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This course

• This course is about:
◦ statistical modeling
◦ statistical learning / prediction / estimation / inference

• Main focus on time series and latent models: Bayesian filtering
• Overview of all lectures:

batch processing temporal structure
deterministic
inference

Statistical Machine Learning
(L1)

Kalman filtering and extensions
(L3)

stochastic
inference

Bayesian Inference and Monte
Carlo (L2)

Particle filtering (L4)

• Practical exercises related to each lecture.
• Final presentation on Friday
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Outline

Introduction to machine learning problems

Supervised learning
Regression

Linear regression and extensions
Regularized linear regression
Training, validation, and test

Recap of basic probability
Discrete random variables
Continuous random variables
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On learning
• In most interesting problems:

◦ there is a complicated (physical) process that we only understand and
observe partially

◦ there is available data (representative enough about the process)
• In this context, we are interested about many interesting questions:

◦ hypothesis testing
⋆ e.g., is there any relation between CO2 emissions and global warming

◦ accurate modeling to understand the physical process
⋆ e.g., which function links CO2 emissions and temperature? Which other

factors are involved?
◦ estimation of unknown parameters

⋆ e.g., what parameters link CO2 and temperature? Is the dependence very
strong?

◦ prediction/forecasting of the evolution of the system
⋆ e.g., if we kept fixed the emissions, how would the Earth system evolve?

◦ prediction/forecasting future observations
⋆ e.g., what will be the temperature in our city tomorrow? And in 100 years?

◦ scientifically informed decision making
⋆ e.g., is the global warming process reversible?

◦ classification of situations
⋆ e.g., are we in an increasing/decreasing/stable temperature period?

◦ clustering/grouping items
⋆ e.g., can we divide the earth in regions where temperature evolution is similar

enough (within each region)?
◦ ...

• Many mathematical sciences involved: statistics, machine learning, signal
processing, data science, artificial intelligence, data mining.
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ML vs traditional statistics

Are machine learning (ML) and statistics two different things (and AI/data
science?)

1. Motivation.
◦ Statistics: modeling/understanding/causality are key (good prediction is

just a consequence)
◦ ML: prediction is the goal (modeling/understanding/causality are the

consequence)

2. Amount of data. Large number of data points and variables
◦ Data mining applications are often used when even a larger number is used

(sometimes millions).
3. Complex, non-linear relationships. Traditional statistical methods often

assume linear relationships (perhaps after simple transformations), or
simple distributions (e.g., normal).

◦ In ML, the models can be more complex/flexible (sometimes without
interpretability)
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ML vs traditional statistics (cont.)

• There is a big overlap in problems addressed by machine learning and data
mining, and by traditional statistics.

• Other differences are:

Machine Learning Traditional Statistics

1. No widely accepted philosophies
or theoretical framework (dictator-
ship of performance!).

1. Classical (frequentist) and Bayesian
philosophies compete.

2. Willing to use ad hoc methods if
they seem to work well.

2. Reluctant to use methods without
some theoretical justification (even if the
justification is not always realistic).

3. Emphasis on automatic methods
with little or no human intervention.

3. Emphasis on human judgment assisted
by plots and diagnostics.

4. Methods suitable for many prob-
lems.

4. Models based on scientific knowledge.

5. Heavy use of computing. 5. Originally designed for hand-
calculation, even if now computing is very
important.
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Main ML problems

• Our approach in this lecture L1 is based on machine learning with strong
statistical flavor

• Machine learning problems can generally be divided into:
1. Supervised Learning: regression and classification
2. Unsupervised Learning: clustering and dimensionality reduction
3. Reinforcement Learning: learning how to act or behave when given

occasional reward or punishment signal (Try-error-learn approach).
⋆ interest in RL with human feedback (RLHF), used in training models like

ChatGPT
4. Causal Learning:

⋆ beyond correlations to infer cause-effect relationships
⋆ scientific applications, healthcare, and decision-making systems
⋆ subfield of statistical ML, but gaining independence

• Good classic books:
◦ Machine Learning: A Probabilistic Perspective, by Kevin P. Murphy, 2012.
◦ Pattern Recognition and Machine Learning, by Christopher Bishop, 2007.
◦ Information Theory, Inference, and Learning Algorithms by David J.C.

MacKay, 2003.
◦ The Elements of Statistical Learning: Data Mining, Inference, and

Prediction, by Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2009.
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1. Supervised Learning Problems

• Supervised learning problem:
◦ There is a training set of N pairs of inputs and outputs, D = {(xi, yi)}Ni=1.

⋆ x: input/predictors/covariates/features/items
⋆ y: output/target/response variable

◦ The goal is to learn the function that maps input to outputs.
◦ Finally, we will test how the learnt function maps a new input x∗

i ,
comparing the predicted output ŷ∗ with the true output y∗i .

• Depending on the values that can take the output/target/response
variable y∗

i :

◦ Regression problem: predict a numerical quantity y∗
i (usually in R or N)

◦ Classification problem: predict the class of an item (y∗
i can take a set of

finite values)
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2. Unsupervised Learning Problems

• In an unsupervised learning problem, we try to find interesting aspects
(patterns) of the data.

• Some similarities with the classification task, but here we only have
training inputs D = {xi}Ni=1.

• Two approaches:
1. Non-statistical formulation: We try to find clusters of similar items, or to

reduce the dimensionality of the data.

⋆ e.g., clusters of patients with similar symptoms, which we call “diseases”.

2. Statistical/probabilistic formulation: We describe the groups
probabilistically, often using latent (also called hidden) variables.

⋆ it might be related to the non-statistical formulation, since the latent
variables may identify clusters or correspond to low-dimensional
representations of the data.



10/52

Some Challenges for Machine Learning

• Handling complexity: Machine learning applications usually involve many
variables, often related in complex ways. This is called “curse of
dimensionality”.

◦ More variables also provide more information (a blessing, not a curse!)
◦ Tradeoff between realistic modeling and tractable inference.

• Optimization and integration: The two main mathematical blocks of
ML/AI

◦ Most ML methods either involve finding the “best” values for some
parameters (an optimization problem), or averaging over many plausible
values (an integration problem).

⋆ most of integrals have no analytic form
⋆ optimization problems in high dimension or with complicated functions

(non-convex) may take years to be solved.

• Visualization: Understanding what’s happening is hard when there are
many variables and parameters. 2D plots are easy, 3D not too bad, but
1000D?

◦ The Visual Display of Quantitative Information by Edward Tufte - Graphics
Press, 1983. (a modern classic!)

◦ Knowledge Is Beautiful by David McCandless - Harper Design, 2014. (A
great collection of different recent visualizations)
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A Supervised Learning Machine

• Supervised learning encompasses the most frequent problems: regression
and classification

• The most general view of how a “learning machine” operates for a
supervised learning problem:

◦ The N training data xi have associated targets/outputs yi. The test only
have the input x∗ and our goal is to make a prediction for just one test
case ŷ∗.

◦ Ideally, in parametric techniques at the training stage we learn some
parameters β̂, that can be used to predict as many tests cases as we want.

⋆ in the previous regression example β = [β0, ..., βp]
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Supervised Learning

• Goal: Learning a mapping function (explicit or not) from input space x to
output y space, given a labeled set of input-output pairs (noisy data)
D = {(xi, yi)}Ni=1.

◦ Then, use this learned mapping on test input, x∗, to predict test target (or
response), ŷ∗.

• Probabilistic/Bayesian approach. Ideally, we would produce a probability
distribution, p(y|x∗,D), as our prediction.1

◦ Let us suppose that we have p(y|x∗,D), with y ∈ R, we might set ŷ∗ as
⋆ the mean ŷ∗ = Ep(y|x∗,D)[y], which minimizes expected squared error.
⋆ the median, which minimizes expected absolute error.

1We will use p(·) for either probabilities [for classification] or probability densities [for
regression].
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Parametric vs Non-Parametric learning

Does the model have a fixed number of parameters?
(parametric)

or
Does the number of parameters grow with the amount of

training data? (non-parametric)

• Parametric models have the advantage of often being faster to use, but
the disadvantage of making stronger assumptions about the nature of the
data distributions.

• Non-parametric models are more flexible, but often computationally
intractable for large datasets and could overfit if not well designed.
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Parametric Learning Machines

• The parametric learning approach assumes a model between inputs and
outputs, y = f(x;β).

1. The function that maps from x to y is parametrized by a set of parameters
contained in β (which is a priori unknown).

2. We estimate the parameters β̂ with the training data D = {(xi, yi)}Ni=1
(also called training the model or learning the parameters).

3. Then, we use these parameters to make predictions y∗ for the test input x∗.

• This approach saves computation if we make predictions for many test
cases

◦ we estimate the parameters just once, then use them many times.
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Linear regression and least squares (LS): 1D input

• One of the simplest parametric learning methods is linear regression.

• In its most basic version, it assumes a linear dependence between the input
and the output as y = β0 + β1x, (for simplicity x ∈ R).

• Training. The two parameters β0 and β1 are estimated using the set of N
labeled data, D = {xn, yn}Nn=1

◦ The square error (also called cost) on the training cases, D, defined as

Lβ =
1

2

N∑
i=1

(yi − (β0 + β1xi))
2

◦ We call the estimates β̂0 and β̂1, usually obtained via least squares (LS),
i.e., β̂ = [β̂0, β̂1] that minimize Lβ

⋆ Intuitively: β̂ is the value that better explain the data.
⋆ β̂ can be found using matrix operations.

• Test. For a new data point x∗, the output is estimated as

ŷ∗ = β̂0 + β̂1x
∗
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Linear regression and least squares (LS): higher input dimension (cont)
• Generalization with p covariates:

y = βX+ ε

X =


x⊤
1

x⊤
2

...
x⊤
N

 =


1 x11 · · · x1p

1 x21 · · · x2p

...
...

. . .
...

1 xN1 · · · xNp


β ∈ Rp+1 and y = [y1, ..., yN ]⊤,

◦ the LS cost function can be re-written as

Lβ =
1

2

N∑
i=1

(
yi −

(
β0 +

p∑
j=1

βjxij

))2

=
1

2
||Xβ − y||22
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Optimization problem

• We search for a solution to minβ L(β) where L : Rd+1 → R is convex.
β̂ is minimizer if and only if ∇L(β̂) = 0 where ∇L is the gradient of L,
such that

[∇L(β)]j =
∂L(β)
∂βj

(∀j = 0, . . . , p).

• Note that L also reads:

L(β) = 1

2
y⊤y − β⊤X⊤y +

1

2
β⊤X⊤Xβ

• Exercise: compute the gradient and find β equallying to zero
◦ The gradient is ∇L(β) = −X⊤y +X⊤Xβ. Assuming that X has full

column rank, then X⊤X is positive definite, the solution is unique and
reads:

β̂ = (X⊤X)−1X⊤y
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Polynomial regression: extension from 1D to higher input dimension
• Linear regression is limited, since it assumes linear dependence between

inputs in outputs
• Motivating example. We generate N = 50 points generated with x ∈ R

uniform in (0, 1) and its associated outputs with the true model

y = f(x) + ε = sin(1 + x2) + ε, ε ∼ N (0, 0.032).

• Clearly, linear regression is not going to work well
◦ What about a polynomial approximation?

All models are wrong, but some are useful.∗

∗ Box, G. E. P.(1976), Science and Statistics,”Journal of the American Statistical Association, 71, 791-799.
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Polynomial regression: extension from 1D to higher input dimension (cont.)
• Polynomial expansion, using not only x, but also x2, x3,...,xm, as an input
• The model is now y = β⊤x, where x = [1, x, x2, ..., xm]⊤ ∈ Rm+1 and
β = [β0, β1, ..., βm]⊤ ∈ Rm+1.

• Training. Similarly, we need to find β̂ = argminβ Lβ, where

Lβ =
1

2

N∑
i=1

(
yi −

(
β̂0 +

m∑
j=1

β̂jx
j
i

))2

recall that the i-th datum is now real-valued.
◦ Same solution β̂ = (X⊤X)−1X⊤y if we define now

X =


1 x1 x2

1 . . . xm
1

1 x2 x2
2 . . . xm

2

1 x3 x2
3 . . . xm

3

...
...

...
. . .

...
1 xN x2

N . . . xm
N


• Test. For a new data point x∗, the output is estimated as

ŷ∗ = β⊤x∗ = β̂0 +

m∑
j=1

β̂jx
∗m.
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Maximum Likelihood Estimation
• Maximum Likelihood Estimation is in general an alternative to LS
• Up to now, we have not discussed much about ε.

◦ Suppose that ε is Gaussian (normal) with mean zero and some variance σ2,
independent for each datum.

◦ the likelihood function for the parameters β and σ, which is the joint
probability density of all the targets in the training set given β and σ:

L(β, σ) = p(y1, . . . , yN |x1, . . . ,xN , β, σ)

=
N∏
i=1

N
(
yi|βTϕ(xi), σ

2
)

where N
(
y|µ, σ2

)
is the density for y under a normal distribution with

mean µ and variance σ2.
• Instead of doing LS, an alternative is to estimate the unknown parameters
β and σ as those that maximize the likelihood.

• Exercise: Show that the maximixing L(β, σ) is equivalent to minimizing
the squared loss as in LS.

◦ Ignoring terms that do not depend on β or σ, is equivalent to maximizing

logL(β, σ) = −N log(σ)− 1

2σ2

N∑
i=1

(
yi − βTϕ(xi)

)2
,

(log likeliihod), which is equivalent to minimizing

L =
1

2σ2

N∑
i=1

(
yi − βTϕ(xi)

)2



22/52

Maximum Likelihood Estimation
• Maximum Likelihood Estimation is in general an alternative to LS
• Up to now, we have not discussed much about ε.

◦ Suppose that ε is Gaussian (normal) with mean zero and some variance σ2,
independent for each datum.

◦ the likelihood function for the parameters β and σ, which is the joint
probability density of all the targets in the training set given β and σ:

L(β, σ) = p(y1, . . . , yN |x1, . . . ,xN , β, σ)

=
N∏
i=1

N
(
yi|βTϕ(xi), σ

2
)

where N
(
y|µ, σ2

)
is the density for y under a normal distribution with

mean µ and variance σ2.
• Instead of doing LS, an alternative is to estimate the unknown parameters
β and σ as those that maximize the likelihood.

• Exercise: Show that the maximixing L(β, σ) is equivalent to minimizing
the squared loss as in LS.

◦ Ignoring terms that do not depend on β or σ, is equivalent to maximizing

logL(β, σ) = −N log(σ)− 1

2σ2

N∑
i=1

(
yi − βTϕ(xi)

)2
,

(log likeliihod), which is equivalent to minimizing

L =
1

2σ2

N∑
i=1

(
yi − βTϕ(xi)

)2



23/52

Maximum Likelihood Estimation (cont.)

• Regardless of what σ might be, the maximum likelihood estimate of β is
the value that minimizes the sum of squared prediction errors over training
cases ⇒ we go back to LS estimation!

◦ i.e., in the considered model the LS and the maximum likelihood solution is
identical (see two slides ago!):

β̂ =
(
ΦTΦ

)−1
ΦTy

• However in general, for other non-linear non-Gaussian models, both
solutions are different.
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A graphic example of underfiting and overfiting

• Again, polynomial linear regression with increasing order, which can be
viewed as basis function models with ϕj(x) = xj .

• We try m ∈ {2, 4, 6}

• The gray line is the true noise-free function.
• We see that a second-order fit is too simple (underfitting), but a

sixth-order is too complex, producing overfitting.
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Maximum Penalized Likelihood Estimation: fighting overfitting

• Overfitting of maximum likelihood occurs when there are many parameters
(compared to the data)

• Regularization is a procedure that adds a penalty to the log likelihood,
that favors non-extreme values for the parameters.

◦ it allows to incorporate some previous knowledge to the modeling/inference

• Up to now, the cost function (likelihood of data, for instance) was focused
on minimizing errors in the training data

• we now add a penalization term that depends exclusively on the
parameter, R(β), for instance

L(β) = 1

2σ2

N∑
i=1

(
yi − βTϕ(xi)

)2
+

λ

2

m∑
j=1

β2
j

◦ The penalty term is quadratic in the parameter β∗ = [β1, ..., βm]⊤,
R(β) =

∑m
j=1 β

2
j = ||β∗||22 and it is often used because it allows for exact

solution.
◦ In general, we use a penalty that encourages all βj (except β0) to be close

to zero (Occam’s razor principle).
◦ λ controls the strength of the penalty, which we must somehow decide on.
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Solution for quadratically penalized LS

• Recall: we want to minimize

L(β) = 1

2σ2

N∑
i=1

(
yi − βTϕ(xi)

)2
+

λ

2

m∑
j=1

β2
j

• In standard LS, we found the solution by equating the gradient of the
squared error to zero.

• Similarly, we add the gradient of the penalty function as well, and hence
solve

2λβ∗ − 2ΦT (y −Φβ) = 0

where β∗ is equal to β except that β0 is zero.
• Solving this, the penalized least squares estimate of β is

β̂ =
(
λI∗ +ΦTΦ

)−1

Φy

where I∗ is like the identity matrix except that I∗1,1 = 0.

◦ λ = 0 recovers the standard LS.
◦ Note that this estimate will be uniquely defined regardless of how big m

and N are, as long as λ is greater than zero.
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Other penalizations

• The most used and flexible family of penalizations is the Lp-norm given by

L =
1

2σ2

N∑
i=1

(
yi − βTϕ(xi)

)2
+ λ||β∗||qq

where ||β∗||qq =
∑m

j=1 |βj |q, since ||β∗||q =
(∑m

j=1 |βj |q
)1/q

◦ q = 2, ridge regression (quadratic penalization): R(β∗) = 1
2
∥β∗∥22

⋆ solved in previous slide!
◦ q = 1, lasso regression (sparsity/shrinkage): R(β∗) = ∥β∗∥1
◦ q = 0, subset selection (extreme sparsity): R(β∗) = ∥β∗∥0
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Penalty functions
• Contour plots for R =

∑m
j=1 |βj |q

• Solution of the penalized LS problem.
◦ Recall: we want to minimize

L =
1

2σ2

N∑
i=1

(
yi − βTϕ(xi)

)2
+ λ

m∑
j=1

|βj |q

◦ Except in very specific cases, there are no closed form solution.

Left: Ridge regression (p = 2). Right: Lasso regression (p = 1)
[Bishop2006]
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The Lasso Penalty: sparsity

• Lasso penalty (q = 1), i.e., with R =
∑m

j=1 |βj | is widely used.

• It promotes sparsity, some β̂j that are exactly zero, which does not
happen in ridge regression p = 2.

◦ Why? because in ridge, when βj is close to zero, the derivative of β2
j is also

close to zero so the likelihood will dominate (and in general does not favor
βj going exactly to zero).

◦ However, in lasso, when βj is close to zero, the derivative of |βj | is ±1, so
the penalty can drive βj to be exactly zero.

• When is this desirable? e.g., when
◦ you believe that many of the true βj are exactly zero.
◦ you prefer many βj to be exactly zero so the result is easier to interpret.
◦ you want many βj to be exactly zero to save computation time later, or to

save measuring the corresponding xj for new test cases.

• However, if no βj are exactly zero in the true model, lasso will degrade
the predictive performance.
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Using a Set of Validation Cases
• recap of supervised learning:

◦ (train) learn the relationship of targets to inputs from a set of training
cases/data/observations, where both are known

◦ (test) use the learnt parameters to predict the target for some test
case/data, where only the inputs are known

• some parameters have not been learnt, but we decided a priori
◦ the order of the polynomial, p
◦ the value of λ that controls the over/under-fitting

• the goal in validation is trying a set of models, e.g., with some values
p = 2, p = 4 and some choices of λ and then select the best model

◦ this must be done very carefully to (again) not overfit!
• cross-validation Techniques (basic approach)

1. randomly divide the training set into an estimation/training set and a
validation set.

2. try out some variations on the learning method (e.g., p = 2 and p = 4)
3. check the prediction performance in the validation set.
4. use the variation with the best average performance on the validation set to

make the prediction for the test case/data, retraining again with all training
cases (in both estimation and validation sets).

5. (publish the paper!)
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Bias-Variance Tradeoff in Practice

• Relationship in practice between model complexity and training and test
errors

• The training error decreases when we increase the model complexity,
that is, whenever we fit the data harder.

• However with a too complex model, the parameters fit too much to the
training data, and will not generalize well, yielding a large test error.



32/52

Outline

Introduction to machine learning problems

Supervised learning
Regression

Linear regression and extensions
Regularized linear regression
Training, validation, and test

Recap of basic probability
Discrete random variables
Continuous random variables



33/52

Outline

Introduction to machine learning problems

Supervised learning
Regression

Linear regression and extensions
Regularized linear regression
Training, validation, and test

Recap of basic probability
Discrete random variables
Continuous random variables



34/52

Fundamental rules for discrete r.v.’s

Fundamental rules for discrete variables
• Joint probabilities. the probability of the joint event A and B is

p(A,B) = p(A|B)p(B)

◦ The product rule as a chain rule

p (X1:D) = p (X1) p (X2|X1) p (X3|X2, X1) p (X4|X1, X2, X3) . . . p (XD|X1:D−1)

where 1 : D denotes the set {1, ..., D}.
• Marginal distribution of A as

p(A) =
∑
b

p(A,B) =
∑
b

p(A|B = b)p(B = b)

and the marginal distribution of B as

p(B) =
∑
a

p(A,B) =
∑
a

p(B|A = a)p(A = a)
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Fundamental rules for discrete r.v.’s (cont)

• Conditional probability

p(A|B) =
p(A,B)

p(B)
if p(B) > 0

• Bayes rule

p(X = x|Y = y) =
p(Y = y|X = x)p(X = x)

p(Y = y)
(1)

=
p(X = x, Y = y)

p(Y = y)
(2)

=
p(X = x)p(Y = y|X = x)∑

x′ p (X = x′) p(Y = y|X = x′)
(3)

• Independence
X ⊥ Y ⇐⇒ p(X,Y ) = p(X)p(Y )

• Conditional independence

X ⊥ Y |Z ⇐⇒ p(X,Y |Z) = p(X|Z)p(Y |Z)



36/52

Moments of discrete r.v.’s

• Moment.
EX [xk] =

∑
x∈X

xkfX(x)dx

◦ Mean. k = 1.
µX ≜ EX [x] =

∑
x∈X

xfX(x)dx

• Central moment.

EX [(x− µX)k] =
∑
x∈X

(x− µX)kfX(x)dx

◦ Variance. k = 2

σ2
X ≜ EX [(x− µX)2] =

∑
x∈X

(x− µX)2fX(x)dx

Note that the variance can be re-written as

σ2
X = EX [x2]− µ2

X .
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Common discrete distributions: Bernoulli

• Support: X ∈ X = {0, 1}
• pdf:

PX(x) = Ber(x; p) =

{
p if x = 1,

1− p if x = 0.

• Mean: µX = p

• Variance: σ2
X = p(1− p)

• Example: Flipping a coin once with probability p of observing ’face’.
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## Common discrete distributions: Binomial

• Support: X ∈ X = {0, 1, ..., n}
• pdf:

PX(x) = B(x;n, p) =

(
n

x

)
px(1− p)n−x, x = 0, 1, ..., n.

• Mean: µX = np

• Variance: σ2
X = np(1− p)

• Example: Flipping a coin n times and counting the times that we observe
’face’.
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## Common discrete distributions: Poisson

• Support: X ∈ X = {0, 1, ...}
• pdf:

PX(x) = Poi(x;λ) = e−λ λ
x

x!
• Mean: µX = λ

• Variance: σ2
X = λ

• Examples:
◦ The number of calls received in a support center within the next hour.
◦ The number of patients that will go to the emergency room in the next day.
◦ The number of photons hitting a detector within 1µs.
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## Common discrete distributions: categorical

• Support: X ∈ X = {1, ...,K}
• pdf:

PX(x) = Cat(x; {w̄x}Kx=1) = w̄x,

where
∑K

k=1 w̄k = 1.
• Example: Rolling a K-faces die with probability w̄x for each side.
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## Common discrete distributions: generic empirical distribution ∗

It is in between continuous and discrete.
• Support: X ∈ X = {x1, ..., xN}
• pdf:

PX(x) =
1

N

N∑
n=1

δxn(x),

where

δxn(x) =

{
1 if x = xn

0 otherwise.

Instead of equal weighting, one can assign a different weight w̄n as

PX(x) =
N∑

n=1

w̄nδxn(x),

where
∑K

k=1 w̄k = 1.
• Mean: µX =

∑N
n=1 w̄nxn

• Variance: σ2
X =

∑N
n=1 w̄n(xn − µX)2

• Example: When we observe a set of N data that can take values in R. All
discrete r.v.’s can be expressed in this way.

• Simulation: Categorical sampling j ∼ Mult(j; {w̄n}Nn=1), and x = xj .



42/52

Outline

Introduction to machine learning problems

Supervised learning
Regression

Linear regression and extensions
Regularized linear regression
Training, validation, and test

Recap of basic probability
Discrete random variables
Continuous random variables



43/52

Fundamental rules for continuous r.v.’s

Let us suppose that X ∈ R can take values in X = (−∞,∞)

• Cumulative density function (cdf).

FX(x) ≜ Pr(X ≤ x).

Then, one can compute the probability of X being in the interval (a, b) as

Pr (X ∈ (a, b)) = F (b)− F (a).

• Probability density function (pdf). We define it as fX(x) = d
dx

FX(x).
Then,

Pr (X ∈ (a, b)) =

∫ b

a

fX(x)dx.
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Moments of continuous r.v.’s

• Moment.
EX [xk] =

∫
xkfX(x)dx

◦ Mean. k = 1.
µX ≜ EX [x] =

∫
xfX(x)dx

• Central moment.

EX [(x− µX)k] =

∫
(x− µX)kfX(x)dx

◦ Variance. k = 2

σ2
X ≜ EX [(x− µX)2] =

∫
(x− µX)2fX(x)dx

Note that the variance can be re-written as

σ2
X = EX [x2]− µ2

X .
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Common continuous distributions: Uniform

U ∼ U(a, b): U is a r.v. uniformly distributed between a and b.
• Support: U ∈ X = {0, 1}
• pdf:

fU (u) = U(u; a, b) =

{
1

b−a
if a ≤ u ≤ b

0 otherwise.

• Mean: µU = (a+b)
2

• Variance: σ2
U = (b−a)2

12

• Example: Waiting time for the next metro when you arrive to the station.
• Very often, we use b = 1 and a = 0, which constitutes the standard

uniform distribution U ∼ U(0, 1), with

fU (u) = U(u; 0, 1) =

{
1 if 0 ≤ u ≤ 1

0 otherwise.
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Common continuous distributions: Gaussian or Normal

One of the most important distributions. Often used when the true distribution
is unknown.

• Support: X ∈ X = R
• pdf:

fX(x) = N (x;µ, σ2) =
1√
2πσ2

e
− (x−µ)2

2σ2

• Mean: µX = µ

• Variance: σ2
X = σ2

• Example: It appears very often in most of sciences. The Central Limit
Theorem (CLT) is responsible of it.



47/52

## Common continuous distributions: Gaussian or Normal (cont)

Central Limit Theorem (CLT). Let us consider a set of n r.v.’s {X1, ..., Xn}
independent and identically distributed (i.i.d.) of unknown distribution but
known mean µ and variance σ2. Suppose that we do the sample average

Sn =
X1 + ...+Xn

n
.

Then, when n → ∞ √
n (Sn − µ)

d→ N
(
0, σ2)

or equivalently

Sn
d→ N

(
µ,

σ2

n

)
.
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## Common continuous distributions: Student-t

• Support: X ∈ X = R
• pdf:

fX(x; ν) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 + x2

ν

)− ν+1
2

• Mean: µX = 0

• Variance: σ2
X =


ν

ν−2
if ν > 2

∞ if 1 < ν ≤ 2

undefined otherwise.
• Example: Similar application than Gaussian distribution but when rare

events occur more often (heavier tails).
• There is a version with two extra parameters µ and σ2 that allows for the

modification of the mean and variance without changing the tails (shaped
by ν).
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## Common continuous distributions: Exponential

• Support: X ∈ X = R+

• pdf:
f(x;λ) = λe−λx

• Mean: µX = 1
λ

• Variance: σ2
X = 1

λ2

• Example: Time until the next received phone call. Time until time until
radioactive particle decays.
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## Common continuous distributions: Laplace

Also called double-exponential
• Support: X ∈ X = R
• pdf:

f(x;µ, b) =
1

2b
exp

(
−|x− µ|

b

)
• Mean: µX = µ

• Variance: σ2
X = 2b2

• Examples:
◦ Related to a difference between exponentially distributed r.v.’s.
◦ It appears in the Brownian motion.
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## Common continuous distributions: Gamma

• Support: X ∈ X = R+.
• pdf:

fX(x; k, θ) = Gamma(x; k, θ) =
1

Γ(k)θk
xk−1e−

x
θ

where Γ(z) =
∫∞
0

xz−1e−xdx is the gamma function. If n ∈ N+,
Γ(n) = (n− 1)!

• Mean: µX = kθ

• Variance: σ2
X = kθ2

• Examples: Waiting time, phone call duration, time until death.
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## Common continuous distributions: Beta

• Support: X ∈ X = [0, 1]

• pdf:

fX(x;α, β) = Beta(x;α, β) =
xα−1(1− x)β−1

B(α, β)

where B(α, β) = Γ(α)Γ(β)
Γ(α+β)

.
• Mean: µX = α

α+β

• Variance: σ2
X = αβ

(α+β)2(α+β+1)

• Example: Belief about the probability of a Bernoulli distribution.
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