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1. Modeling: state-space models (SSM)

• Time-series data are collected, yt ∈ RNy , t = 1, ..., T :
• A SSM models a sequence of hidden states xt ∈ RNx , t = 1, ..., T .

xt−1 xt xt+1

yt−1 yt yt+1

... ...
pθ(xt|xt−1) pθ(xt+1|xt)

pθ(yt−1|xt−1) pθ(yt|xt) pθ(yt+1|xt+1)

• Probabilistic notation of a (simple) Markovian SSM:
◦ state model → pθ(xt|xt−1) = p(xt|xt−1,θ)
◦ observation model → pθ(yt|xt) = p(yt|xt,θ)
◦ prior on initial state → pθ(x0) = p(x0|θ)
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Sequential optimal filtering

• Filtering Problem:
◦ Distribution of xt given all the obs. up to time t, p(xt|y1:t)
◦ Recursively from p(xt−1|y1:t−1) updating with the new yt

• Optimal filtering:
1. Prediction step:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

2. Update step:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

• Interest in integrals of the form: I(f) =
∫
f(xt)p(xt|y1:t)dxt

◦ e.g., the mean, I(f) =
∫
xtp(xt|y1:t)dxt

◦ Usually the posterior cannot be analytically computed!
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Monte Carlo methods: a bit of history

• A methodology that comes to the rescue for solving most difficult
problems of inference is based on drawing/simulation of samples.

◦ e.g., in Bayesian inference, for most of models of interest, it is usually
impossible to find posteriors distributions nor simulate from them.

• The Monte Carlo methods were born in Los Alamos, New Mexico (USA)
in the 1940s around the Manhattan project

◦ associated to the Electronic Numerical Integrator and Computer (ENIAC),
one of the first electronic general-purpose computers.

• Foundational works of Stanislaw Ulam (1909-1984) and John von
Neumann (1903-1957)

◦ they invented the inversion and accept-reject techniques
◦ independently developed by Enrico Fermi (1901-1954)
◦ beautiful story at1

• Led to the Metropolis algorithm by Nicolas Metropolis in 1953
◦ the first Markov chain Monte Carlo (MCMC) algorithm
◦ listed among the “10 algorithms with the greatest influence on the

development of science and engineering in the 20th century”, by the
American Institute of Physics and the IEEE Computer Society in 2000.

https://poole.ncsu.edu/thought-leadership/article/oppenheimer-ulam-and-risk-analytics-the-legacy-of-wwii-
scientists-on-contemporary-computing/

1N. Metropolis et al. “The beginning of the Monte Carlo method”. In: Los Alamos Science
15.584 (1987), pp. 125–130.



7/66

Monte Carlo basics

• Goal:2 approximate the integral

I(f) ≡ Eπ(x)[f(x)] =

∫
f(x)π(x)dx

• If we can sample x(n) ∼ π(x), n = 1, ..., N , then the target can be
approximated as

π(x) ≈ πN (x) =
1

N

N∑
n=1

δx(n)(x)

and the moment I(f) can be approximated as

I(f)≈ĪN (f) =
1

N

N∑
n=1

f
(
x(n)

)

2C. P. Robert, G. Casella, and G. Casella. Monte Carlo statistical methods. Vol. 2.
Springer, 1999.
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Monte Carlo basics
• We can approximate any integral involving π(x): integral + dirac = sum!

Eπ(x)[f(x)] =

∫
f(x)π(x)dx ≈

∫
f(x)π

N
(x)dx ≈

∫
f(x)

(
1

N

N∑
n=1

δ
x(n) (x)

)
dx

≈
1

N

N∑
n=1

∫
f(x)δ

x(n) (x)dx

=
1

N

N∑
n=1

f
(
x
(n)
)

• e.g. the mean of the distribution (h(x) = x) approximated by N = 200.

x̂ = Eπ(x)[x] =

∫
xπ(x)dx ≈ 1

N

N∑
n=1

x(n) = −0.0561
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Importance sampling basics

• Unfortunately we only know how to draw samples from very few
distributions.

◦ In the general case, we cannot use the raw/direct/standard Monte Carlo.
◦ Importance sampling (IS) is a Monte Carlo method that allows to

approximate integrals over complicated distributions.3

• Same problem:

I(f) ≡ Eπ(x)[f(x)] =

∫
f(x)π(x)dx =

∫
f(x)

π(x)

q(x)
q(x)dx

where q(x) is the proposal density where the samples are now drawn

Standard MC estimator: ĪN (f) =
1

N

N∑
n=1

f
(
x(n)

)
, x(n) ∼ π(x)

Basic IS estimator: ÎN (f) =
1

N

N∑
n=1

f
(
x(n)

) π (
x(n)

)
q (x(n))

, x(n) ∼ q(x)

3V. Elvira and L. Martino. “Advances in importance sampling”. In: arXiv preprint
arXiv:2102.05407 (2021).
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Importance sampling basics

• Basic IS estimator:

ÎN (f) =
1

N

N∑
n=1

f
(
x(n)

) π (
x(n)

)
q (x(n))

, x(n) ∼ q(x)

◦ W (n) =
π
(
x(n)

)
q(x(n))

, n = 1, ..., N , are the importance weights
◦ only constraint: π(x) must be evaluated

• Unfortunately, sometimes we have only access to γ(x), where
π(x) = γ(x)

Z
, Z is the normalizing constant:

◦ basic IS estimator is not possible ⇒ self-normalize estimator:

ĨN (f) =
N∑
n=1

f
(
x(n)

)
w(n), x(n) ∼ q(x)

where w(n) = W (n)∑N
j=1W

(n) are the normalized weights (
∑N
j=1 w

(j) = 1).

⋆ here the weights W (n) can be computed by evaluating γ(x) instead.
◦ Approximation of the targeted distribution

π(x) ≈ πNIS (x) =
N∑
n=1

w(n)δx(n) (x)
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The variance in IS and the need of better proposals
• A good proposal q(x) is key for the efficiency of IS.
• Variance of the UIS estimator of I =

∫
f(x)π(x)dx:

Varπ(x)(Î) =
1

N

∫
f2(x)π2(x)

q(x)
dx− I2

N
• optimal UIS proposal: q(x) ∝ |f(x)|π(x)
• for a generic f(x), q(x) should be as close as possible to π(x)

• Very difficult to find a good q(x) a priori:
◦ π(x) can be only evaluated (up to a normalizing constant)
◦ π(x) may be multimodal, skewed, heavy tailed

• A posteriori metric: ÊSS = 1∑N
n=1 w̄

2
n
, although it presents serious

problems4

• Use multiple proposals (MIS) and explore the space (AIS).
4V. Elvira, L. Martino, and C. P. Robert. “Rethinking the effective sample size”. In:

International Statistical Review 90.3 (2022), pp. 525–550.
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Multiple Importance Sampling (MIS): Basics

• Set of N available proposal pdfs {qn(x)}Nn=1.
◦ Example N = 2:

 

 

Target pdf

Proposal pdf #1

Proposal pdf #2

Weighted samples (pdf #1)

Weighted samples (pdf #2)

• For simplicity, we simulate N samples in total from the set {qn(x)}Nn=1,
but how?

1. Sampling: xn ∼ ?, n = 1, ..., N .
2. Weighting: Wn = ?, n = 1, ..., N .

• Most known MIS algorithms focus just in the adaptation (AIS):
◦ Implement sampling and weighting in a different way without much

justification.
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Multiple Importance Sampling: Interpretations

a) Population Monte Carlo [Cappe04]:
1. Sampling: xn ∼ qn(x), n = 1, ..., N .
2. Weighting: Wn =

π(xn)
qn(xn)

, n = 1, ..., N .
◦ Estimators can be unstable.5

b) M-PMC [Douc07a,Cappe08]:
1. Sampling: xn

i.i.d∼ ψ(x), n = 1, ..., N . ψ(x) =
1

N

N∑
j=1

qj(x)

2. Weighting: Wn =
π(xn)
ψ(xn)

, n = 1, ..., N .
◦ Some proposals can be used more than once, others can be not used.

c) Deterministic mixture (DM)
1. Sampling: xn ∼ qn(x), n = 1, ..., N .
2. Weighting: Wn =

π(xn)
ψ(xn)

, n = 1, ..., N .
◦ xn is not drawn from ψ, but estimators are consistent and efficient.

• Several questions:
◦ Why all these sampling/weighting schemes are valid?
◦ Are some schemes better than others?
◦ Are there other valid schemes?
◦ Novel theoretical framework for MIS ⇒ Generalized MIS

5O. Cappé, A. Guillin, J.-M. Marin, and C. P. Robert. “Population monte carlo”. In:
Journal of Computational and Graphical Statistics 13.4 (2004), pp. 907–929.
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5R. Douc, A. Guillin, J.-M. Marin, and C. P. Robert. “Minimum variance importance
sampling via population Monte Carlo”. In: ESAIM: Probability and Statistics 11 (2007),
pp. 427–447.

6O. Cappé, R. Douc, A. Guillin, J.-M. Marin, and C. P. Robert. “Adaptive importance
sampling in general mixture classes”. In: Statistics and Computing 18 (2008), pp. 447–459.
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5E. Veach and L. J. Guibas. “Optimally combining sampling techniques for Monte Carlo
rendering”. In: Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques. 1995, pp. 419–428.

6A. Owen and Y. Zhou. “Safe and effective importance sampling”. In: Journal of the
American Statistical Association 95.449 (2000), pp. 135–143.
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Generalized MIS: Schemes with Replacement
• Example with N = 3 proposals. For each n ∈ {1, 2, 3}:6

1. simulate jn ∼ Cat([1, 2, 3]; [1/3, 1/3, 1/3])
2. simulate xn ∼ qjn (x)

3. weight Wn =
π(xn)
φn(xn)

(several options for φn)

• 1. and 2. are equivalent to mixture sampling:

xn
i.i.d.∼ ψ(x) =

1

3

N∑
n=1

qn(x)

Available proposals

Sampling

jn

xn

R1

R2

R3

Weighting options

wn = π(x)
φn(x)

1 2 3 1 2 3 1 2 3

3 3 1

x1 ∼ q3 x2 ∼ q3 x3 ∼ q1

π(x1)
q3(x1)

π(x2)
q3(x2)

π(x3)
q1(x3)

π(x1)
1
3
(q3(x1)+q3(x1)+q1(x1))

π(x2)
1
3
(q3(x2)+q3(x2)+q1(x2))

π(x3)
1
3
(q3(x3)+q3(x3)+q1(x3))

π(x1)
1
3
(q1(x1)+q2(x1)+q3(x1))

π(x2)
1
3
(q1(x2)+q2(x2)+q3(x2))

π(x3)
1
3
(q1(x3)+q2(x3)+q3(x3))

6V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo. “Generalized Multiple Importance
Sampling”. In: Statistical Science 34.1 (2019), pp. 129–155.
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Generalized MIS: Schemes with No Replacement

• Example with N = 3 proposals. For each n ∈ {1, 2, 3}:7
1. set jn = n
2. simulate xn ∼ qjn (x)

3. weight Wn =
π(xn)
φn(xn)

(several options for φn)

• 1. and 2. can be seen as mixture sampling xn ∼ ψ(x) = 1
3

∑N
n=1 qn(x)

◦ but not i.i.d.!
◦ only possible for mixtures with specific weights

Available proposals

Sampling

jn

xn

N1

N3

Weighting options

wn = π(x)
φn(x)

1 2 3

1 2 3

x1 ∼ q1 x2 ∼ q2 x3 ∼ q3

π(x1)
q1(x1)

π(x2)
q2(x2)

π(x3)
q3(x3)

π(x1)
1
3
(q1(x1)+q2(x1)+q3(x1))

π(x2)
1
3
(q1(x2)+q2(x2)+q3(x2))

π(x3)
1
3
(q1(x3)+q2(x3)+q3(x3))

7V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo. “Generalized Multiple Importance
Sampling”. In: Statistical Science 34.1 (2019), pp. 129–155.
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Generalized MIS: Variance analysis

Theorem.8 For any target distribution π(x), any integrable function h, and
any set of proposal densities {qn(x)}Nn=1 such that the variance of the
corresponding MIS estimators is finite,

V ar(ÎN1) = V ar(ÎR1) ≥ V ar(ÎR3) ≥ V ar(ÎN3)

8V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo. “Generalized Multiple Importance
Sampling”. In: Statistical Science 34.1 (2019), pp. 129–155.
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Generalized MIS: Numerical example
• Simulate M total samples from two proposals:

x
(m)
1 ∼ q1, m = 1, ...,M/2

x
(m)
2 ∼ q2, m = 1, ...,M/2

• Weighting:
(a) N1 (b) N3

w
(m)
1 =

π(x
(m)
1 )

q1(x
(m)
1 )

w
(m)
1 = π(x1)

1
2
(q1(x

(m)
1 )+q2(x

(m)
1 ))

w
(m)
2 =

π(x
(m)
2 )

q2(x
(m)
2 )

w
(m)
2 = π(x2)

1
2
(q1(x

(m)
2 )+q2(x

(m)
2 ))

MIS Scheme R1 N1 R2 N2 R3 N3
Var(Ẑ) 1847 6874 10285 5474 0.01 0.01
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Adaptive Importance Sampling: Basics
• N proposals {qn,j(x|θn,j)}Nn=1 adapted over j = 1, ..., J iterations

{qn,1(x|θn,1)}Nn=1 → {qn,2(x|θn,2)}Nn=1 → ...→ {qn,J(x|θn,J}Nn=1

• Parametric AIS summarized as:9

{θn,1}Nn=1 → {θn,2}Nn=1 → ...→ {θn,J}Nn=1
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9M. F. Bugallo et al. “Adaptive importance sampling: The past, the present, and the
future”. In: IEEE Signal Processing Magazine 34.4 (2017), pp. 60–79.
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Adaptive Importance Sampling: Generic Algorithm

Initialization: Choose J , N , K, {qn,1}Nn=1, and initial parameters {θn,1}Nn=1

For j = 1, . . . , J :
1. Sampling: Simulate NK samples as

x
(k)
n,j ∼ qn,j(x|θn,j), k = 1, . . . ,K, n = 1, . . . , N.

2. Weighting: Weight the NK samples as [Elvira19]

W
(k)
n,j =

π(x
(k)
n,j)

φn,j(x
(k)
n,j)

, k = 1, . . . ,K, n = 1, . . . , N.

3. Adaptation of the parameters: Update the proposal parameters

{θn,j}Nn=1
Adapt−−−→{θn,j+1}Nn=1

Outputs: NKJ weighted samples, {x(k)
n,j ,W

(k)
n,j }

N,K,J
n=1,k=1,j=1

two questions: (1) Weighting scheme?10 (2) Adaptive procedure of θn,j?11

10V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo. “Generalized Multiple Importance
Sampling”. In: Statistical Science 34.1 (2019), pp. 129–155.

11M. F. Bugallo et al. “Adaptive importance sampling: The past, the present, and the
future”. In: IEEE Signal Processing Magazine 34.4 (2017), pp. 60–79.
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Outline

Refreshing state-space models and Bayesian filtering

Importance sampling: basics and advanced methods

Particle filtering
Mini-project
Mini-project

Particle filtering from the MIS and AIS perspectives

Advanced particle filtering
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Importance sampling for sequential inference

• Back to our problem: compute the joint p(x1:t|y1:t) and/or filtering
p(xt|y1:t):

p(x1:t|y1:t) = p(x1:t,y1:t)/Z

◦ Norm. constant: Z = p(y1:t) =
∫
p(x1:t,y1:t)dx1:t cannot be computed

◦ Marginalization: p(xt|y1:t) =
∫
p(x1:t|y1:t)dx1:t−1 cannot be computed

• Importance sampling :
1. Sample M trajectories x

(m)
1:t ∼ q(x1:t), m = 1, ...,M .

2. Weight each trajectory W (m) =
p(x

(m)
1:t |y1:t)

q(x
(m)
1:t )

∝ p(x
(m)
1:t ,y1:t)

q(x
(m)
1:t )

, m = 1, ...,M .

• Approximate the joint target with weighted trajectories

p(x1:t|y1:t) ≈ pM (x1:t|y1:t) =

M∑
m=1

w(m)δ
x
(m)
1:t

(x1:t)

where w(m) = W (m)∑M
j=1W

(m) are the normalized weights (
∑M
j=1 w

(j) = 1).
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Particle filtering/sequential Monte Carlo

• Particle filtering/sequential Monte Carlo
• The distributions are approximated by a random measure of M particles

and associated normalized weights X = {x(m)
t , w

(m)
t }Mm=1

◦ p(xt|y1:t) ≈ p̂M (xt|y1:t) =
∑M
m=1 w

(m)
t δ

x
(m)
t

(xt)

p̂M (xt|y1:t)
p(xt|y1:t) ∑M

m=1 w
(m)
t = 1

xt
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Batch importance sampling
• Which proposal q(x1:t) for sampling/simulating the M trajectories x

(n)
1:t ?

◦ Easiest choice: q(x1:t) = p(x1:t) ≡ p(x1) · p(x2|x1) · ... · p(xt|xt−1)
⋆ proposal factorizes (it is a choice)

• Batch procedure of IS with M samples:
1: for m = 1 to M do
2: 1. Sample the m-th trajectory (sampling):

x
(m)
1 ∼ p(x

(m)
1 )

x
(m)
2 ∼ p(x2|x(m)

1 )

. . .

x
(m)
t ∼ p(xt|x(m)

t−1)3: x
(m)
1:t = [x

(m)
1 , ...,x

(m)
t ]

4: 2. Weight for the m-th trajectory (weighting):

W
(m)
t =

p(x
(m)
1:t ,y1:t)

q(x
(m)
1:t )

=
p(y1:t|x(m)

1:t )p(x
(m)
1:t )

p(x
(m)
1:t )

= p(y1:t|x(m)
1:t )

(likelihood evaluated at the m-th trajectory)

5: Normalize weights as w(m) =
W

(m)
t∑M

j=1W
(j)
t

6: end for
p(x1:t|y1:t) ≈ pM (x1:t|y1:t) =

M∑
m=1

w(m)δ
x
(m)
1:t

(x1:t)

p(xt|y1:t) ≈ pM (xt|y1:t) =

M∑
m=1

w(m)δ
x
(m)
t

(x1:t) (Monte Carlo marginalization)
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Sequential importance sampling (SIS)

xt−1 xt xt+1

yt−1 yt yt+1

... ...
pθ(xt|xt−1) pθ(xt+1|xt)

pθ(yt−1|xt−1) pθ(yt|xt) pθ(yt+1|xt+1)

• Due to model structure, joint likelihood factorizes as

w
(m)
t ∝ p(y1:t|x(m)

1:t ) = p(y1|x(m)
1 ) · p(y2|x(m)

2 ) · . . . · p(yt|x(m)
t )

• If we receive yt+1, can we approximate p(x1:t+1|y1:t+1) without
re-processing y1:t?

p(x1:t+1|y1:t+1) =
p(yt+1,x1:t+1|y1:t)

p(yt+1|y1:t)
=
p(yt+1|x1:t+1,y1:t)

p(yt+1|y1:t)
p(x1:t+1|y1:t) (Bayes)

=
p(yt+1|x1:t+1,y1:t)

p(yt+1|y1:t)
p(xt+1|x1:t,y1:t)p(x1:t|y1:t) (factorization)

=
p(yt+1|xt+1)p(xt+1|xt)

p(yt+1|y1:t)
p(x1:t|y1:t) (model structure)
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Sequential importance sampling (SIS)

• Sequential importance sampling (SIS):
◦ sample and weight sequentially at time t
◦ process each observation yt without reprocessing y1:t−1

1: for t = 2 to T do
2: for m = 1 to M do
3: 1. Sample the m-th trajectory at time t:

x
(m)
t ∼ p(xt|x(m)

t−1)

4: x
(m)
1:t = [x

(m)
1:t−1,x

(m)
t ]

5: 2. Weight for the m-th trajectory:

W
(m)
t = p(y1:t|x(m)

1:t ) =W
(m)
t−1 p(yt|x

(m)
t )

6: end for
7: end for
8: Normalize weights: w(m)

T =
W

(m)
T∑M

j=1W
(j)
T

, m = 1, ...,M .

9: return M trajectories with their weights: {x(m)
1:T , w

(m)
T }Mm=1
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Quality of the approximation and resampling step

• We can approximate any function f of the desired p(x1:t|y1:t) with the
self-normalized estimator:

ĨN (f) =
M∑
m=1

f
(
x
(m)
1:t

)
w

(m)
t

◦ Example: mean of the filtering distribution p(xt|y1:t) is simply the
weighted average of the particles at time t.

ĨN =
M∑
m=1

x
(m)
t w

(m)
t

◦ The quality of the approximation depends on weights variability:
⋆ if one particle gets a weight ≈ 1 (and the others almost zero), the

approximation is very bad.

• Resampling step:
◦ at each time t we kill bad trajectories with very low weight and

replicate good trajectories (before processing future observations)
◦ implicit improvement of the marginal proposal for t+ 1
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Resampling step

• Resampling step: third step (after 1. Sampling, and 2. Weighting)
◦ easy but necessary to make the PF work.

• At time t, after computing the weights we replicate good particles and kill
bad particles.

◦ Urn example: draw i.i.d. M balls (particles) with replacement, with
probability equal to the associated weights.

◦ More precisely: Xt = {x(m)
t , w

(m)
t }Mm=1 forms an empirical distribution

pM (xt|y1:t) ≡
∑M
j=1 w

(j)
t δ

x
(j)
t

(x).

⋆ Sample M particles, x̃(m)
t ∼ pM (xt|y1:t), m = 1, ...,M.

(Source in 12)

12P. M. Djuric et al. “Particle filtering”. In: IEEE signal processing magazine 20.5 (2003),
pp. 19–38.



28/66

Side effect of the resampling step
• Resampling:

◦ reduces particle degeneracy (few samples get most of the probability mass)
◦ side effect of introducing path degeneracy (few ancestor particles surviving)

• recall we approximate the joint target with weighted trajectories

p(x1:t|y1:t) ≈ pM (x1:t|y1:t) =

M∑
m=1

w(m)δ
x
(m)
1:t

(x1:t)
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• Resampling with moderation only when particle degeneracy is severe:
◦ Effective sampling size (ESS):13 ÊSS = 1∑M

m=1 [w
(m)
t ]2

◦ Adaptive resampling: resample only if ÊSS < γ, with 1 ≤ γ ≤M
⋆ γ = M : resample always (equiv. BPF)
⋆ γ = 1: never resample (equiv. batch IS)

13V. Elvira, L. Martino, and C. P. Robert. “Rethinking the effective sample size”. In:
International Statistical Review 90.3 (2022), pp. 525–550.
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The bootstrap PF (BPF)
• Bootstrap PF ≡ Sequential importance sampling resampling (SISR)14

(i) Initialization. At time t = 0, x̃(m)
0 ∼ p(x0), m = 1, . . . ,M .

(ii) Recursive step. At time t,
1. Prediction (particles propagation): x

(m)
t ∼ p(xt|x̃(m)

t−1)

2. Update (weights calculation): compute the normalized weights as
w

(m)
t ∝ p(yt|x(m)

t ) associated to trajectory x
(m)
1:t = [x̃

(m)
1:t−1,x

(m)
t ]

3. Multinomial resampling
a) simulate i(m) ∼ Cat([1, ...,M ]; [w

(1)
t , ..., w

(M)
t ]), m = 1, ...,M

b) set x̃
(m)
1:t = x

(i(m))
1:t m = 1, ...,M

equivalent to simulate M i.i.d. samples from the approx. filtering dist.

x̃
(m)
t ∼ pM (xt|y1:t) ≡

M∑
j=1

w
(j)
t δ

x
(j)
t

(x)

p(x1:t|y1:t) ≈ pM (x1:t|y1:t) =
M∑
m=1

w
(m)
t δ

x
(m)
1:t

(x1:t)

p(xt|y1:t) ≈ pM (xt|y1:t) =

M∑
m=1

w
(m)
t δ

x
(m)
t

(xt) ≈
1

M

M∑
m=1

δ
x̃
(m)
t

(xt)

14N. J. Gordon, D. J. Salmond, and A. F. Smith. “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation”. In: IEE proceedings F (radar and signal
processing). Vol. 140. 2. IET. 1993, pp. 107–113.
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3. Multinomial resampling
a) simulate i(m) ∼ Cat([1, ...,M ]; [w

(1)
t , ..., w

(M)
t ]), m = 1, ...,M

b) set x̃
(m)
1:t = x

(i(m))
1:t m = 1, ...,M

equivalent to simulate M i.i.d. samples from the approx. filtering dist.

x̃
(m)
t ∼ pM (xt|y1:t) ≡

M∑
j=1

w
(j)
t δ

x
(j)
t

(x)

p(x1:t|y1:t) ≈ pM (x1:t|y1:t) =

M∑
m=1

w
(m)
t δ

x
(m)
1:t

(x1:t)

p(xt|y1:t) ≈ pM (xt|y1:t) =
M∑
m=1

w
(m)
t δ

x
(m)
t

(xt) ≈
1

M

M∑
m=1

δ
x̃
(m)
t

(xt)

14N. J. Gordon, D. J. Salmond, and A. F. Smith. “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation”. In: IEE proceedings F (radar and signal
processing). Vol. 140. 2. IET. 1993, pp. 107–113.
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The bootstrap PF (BPF)
• Bootstrap PF ≡ Sequential importance sampling resampling (SISR)14

(i) Initialization. At time t = 0, x̃(m)
0 ∼ p(x0), m = 1, . . . ,M .

(ii) Recursive step. At time t,
1. Prediction (particles propagation): x

(m)
t ∼ p(xt|x̃(m)

t−1)

2. Update (weights calculation): compute the normalized weights as
w

(m)
t ∝ p(yt|x(m)

t ) associated to trajectory x
(m)
1:t = [x̃

(m)
1:t−1,x

(m)
t ]

3. Multinomial resampling
a) simulate i(m) ∼ Cat([1, ...,M ]; [w

(1)
t , ..., w

(M)
t ]), m = 1, ...,M

b) set x̃
(m)
1:t = x

(i(m))
1:t m = 1, ...,M

equivalent to simulate M i.i.d. samples from the approx. filtering dist.

x̃
(m)
t ∼ pM (xt|y1:t) ≡

M∑
j=1

w
(j)
t δ

x
(j)
t

(x)

p(x1:t|y1:t) ≈ pM (x1:t|y1:t) =

M∑
m=1

w
(m)
t δ

x
(m)
1:t

(x1:t)

p(xt|y1:t) ≈ pM (xt|y1:t) =
M∑
m=1

w
(m)
t δ

x
(m)
t

(xt) ≈
1

M

M∑
m=1

δ
x̃
(m)
t

(xt)

14N. J. Gordon, D. J. Salmond, and A. F. Smith. “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation”. In: IEE proceedings F (radar and signal
processing). Vol. 140. 2. IET. 1993, pp. 107–113.
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Bootstrap particle filter

t− 1

t

x̃
(m)
t−1

3. Resampling
x5 x1 x2 x1 x3

1. Propagate
(predict)

x
(m)
t ∼ p(xt|x̃

(m)
t−1)

x2 x1 x2 x4 x3

2. Weights calc.
(update)

w
(m)
t ∝ p(yt|x

(m)
t )

3. Resampling

x̃
(m)
t
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Mini-project: BF for the Lorenz 63 model

• Take the same state-space model as for the Kalman filtering problem (stochastic Lorenz
63, with Euler discretisation and nonlinear observations) and code a standard bootstrap
filter with N particles.

• Compare the performance of the bootstrap filter and the non-linear extensions of KF
(e.g., CKF): try different values of state noise variance and observational noise variance,
gap between observations, and M (number of particles).
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Beyond BPF

• The m-th proposal in BPF is the transition kernel q(xt) = p(xt|x̃(m)
t−1)

◦ note that is conditioned on x̃
(m)
t−1 which comes from a resampling step.

◦ proposal of all samples can be interpreted as approximate predictive, since
resampling (t− 1) + propagation at t = mixture sampling:

x
(m)
t

i.i.d.∼ pM (xt|y1:t−1) =
M∑
m=1

w
(m)
t p(xt|x(m)

t−1)

• From IS theory, high variance of the importance weights ⇒ low
efficiency/accuracy of the filter

• Intuition (imprecise): inefficiency in BPF will happen when predictive
p(xt|y1:t−1), thus mixture proposal, differs from filtering distribution:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

◦ equivalent to say that yt is informative, which happens when:
⋆ p(yt|xt) is "peaky" compared to p(xt|y1:t−1) (e.g., very low-variance

observation noise)
⋆ p(yt|xt) is placed in a “different” area of the space compared to
p(xt|y1:t−1) (e.g., outlier observation)

◦ in those scenarios, great variability of the weights.
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An adapted PF with generic proposal

• A good proposal must include knowledge about yt
◦ avoid particles being sampled into regions of the state space which are

unlikely in light of that observation

• Generic sampling:

x
(m)
1:t ∼ q(x1:t) =

t∏
k=1

q(xk;x1:k−1,y1:k)

with trajectory weight:

W
(m)
t =

p(x
(m)
1:t ,y1:t)

q(x
(m)
1:t )

=
p(y1:t|x(m)

1:t )p(x
(m)
1:t )

q(x
(m)
1:t )

=

∏t
k=1 p(yk|x

(m)
k )p(x

(m)
k |x(m)

k−1)∏t
k=1 q(x

(m)
k ;x

(m)
1:k−1,y1:k)

• possible proposal choices:
◦ BPF (online-oriented) uninformative:

x
(m)
t ∼ q(xt;x

(m)
1:t−1,y1:t) = q(xt;x

(m)
t−1) = p(xt|x(m)

t−1)

◦ still convenient (online-oriented) but more informative:

x
(m)
t ∼ q(xt;x

(m)
1:t−1,y1:t) = q(xt;x

(m)
t−1,yt)
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An adapted PF with generic proposal

(i) Initialization. At time t = 0, x̃(m)
0 ∼ p(x0), m = 1, . . . ,M .

(ii) Recursive step. At time t,

1. Sampling/propagation: x
(m)
t ∼ q(xt; x̃

(m)
t−1,yt) associated to trajectory

x
(m)
1:t = [x̃

(m)
1:t−1,x

(m)
t ]

2. Weights calculation: compute the normalized weights as

w
(m)
t ∝

p(yt|x
(m)
t )p(x

(m)
t |x̃(m)

t−1)

q(x
(m)
t ;x̃

(m)
t−1,yt)

3. Multinomial resampling
a) simulate i(m) ∼ Cat([1, ...,M ]; [w

(1)
t , ..., w

(M)
t ]), m = 1, ...,M

b) set x̃
(m)
t = x

(i(m))
t , m = 1, ...,M

equivalent to simulate M i.i.d. samples from the approx. filtering dist.

x̃
(m)
t ∼ pM (xt|y1:t) ≡

M∑
j=1

w
(j)
t δ

x
(j)
t

(x)
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In search of better filters

• Proposal choice to minimize variance of

w
(m)
t ∝

p(yt|x(m)
t )p(x

(m)
t |x̃(m)

t−1)

q(x
(m)
t ; x̃

(m)
t−1,yt)

◦ “optimal” kernel: q(xt; x̃
(m)
t−1,yt) = p(xt|yt, x̃(m)

t−1)

⋆ proportional to te numerator p(yt,xt|x̃(m)
t−1)

⋆ intractable kernel
⋆ reduces the variance of each weight (constant) but still weights are different

across them:
W

(m)
t = p(yt|x̃(m)

t−1)

• Even if available, the kernel does not solve all the problems: the
resampling remains blind to the new observation yt

◦ Goal: we would like to modify the resampling weights to replicate
trajectories at t− 1 that will perform better in t
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In search of better filters: trajectory perspective

• Recap: BPF and adapted PF proceed in the following order:
1. Resampling (t− 1): resample trajectories x̃

(n)
1:t−1 (yt is not used in adapted

PF nor in BPF)
⋆ recall: equivalent to simulating at t− 1 as

x̃
(m)
1:t−1 ∼ p

M
(x1:t−1|y1:t−1) ≡

M∑
j=1

w
(j)
t−1δx(j)

1:t−1

(x1:t−1)

2. Sampling (t): propagate from x̃
(m)
t−1 to x

(m)
t (yt is used in adapted PF but

not used in BPF)
3. Weighting (t): Bayesian update (yt is used)

• Is it possible to use yt at resampling?
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In search of better filters: trajectory perspective
• More precisely, resample trajectories from pM (x1:t−1|y1:t) instead of
pM (x1:t−1|y1:t−1)?
p(x1:t−1|y1:t) =

∫
p(x1:t|y1:t)dxt

=

∫
p(yt|xt)p(xt|xt−1)p(x1:t−1|y1:t−1)dxt

= p(x1:t−1|y1:t−1)

∫
p(yt|xt)p(xt|xt−1)dxt

≈

[
M∑
j=1

w
(j)
t−1δx(j)

1:t−1

(x1:t−1)

]∫
p(yt|xt)p(xt|xt−1)dxt

=

M∑
j=1

w
(j)
t−1δx(j)

1:t−1

(x1:t−1)

∫
p(yt|xt)p(xt|x(j)

t−1)dxt︸ ︷︷ ︸
v
(j)
t =p(yt|x

(j)
t−1)

=

M∑
j=1

w
(j)
t−1v

(j)
t︸ ︷︷ ︸

λ
(j)
t

δ
x
(j)
1:t−1

(x1:t−1)

• v
(j)
t is intractable ⇒ cheap approximation: v(j)t ≈ p(yt|x̄(j)

t )
◦ justification = p(xt|x(j)

t−1) ≈ δ
x̄
(j)
t

(xt), where x̄
(j)
t = E

p(xt|x
(j)
t−1)

[xt]
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In search of better filters: trajectory perspective
New approach:

1. Resampling (t− 1): resample trajectories x̃
(m)
1:t−1 (yt is now used )

2. Sampling (t): simulate from q(xt; x̃t−1,yt) (yt potentially used)
◦ trajectory proposal is now

q(xt;x1:t−1) = q(xt;xt−1,yt)
M∑
j=1

λ
(j)
t δ

x
(j)
1:t−1

(x1:t−1)

and sampling as
a) simulate i(m) ∼ Cat([1, ...,M ]; [λ

(1)
t , ..., λ

(M)
t ]), m = 1, ...,M

b) simulate x
(m)
t ∼ q(xt;x

(i(m))
t−1 ,yt), m = 1, ...,M

3. Weighting (t) in the joint space, using x
(j)
1:t−1 fulfills

q(x
(j)
1:t−1;y1:t) =

λ
(j)
t

w
(j)
t

pM (x
(j)
1:t−1|y1:t−1),

wt(x
(m)
1:t ) =

p(yt|x(m)
t )p(xmt |x(i(m))

t−1 )p(x
(i(m))
1:t−1 |y1:t−1)

q(x
(m)
t ;x

(i(m))
1:t−1 ,yt)q(x

(i(m))
1:t−1 ;y1:t)

=
p(yt|x(m)

t )p(xmt |x(i(m))
t−1 )p(x

(i(m))
1:t−1 |y1:t−1)

q(x
(m)
t ;x

(i(m))
1:t−1 ,yt)

λ
(i(m))
t

w
(i(m))
t

pM (x
(i(m))
1:t−1 |y1:t−1)

≈
p(yt|x(m)

t )p(xmt |x(i(m))
t−1 )

q(x
(m)
t ;x

(i(m))
1:t−1 ,yt)p(yt|µ

(i(m))
t )

(1)
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Auxiliary PF (APF)
• Proposed in 15 as an alternative to BPF

◦ APF improves sometimes the performance of BPF, but not always.
◦ it attempts to sample in better areas in light of the new observation yt

(i) Initialization. At time t = 0, x(m)
0 ∼ p(x0), and w(m)

0 = 1/M ,
m = 1, . . . ,M .

(ii) Recursive step. At time t > 0,
1 Modify weights before resampling. Compute

x̄
(m)
t = E

p(xt|x
(m)
t−1)

[xt], m = 1, ...,M.

and the normalized weights (
∑M
m=1 λ

(m)
t = 1)

λ
(m)
t ∝ p(yt|x̄(m)

t )w
(m)
t−1 , m = 1, ...,M,

2 Delayed resampling. Select the indexes i(m) = j, with probability
proportional to λ(j)t , m = 1, ...M

3 Prediction. x
(m)
t ∼ p(xt|x(i(m))

t−1 ), m = 1, ...,M .
4 Update. Compute the normalized weights as

w
(m)
t ∝

p(yt|x(m)
t )

p(yt|x̄(i(m))
t )

, m = 1, ...,M.

15M. K. Pitt and N. Shephard. “Filtering via simulation: Auxiliary particle filters”. In:
Journal of the American statistical association 94.446 (1999), pp. 590–599.
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Mini-project

• Assume, again, the stochastic Lorenz 63 model, time-discretised using an
Euler-Maruyama scheme:

X1,n = X1,n−1 − hs (X1,n−1 −X2,n−1) + σ
√
hZ1,n,

X2,n = X2,n−1 + h (rX1,n−1 −X2,n−1 −X1,n−1X3,n−1) + σ
√
hZ2,n,

X3,n = X3,n−1 + h (X1,n−1X2,n−1 − bX3,n−1) + σ
√
hZ3,n,

where Zi,n ∼ N (0, 1), the state is Xn = [X1,n, X2,n, X3,n]
⊤ and the parameters are

(s, r, b) =
(
10, 28, 8

3

)
. You may ‘play around’ with the value of σ as in the previous

mini-projects (start with σ = 1
2 ).

• Assume linear observations, namely Yn = X1,n + σuUn, where Un ∼ N (0, 1), every B
discrete time steps (e.g., B = 40). Again, you may try different values of the parameter
σu (you may start with σu = 2).
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Mini-project

• For the state space model in the previous slide, code a standard SIR algorithm and a SIR
algorithm with a Gaussian proposal.
Try different configurations of the model noise parameters (σu, σ,M) and plot the
ground-truth signals and their estimates with both filters. Reference values:
σu = 2, σ = 1, B = 40 and M = 50 particles in the SIR algorithm.
The simulation should also return estimation errors (e.g., average square errors over
time) for the two filters.
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Revisiting standard filters from the MIS perspective

• Both BPF and APF (and other filters) use several proposals at each t

• e.g., BPF proposal is x
(m)
t ∼ p(xt|x̃(m)

t−1)

◦ potentially M different values x̃
(m)
t−1, i.e., M proposals.

◦ at least two views:
1. each sample x

(m)
t is simulated from p(xt|x̃(m)

t−1)

2. all samples are i.i.d. samples from the mixture

p
M

(xt|y1:t−1) =

M∑
j=1

w
(j)
t−1p(xt|x

(j)
t−1)

• Is it possible to re-interpret BPF and other filters from a MIS perspective?
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A generic particle filtering from the MIS perspective
(i) Initialization. At time t = 0, x(m)

0 ∼ p(x0), w
(m)
0 = 1/M , m = 1, . . . ,M .

(ii) Recursive step. At time t > 0,
1 Proposal adaptation/selection. Select the MIS proposal of the form

ψt(xt) =
M∑
j=1

λ
(j)
t p(xt|x(j)

t−1),

2 Sampling. Draw samples according to

x
(m)
t ∼ ψt(xt), m = 1, ...,M.

3 Weighting. Compute the normalized IS weights by

w
(m)
t ∝

p(x
(m)
t |y1:t)

ψt(x
(m)
t )

∝
p(yt|x(m)

t )p(x
(m)
t |y1:t−1)

ψt(x
(m)
t )

≈
p(yt|x(m)

t )
∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)

ψt(x
(m)
t )

=
p(yt|x(m)

t )
∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)∑M
j=1 λ

(j)
t p(x

(m)
t |x(j)

t−1)

(2)• Two questions:16

1. Selection/adaptation of {λ(j)t }Mj=1 to build ψt(xt)?
⋆ Recall: IS is efficient when ψt(xt) is close to p(xt|y1:t) ⇒ AIS

2. Approximate w(m)
t in (2) to derive BPF, APF. and other/new filters?

16V. Elvira, L. Martino, M. F. Bugallo, and P. M. Djuric. “Elucidating the auxiliary particle
filter via multiple importance sampling [lecture notes]”. In: IEEE Signal Processing Magazine
36.6 (2019), pp. 145–152.
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BPF from the MIS perspective
(i) Initialization. At time t = 0, x(m)

0 ∼ p(x0), and w(m)
0 = 1/M ,

m = 1, . . . ,M .
(ii) Recursive step. At time t > 0,

1 Proposal adaptation/selection. Select the MIS proposal of the form

ψt(xt) =
M∑
j=1

w
(j)
t−1p(xt|x

(j)
t−1), (λ

(j)
t = w

(j)
t−1)

2 Sampling. Draw samples according to

x
(m)
t ∼ ψt(xt), m = 1, ...,M. (equiv. resampling+propagation)

3 Weighting. Compute the normalized IS weights by

w
(m)
t ∝

p(x
(m)
t |y1:t)

ψt(x
(m)
t )

∝
p(yt|x(m)

t )p(x
(m)
t |y1:t−1)

ψt(x
(m)
t )

≈
p(yt|x(m)

t )
∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)

ψt(x
(m)
t )

=
p(yt|x(m)

t )
∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)

= p(yt|x(m)
t )

• Remark: the BPF proposal matches just the prior of the numerator.17

17V. Elvira, L. Martino, M. F. Bugallo, and P. M. Djuric. “Elucidating the auxiliary particle
filter via multiple importance sampling [lecture notes]”. In: IEEE Signal Processing Magazine
36.6 (2019), pp. 145–152.
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Toy example: BPF with M = 4 particles
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• predictive, p(xt|y1:t−1) =
∑M
j=1 w

(j)
t−1p(xt|x

(j)
t−1) with

wt−1 = [0.03, 0.16, 0.16, 0.65]

• BPF proposal, ψBPF
t (xt) =

∑M
j=1 λ

(j)
t p(xt|x(j)t−1), with

λBPF
t = w

(m)
t−1 = [0.03, 0.16, 0.16, 0.65]
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BPF from the MIS perspective
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APF from the MIS perspective
(i) Initialization. At time t = 0, x(m)

0 ∼ p(x0), and w(m)
0 = 1/M ,

m = 1, . . . ,M .
(ii) Recursive step. At time t > 0,

1 Proposal adaptation/selection. The weight of each mixture kernel is
amplified by the likelihood eval. at its center x̄

(m)
t = E

p(xt|x
(m)
t−1)

[xt], i.e.,

ψt(xt) =
M∑
j=1

λ
(j)
t p(xt|x(j)

t−1), with λ
(j)
t ∝ p(yt|x̄(j)

t )w
(j)
t−1, j = 1, ...,M

2 Sampling. Draw M i.i.d. samples from the mixture ψt(xt), i.e.,
a) Select the indexes i(m) = j, with probability ∝ λ

(j)
t , m = 1, ...M

b) simulate x
(m)
t ∼ p(xt|x(i(m))

t−1 ), m = 1, ...M .
3 Weighting. Compute the normalized IS weights by

w
(m)
t ∝

p(x
(m)
t |y1:t)

ψt(x
(m)
t )

∝
p(yt|x

(m)
t )p(x

(m)
t |y1:t−1)∑M

j=1
λ
(j)
t−1

p(x
(m)
t |x(j)

t−1
)

≈
p(yt|x

(m)
t )

∑M
j=1 w

(j)
t−1

p(x
(m)
t |x(j)

t−1
)∑M

j=1
λ
(j)
t−1

p(x
(m)
t |x(j)

t−1
)

≈
p(yt|x

(m)
t )w

(i(m))
t−1

p(x
(m)
t |x(i(m))

t−1
)

λ
(i(m))
t p(x

(m)
t |x(i(m))

t−1
)

∝
p(yt|x

(m)
t )w

(i(m))
t−1

p(x
(m)
t |x(i(m))

t−1
)

p(yt|x̄
(i(m))
t )w

(i(m))
t−1

p(x
(m)
t |x(i(m))

t−1
)

=
p(yt|x

(m)
t )

p(yt|x̄
(i(m))
t )

• Remark:18

◦ implicit assumption: kernels are far apart
◦ the APF re-weights the kernels of the prior amplifying them with the

likelihood (each of them, independently from the rest).
18V. Elvira, L. Martino, M. F. Bugallo, and P. M. Djuric. “Elucidating the auxiliary particle

filter via multiple importance sampling [lecture notes]”. In: IEEE Signal Processing Magazine
36.6 (2019), pp. 145–152.
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Toy example: APF with M = 4 particles
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• predictive, p(xt|y1:t−1) =
∑M
j=1 w

(j)
t−1p(xt|x

(j)
t−1) with

wt−1 = [0.03, 0.16, 0.16, 0.65]

• APF proposal, ψAPF
t (xt) =

∑M
j=1 λ

(j)
t p(xt|x(j)t−1), with

λAPF
t = p(yt|x̄(m)

t )w
(m)
t−1 = [0.6713, 0.3221, 0.0065, 0.0001]
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Auxiliary PF (APF) from the MIS perspective
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Improved APF (IAPF)

• IAPF:19 Based on this MIS interpretation, we improve the APF
◦ MIS perspective: the proposal is a mixture of the same predictive kernels

as in BPF and APF

ψt(xt) =
M∑
j=1

λ
(j)
t p(xt|x(j)

t−1)

with

λ
(j)
t ∝

p(yt|x̄(j)
t )

∑M
k=1 w

(k)
t−1p(x̄

(j)
t |x(k)

t−1)∑M
k=1 p(x̄

(j)
t |x(k)

t−1)
, j = 1, ...,M.

◦ Interpration: the “amplification” λ(j)t of j-th kernel, takes into account
where all other kernels are placed (unlike APF)

⋆ if kernels have few overlap, λ(j)
t ≈ p(yt|x̄(j)

t )w
(j)
t−1 (IAPF reduces to APF)

◦ Connection to marginal PFs 20

19V. Elvira, L. Martino, M. F. Bugallo, and P. M. Djurić. “In search for improved auxiliary
particle filters”. In: 2018 26th European Signal Processing Conference (EUSIPCO). IEEE.
2018, pp. 1637–1641.

20M. Klaas, N. De Freitas, and A. Doucet. “Toward practical N2 Monte Carlo: The marginal
particle filter”. In: arXiv preprint arXiv:1207.1396 (2012).
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Optimized APF (OAPF)

• OAPF:2122 K < M kernels form the mixture proposal
◦ Optimized λ via non-negative least squares (NNLS) by taking the squared

distance between target and mixture proposal at the E evaluation points

λ∗ = argmin
λ

∥Qλ− π̃∥22 subject to : λ ∈ RK≥0.

• In IAPF and OAPF, IS weights are exact:

w
(m)
t =

p(yt|x(m)
t )

∑K
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)∑K
j=1 λ

(j)
t−1p(x

(m)
t |x(j)

t−1)

21N. Branchini and V. Elvira. “Optimized auxiliary particle filters”. In: Uncertainty in
Artificial Intelligence. PMLR. 2021, pp. 1289–1299.

22N. Branchini and V. Elvira. “An adaptive mixture view of particle filters”. In: Foundations
of Data Science (2024), pp. 0–0.
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Toy example: IAPF with M = 4 particles
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• predictive, p(xt|y1:t−1) =
∑M
j=1 w

(j)
t−1p(xt|x

(j)
t−1) with

wt−1 = [0.03, 0.16, 0.16, 0.65]

• IAPF proposal, ψIAPF
t (xt) =

∑M
j=1 λ

(j)
t p(xt|x(j)t−1), with

λIAPF
t = [0.7657, 0.2276, 0.0066, 0.0001]
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Summary: PF framework from MIS perspective
(i) Initialization. At time t = 0, x(m)

0 ∼ p(x0), and w(m)
0 = 1/M ,

m = 1, . . . ,M .
(ii) Recursive step. At time t > 0,

1 Proposal adaptation/selection.23 Select the MIS proposal of the form

ψt(xt) =
M∑
j=1

λ
(j)
t p(xt|x(j)

t−1), with λ
(j)
t = ?

2 Sampling. Draw samples according to

x
(m)
t ∼ ψt(xt), m = 1, ...,M.

3 Weighting. Compute the normalized IS weights by

w
(m)
t = ?

BPF APF IAPF and OAPF

λ
(m)
t w

(m)
t−1 ∝ p(yt|x̄(m)

t )w
(m)
t−1 ∝ p(yt|x̄

(m)
t )

∑M
j=1 w

(j)
t−1p(x̄

(m)
t |x(j)

t−1)∑M
j=1 p(x̄

(m)
t |x(j)

t−1)

w
(m)
t ∝ p(yt|x(m)

t ) ∝ p(yt|x
(m)
t )

p(yt|x̄
(im)
t )

∝ p(yt|x
(m)
t )

∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)∑M
j=1 λ

(j)
t p(x

(m)
t |x(j)

t−1)

• In all PFs: p(xt|y1:t) ≈
M∑
m=1

w
(m)
t δ

x
(m)
t

(xt)

23V. Elvira, L. Martino, M. F. Bugallo, and P. M. Djuric. “Elucidating the auxiliary particle
filter via multiple importance sampling [lecture notes]”. In: IEEE Signal Processing Magazine
36.6 (2019), pp. 145–152.
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Summary: PF framework from MIS perspective
(i) Initialization. At time t = 0, x(m)

0 ∼ p(x0), and w(m)
0 = 1/M ,

m = 1, . . . ,M .
(ii) Recursive step. At time t > 0,

1 Proposal adaptation/selection.23 Select the MIS proposal of the form

ψt(xt) =
M∑
j=1

λ
(j)
t p(xt|x(j)

t−1), with λ
(j)
t = ?

2 Sampling. Draw samples according to

x
(m)
t ∼ ψt(xt), m = 1, ...,M.

3 Weighting. Compute the normalized IS weights by

w
(m)
t = ?

BPF APF IAPF and OAPF

λ
(m)
t w

(m)
t−1 ∝ p(yt|x̄(m)

t )w
(m)
t−1 ∝ p(yt|x̄

(m)
t )

∑M
j=1 w

(j)
t−1p(x̄

(m)
t |x(j)

t−1)∑M
j=1 p(x̄

(m)
t |x(j)

t−1)

w
(m)
t ∝ p(yt|x(m)

t ) ∝ p(yt|x
(m)
t )

p(yt|x̄
(im)
t )

∝ p(yt|x
(m)
t )

∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)∑M
j=1 λ

(j)
t p(x

(m)
t |x(j)

t−1)

• In all PFs: p(xt|y1:t) ≈
M∑
m=1

w
(m)
t δ

x
(m)
t

(xt)

23V. Elvira, L. Martino, M. F. Bugallo, and P. M. Djuric. “Elucidating the auxiliary particle
filter via multiple importance sampling [lecture notes]”. In: IEEE Signal Processing Magazine
36.6 (2019), pp. 145–152.
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Toy example: summary
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Numerical result 1: channel estimation in wireless system

• We suppose a linear-Gaussian system described by

xt = Axt−1 + rt,

yt = h⊤
t xt + rt,

◦ ht = [ht, ht−1, ..., ht−dx+1]
⊤, last dx transmitted pilots, dt ∈ {−1,+1},

◦ A = 0.7I
◦ qt ∼ N (0,Q),Q = 5I
◦ rt ∼ N (0,R),R = 0.5

• we set T = 200 time steps and M = 100 particles

dx (dimension) 1 2 3 5 10
MSE (BPF) 0.0272 0.3762 0.9657 1.4705 2.9592
MSE (APF) 0.0709 0.8041 1.6041 2.2132 3.7187
MSE (IAPF) 0.0062 0.1764 0.5176 0.8041 2.6931
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Filtering in high-dimension spaces

• All methods, and Monte Carlo is not an exception, suffer from the course
of dimensionality (in this case, when dx is high)

• In some models, some of the hidden variables can be integrated
(Rao-blackwellized PFs):24

◦ implicit dimensionality reduction in the latent space
◦ lower variance of PF estimators, compared to working in the original space

• Another approach is to partition the space and run several filters in parallel
(Multiple PFs):25

◦ implicit dimensionality reduction in the latent space
◦ works well when the dimensions of each subset only interact within each

subset
◦ more research is needed

24K. Murphy and S. Russell. “Rao-Blackwellised particle filtering for dynamic Bayesian
networks”. In: Sequential Monte Carlo methods in practice. Springer, 2001, pp. 499–515.

25P. M. Djuric, T. Lu, and M. F. Bugallo. “Multiple particle filtering”. In: 2007 IEEE
International Conference on Acoustics, Speech and Signal Processing-ICASSP’07. Vol. 3.
IEEE. 2007, pp. III–1181.
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Convergence assessment and adapting N in PF

• Goal: in real time and for any SSM:
1. evaluate the convergence, related to the quality of the approximation and
2. adapt the number of particles26,
3. with theoretical guarantees27

• Intuition: check whether the received observations “make sense” with the
approximated predictive distributions

• Challenge:
◦ at each time step just one observation yt available
◦ the predictive p̂M (yt|y1:t−1) is evolving with time

• Proposed method: At each time step t
◦ Generate K fictitious observations ỹ(k)t from p̂M (yt|y1:t−1)

1. x
(m)
t ∼ p(xt|x̃(m)

t−1) (prediction step of BPF, for free)

2. ỹ(k)t ∼ 1
M

∑M
m=1 p(yt|x

(m)
t ), k = 1, ..., K (cheap K << M)

◦ Compare them with the actual observation yt.
⋆ Implicitly, we compare p̂M (yt|y1:t−1) and p(yt|y1:t−1)

26V. Elvira, J. Míguez, and P. M. Djurić. “Adapting the number of particles in sequential
Monte Carlo methods through an online scheme for convergence assessment”. In: IEEE
Transactions on Signal Processing 65.7 (2016), pp. 1781–1794.

27V. Elvira, J. Miguez, and P. M. Djurić. “On the performance of particle filters with
adaptive number of particles”. In: Statistics and Computing 31 (2021), pp. 1–18.
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Ordering observation and fictitious observations

p̂M (yt|y1:t−1)

yt

→ {ỹ(k)t }3k=1 ∼ p̂M (yt|y1:t−1) (pseudo-obs.)

y

• At: number of fictitious observations, {ỹ(k)t }3k=1, smaller than yt

at = 2

• We can iteratively compute at
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Good approximation, t = 1

p̂M (yt|y1:t−1)

p(yt|y1:t−1) → yt ∼ p(yt|y1:t−1) (obs.)

→ {ỹ(k)t }3k=1 ∼ p̂M (yt|y1:t−1) (pseudo-obs.)

y

at = 2
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Good approximation, t = 2

p̂M (yt|y1:t−1)

p(yt|y1:t−1) → yt ∼ p(yt|y1:t−1) (obs.)

→ {ỹ(k)t }3k=1 ∼ p̂M (yt|y1:t−1) (pseudo-obs.)

y

at = 1
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Good approximation, t = 3

p̂M (yt|y1:t−1)

p(yt|y1:t−1) → yt ∼ p(yt|y1:t−1) (obs.)

→ {ỹ(k)t }3k=1 ∼ p̂M (yt|y1:t−1) (pseudo-obs.)
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at = 0
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Good approximation, t = 100

p̂M (yt|y1:t−1)

p(yt|y1:t−1) → yt ∼ p(yt|y1:t−1) (obs.)

→ {ỹ(k)t }3k=1 ∼ p̂M (yt|y1:t−1) (pseudo-obs.)
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Bad approximation, t = 1

p̂M (yt|y1:t−1)

p(yt|y1:t−1) → yt ∼ p(yt|y1:t−1) (obs.)

→ {ỹ(k)t }3k=1 ∼ p̂M (yt|y1:t−1) (pseudo-obs.)

y

at = 2
0 1 2 3

0

2

4

A

co
un

ts



64/66

Bad approximation, t = 2

p̂M (yt|y1:t−1)

p(yt|y1:t−1) → yt ∼ p(yt|y1:t−1) (obs.)

→ {ỹ(k)t }3k=1 ∼ p̂M (yt|y1:t−1) (pseudo-obs.)
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Bad approximation, t = 3

p̂M (yt|y1:t−1)

p(yt|y1:t−1) → yt ∼ p(yt|y1:t−1) (obs.)

→ {ỹ(k)t }3k=1 ∼ p̂M (yt|y1:t−1) (pseudo-obs.)
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Bad approximation, t = 100

p̂M (yt|y1:t−1)

p(yt|y1:t−1) → yt ∼ p(yt|y1:t−1) (obs.)

→ {ỹ(k)t }3k=1 ∼ p̂M (yt|y1:t−1) (pseudo-obs.)
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Methodology summary and properties

• Methodology: At each time step:
◦ simulate ỹ(k)t ∼ p̂M (yt|y1:t−1), k = 1, ...,K
◦ build the r.v. AK,t := |AK,t| ∈ {0, 1, ...,K}, where

AK,t := {y ∈ {ỹ(k)t }Kk=1 : y < yt}
• Properties: Under the hypothesis of perfect approximation:

◦ Jt := {yt, ỹ(1)t , . . . , ỹ
(K)
t } is a set of i.i.d. samples from a common

continuous probability distribution pt(yt), then:

Proposition 1: the pmf of the r.v. AK,t is uniform:
QK(n) =

1

K + 1
, n = 0, ...,K.

Proposition 2: the r.v.’s AK,t1 and AK,t2 are independent,
∀t1, t2 ∈ N with t1 ̸= t2.

• Invariant wrt the state space model!
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Theoretical results

• Theoretical analysis:
◦ convergence of the predictive pdf of the observations:28

lim
M→∞

(
f, p̂M (yt|y1:t−1)

)
=

(
f, p(yt|y1:t−1)

)
a.s.,

with explicit convergence rate
⋆ extends the existing results of pointwise convergence of p̂M (yt|y1:t−1) to
p̂(yt|y1:t−1)

⋆ holds for multidimensional observations
⋆ key for the statistical analysis of AK,t

◦ convergence of the p.m.f. of AK,t to a discrete uniform distribution
1

K + 1
− εM ≤ QK(n) ≤

1

K + 1
+ εM , n = 0, ...,K,

with limM→∞ εM = 0 a.s.

• Uniformity of the statistic AK,t (with K fictitious observations) equivalent
to p̂M (yt|y1:t−1) and p̂(yt|y1:t−1) matching K moments.29

28V. Elvira, J. Míguez, and P. M. Djurić. “Adapting the number of particles in sequential
Monte Carlo methods through an online scheme for convergence assessment”. In: IEEE
Transactions on Signal Processing 65.7 (2016), pp. 1781–1794.

29V. Elvira, J. Miguez, and P. M. Djurić. “On the performance of particle filters with
adaptive number of particles”. In: Statistics and Computing 31 (2021), pp. 1–18.
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