal and target covariances are isotropic/diagonal, you can
compute the weights as the product of all the “dimension weights” (both
numerator and denominator factorizes with the marginals)
o for a particular run, shows the inequality for the IS weights (you can sort
them in decreasing order as a function of index)
o approximate the MSE still for d, = 2

e now play with the dimension, including a plot of MSE vs dx and plot for
some run the IS weights at a large dimension

o if all is going well, you are experiencing the curse of dimensionality!
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Accept/reject methods: rejection sampling

* W cannot sample from 7(x) (we do not even know the normalizing
constant Cr), so we just know 7(x).

¢ We sample from a proposal distribution g(x) but not all samples are
accepted.
* Rejection sampling procedure:
1. Sampling: z’ ~ g(z)
2. Accepting (or not):
* sample v’ ~ U(0,1)

!
* accept the sample =’ only if u’' < A;'éfx))




Accept/reject methods: rejection sampling

1. Challenge 1: M must be known so Mg(x) > m(x), for all x.

2. Challenge 2: More efficient when you do not reject samples, i.e., when the
gap between Mg(x) and (%) is low.

Mq(x)

r(a ) A 7 (@)

.
L3

o'~ q(z)
¢ We want an acceptance rate close to 1.

/ pa(@)d(2)ds,
R

= W(I) q(x)dx
- /RM@(z)q( e

Cr
e

ar = Eg[pa ()]
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Markov

Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) is a classic method in Monte Carlo.

Unfortunately we only know how to draw samples from very easy
distributions (e.g., Gaussian).

o In the general case, we cannot use the “raw” Monte Carlo.
It builds a Markov Chain that has as equillibrium distribution the targeted
distribution (the posterior in Bayesian inference).

© X1 = T2 > ... > Tt > Tp41 7 .-
The first samples do not follow the true distribution (burn-in period).
However, the more samples there are, the more closely the distribution of
the sample will match the actual desired/targeted distribution.

Two widely known/used algorithms:

1. Gibbs sampling algorithm
2. Metropolis-Hastings algorithm



Metropolis-Hastings algorithm

e Remember, the goal is obtaining samples from 7(z) = %i) where C is
unknown.

e The algorithm proceeds as follows:
1. Initialization:
* Sett=0
* Select an initial state z¢
2. Generate a candidate state (sample) 2’ ~ g(z|zt—1)

* again, we need a proposal distribution g(z|z:—1) (we use the previous state
as a parameter)

3. Compute the acceptance probability

, (1 w@a@e )
a(r’ zy—1) = min ( 1, ———"—— L
m(zt—1)q(@ |Te—1)

4. Accept or reject with probability a(z/, zt—1)

4.1 sample u’ ~ U(0,1)

4.2 if ' < a(z’,z4—1), accept the sample z’, i.e. z; = z’.

4.3 if ' > a(z’,z4_1), take as sample the previous state, i.e., z; = z;_1 (then

it is repeated).

5. Sett=t+1



Metropolis-Hastings algorithm (with symmetric proposal)

o Example if g(z|zi—1) = N (a:;a:tfl,az).
e The acceptance rate is simplified because q(z'|z:—1) = q(z¢—1|z")
e The algorithm proceeds as follows:
1. Initialization:
* Sett =0
* Select an initial state z¢

2. Generate a candidate state (sample), 2’ ~ g(z|z¢—1)
3. Compute the acceptance probability

a(a’, xr—1) = min (1, Lﬂc,))

w(zi—1)

4. Accept or reject with probability a(z/, z¢—1)
4.1 sample v’ ~ U(0, 1)
4.2 if ' < a(z’,z4—1), accept the sample z’, i.e. z; = z’.
4.3 if u’ > a(x’,z4_1), take as sample the previous state, i.e., z; = z¢_1 (then
it is repeated).

5. Sett=t+1
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