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Multiple Importance Sampling for Efficient
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Abstract—Digital constellations formed by hexagonal or other
non-square two-dimensional lattices are often used in advanced
digital communication systems. The integrals required to evaluate
the symbol error rate (SER) of these constellations in the presence
of Gaussian noise are in general difficult to compute in closed-
form, and therefore Monte Carlo simulation is typically used
to estimate the SER. However, naive Monte Carlo simulation
can be very inefficient and requires very long simulation runs,
especially at high signal-to-noise ratios. In this letter, we adapt
a recently proposed multiple importance sampling (MIS) tech-
nique, called ALOE (for “At Least One rare Event”), to this
problem. Conditioned to a transmitted symbol, an error (or rare
event) occurs when the observation falls in a union of half-
spaces or, equivalently, outside a given polytope. The proposal
distribution for ALOE samples the system conditionally on an
error taking place, which makes it more efficient than other
importance sampling techniques. ALOE provides unbiased SER
estimates with simulation times orders of magnitude shorter than
conventional Monte Carlo.

Index Terms—Improper constellations, lattices, Monte Carlo,
multiple importance sampling, symbol error rate.

I. INTRODUCTION

In several communication systems the transmitted signal
belongs to a non-square 2D lattice. For instance, hexagonal
constellations are the densest packing of regularly spaced
points in 2D and, as the number of constellation points grows
to infinity, they also minimize the probability of error in Gaus-
sian noise under an average power constraint being therefore
optimal [1]. Other examples of constellations that provide non-
rectangular decision boundaries are the θ quadrature amplitude
modulation (QAM) family [2], and the recently proposed
family of improper constellations in [3].

When these constellations are used, maximum likelihood
decoding amounts to finding the closest lattice point to a
given noisy observation, x, which is known to be NP-hard for
generic channels [4], [5] meaning that the problem complexity
is exponential on the dimension of the lattice [6]. Further, to
evaluate the symbol error rate probability conditioned to a
given constellation point we need to compute the probability
that the observation x lies outside a polytope defining the
corresponding Voronoi region. The resulting integrals are in
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general difficult to compute in closed form for arbitrary
decision regions, and typically one resorts to standard Monte
Carlo simulations for performance evaluation, which can be
very time consuming especially when the number of symbols
of the constellation is large and the targeted symbol error rate
(SER) is below 10−6.

As an alternative to naive Monte Carlo, importance sam-
pling (IS) has been used as a method for variance reduction
in SER or BER simulations in a wide range of scenarios
since the late seventies [7]–[10] (for a review we refer the
reader to [11]). Despite this, many digital communication
researchers are still unaware of the potential benefits of IS
techniques to characterize the statistical performance of digital
communication systems.

The basic IS methodology samples from a proposal distri-
bution that increases the number of errors during simulation,
and then weights the samples by the ratios of the target
to the proposal densities [12]. However, designing a good
proposal with high density in regions where samples should be
drawn might not be easy, and typically is problem dependent.
For instance, a biased channel distribution is proposed in
[13] for the simulation of orthogonal space-time block codes
(OSTBCs) on Nakagami channels. Other recent work is [14],
where IS is used for the estimation of the outage probability of
multi-antenna receivers with generalized selection combining.
A general approach is using multiple importance sampling
(MIS), where several proposals are used for simulating the
samples [15]–[18].

In this letter, we apply a recently proposed multiple impor-
tance sampling technique called ALOE (“At Least One rare
Event”) [19] to estimate the SER in additive white Gaussian
noise (AWGN) channels.

The conditional symbol error probability is the integral of a
Gaussian outside a polytope formed by the intersection of K
hyperplanes; or, in other words, the integral over the union of
the half-spaces formed by these hyperplanes. ALOE estimates
this integral by taking samples from a mixture of K truncated
Gaussians where errors take place. The method can be easily
extended to arbitrary 2D constellations and provides unbiased
SER estimated with bounded variance.

II. EFFICIENT SER ESTIMATION

A. Problem statement

Our motivating problem is the efficient SER estimation of
digital constellations like the one depicted in Fig. 1a. Assume
that symbol sm, marked with a star in Fig. 1b, is transmitted.
The observation x = sm+n is the symbol perturbed by additive
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Fig. 1: a) 2D lattice for an improper constellation with M = 64
and κ = 0.8. The decision regions are also depicted, and b)
Zoom of the decision region for a given transmitted symbol
sm = 0.1343 + 0.2136j.

Gaussian noise. The conditional probability of error is the
integral of a Gaussian distribution centered at sm outside the
shaded decision region in Fig. 1b: pm ≜ P (e∣sm) = P(x ∉
Rm∣sm), and, assuming that all symbols are transmitted with
equal probability, the symbol error probability is

Pe =
1

M

M

∑
m=1

pm. (1)

Our goal is to develop an efficient multiple important
sampling (MIS) scheme to estimate pm, m = 1, . . . ,M in (1).

For notational simplicity let us denote the transmitted sym-
bols as s, and let R be its associated Voronoi region, which
is a polytope defined by the intersection of finitely many
hyperplanes in R2. The probability of interest can be then
expressed as

p = ∫
R2

IR(x)π̃(x)dx (2)

where π̃(x) ≜ N (s, σ2I) is the Gaussian distribution of the
observation, and IR(x) is the indicator function taking value

1 for all x ∉ R, i.e., out of the shaded decision region in
Fig. 1b. The integral in Eq. (2) is intractable in the general
case where R is an arbitrary polytope. However, for some
constellations such as QAM modulations, the integral can of
course be obtained in a closed-form, and there is no need to
resort to any simulation procedure.

A naive Monte Carlo estimator of p simulates N samples
from π̃(x) and approximates (2) as

p̂ (MC) = 1

N

N

∑
n=1

IR(xn), (3)

i.e., it simulates from the observation distribution and counts
the rate of observations that are out of R. This estimator
is unbiased, but its efficiency decays dramatically when p is
small.

B. Importance Sampling

Importance sampling (IS) is a more advanced Monte Carlo
methodology, used when sampling from π̃(x) is either not
possible or not efficient. The N samples are simulated instead
from a so-called proposal distribution, q(x), and the estimator
of p is built as

p̂ (IS) = 1

N

N

∑
n=1

wnIR(xn), xn ∼ q(x), n = 1, ...,N,

(4)
where wn = π̃(xn)

q(xn) is the importance weight. Note that p̂ (IS)

is an unbiased and consistent estimator of p.
The variance of the estimator p̂ (IS) in Eq. (4) is given by

Varq(p̂ (IS)) = 1

N
∫

IR(x)π̃2(x)
q(x) dx − p

2

N
. (5)

It can be shown that the optimal proposal, q∗, that minimizes
the variance is q∗(x) ∝ IR(x) ⋅ π̃(x). Intuitively, the per-
formance is poor when the targeted integrand IR(x) ⋅ π̃(x)
and the distribution that generates the samples have a large
mismatch. In our problem, the performance is very bad when
we find few or no errors for the simulated observation. This
explains the very poor performance of the naive Monte Carlo
p̂ (MC), whose variance can be obtained as a particular case of
(5) as

Varπ̃(p̂ (MC)) = 1

N
(p − p2) , (6)

with a relative root mean square error (RRMSE) of

RRMSE(p̂ (MC)) =
√

Var(p̂ (MC))
p

(7)

= 1√
N

√
p − p2
p

(8)

= 1√
N

√
1

p
− 1. (9)

Note that N needs to be inversely proportional to the true
value p in order to provide a reliable estimate, which explains
why N must be huge for high signal-to-noise ratio (SNR).
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C. Multiple Importance Sampling

In the case of IS, it is difficult to find a good unique
proposal with a low mismatch w.r.t. the multimodal product
IR(x) ⋅π̃(x). Multiple importance sampling (MIS) is a natural
extension of IS in this setup, allowing for the simulation from
a set of K proposals, {qk(x)}Kk=1, instead of just one [17].
However, the extension from one to several proposals is not
straightforward and many sampling and weighting schemes
can be devised (see [20] for a review). A conventional way to
proceed is to simulate from the mixture proposal as

xn ∼ qα =
K

∑
k=1

αkqk(x), n = 1, ...,N, (10)

where α = [α1, ..., αK] is a simplex vector with all non-
negative weights in the mixture such that ∑Kk=1 αk = 1. The
MIS extension of Eq. (4) is

p̂ (MIS) = 1

N

N

∑
n=1

IR(xn)π̃(xn)
qα(xn)

. (11)

We recall that we aim at integrating π̃(x) in region R.
This region can be described as the union of all half-spaces
in R2 generated by the K hyperplanes that define the border
of R (e.g, K = 6 for the symbol in Fig. 1b). More precisely,

R =
K

⋃
k=1
Sk, where Sk = {x ∈ R2 ∣xTγk ≥ βk} is the half-space

defined by the k-th hyperplane, which is parametrized by γk
and βk.

We follow the choice of proposals in [19]. First, the number
of proposals, K, is equal to the number of hyperplanes, being
each proposal a truncated version of the target distribution (a
Gaussian centered at the received symbol) beyond each hyper-
plane, i.e., qk(x) =

ISk(x)π̃(x)
Pk

, where Pk = ∫ ISk(x)π̃(x)dx is
the integral of the target distribution beyond the hyperplane
(the procedure for the efficient simulation from a generic
truncated Gaussian distribution is described in Appendices A
and B). For reasons that will become apparent shortly, it is
useful to define p = ∑Kk=1 Pk, which is an upper union bound
of p.1 Then, Eq. (11) yields

p̂ (MIS) = 1

N

N

∑
n=1

IR(xn)π̃(xn)
qα(xn)

(12)

= 1

N

N

∑
n=1

IR(xn)
∑Kk=1 αkISk

(xn)P −1
k

. (13)

The weight of each proposal in the mixture defined in Eq. (10)
is chosen as αk = Pk/p̄, for k = 1, ...,K. Then, Eq. (13) yields

= p

N

N

∑
n=1

IR(xn)
∑Kk=1 ISk

(xn)
(14)

= p

N

N

∑
n=1

1

C(xn)
, (15)

where C(xn) = ∑Kk=1 ISk
(xn) is the number of half-spaces

Sk where xn is present. Note that we have used IR(xn) = 1,
since all samples are generated in R. Fig. 2 shows samples
generated from the proposal corresponding to the symbol sm =

1Note that the bound becomes an equality when Si ∩Sj = ∅, for all i ≠ j.

0.1343+0.2136j in the constellation of Fig. 1a. Note that there
are K = 6 proposals in the mixture, and the samples of each
proposal are represented by a different color.

D. Theoretical guarantees of the MIS estimator

The variance of the estimator (15) can be bounded by [19]

Var(p̂ (MIS)) ≤ p(p − p)
N

. (16)

First, note that when the upper union bound p̄ gets closer
to the true value p, the variance of the MIS estimator goes
to zero. This is of special interest in our application since
the performance of the raw Monte Carlo estimate deteriorates
for high SNRs (i.e., when p is small). Conversely, the MIS
estimator gets better for high SNR since the upper bound p̄
becomes tighter. The reason is that most errors fall very close
to the separating hyperplane, and hence in just only one region
Sk (i.e., C(xn) = 1 for all xn). Note that in the limit, when
all C(xn) = 1, the estimator (15) is always p.

Let us compare the variance bound of the MIS estimator
and the closed-form variance of raw Monte Carlo. We look
for values of p where

p(p − p)
N

≤ 1

N
(p − p2) , (17)

which turns to be p ≤ 1. Note that for moderate SNRs, the
upper bound p is smaller than 1. Only for very low SNRs,
p ≥ 1, which is not a problem since (a) we are comparing
the MIS upper bound (not the variance itself), and (b) the low
SNR scenario is not challenging and both MIS and raw Monte
Carlo estimators are very accurate with a few samples.

Eq. (16) gives us an upper bound for the variance of the
conditional probability of error of an arbitrary symbol of the
constellation that we denoted for simplicity as s. To estimate
the symbol error probability in Eq. (1) we run M independent
ALOEs, then, the variance of the Pe estimator can be bounded
as

Var(P̂ (MIS)
e ) ≤ 1

M2N

M

∑
m=1

pm(pm − pm). (18)

Note that several symbols in Fig. 1a have identical Voronoi
regions, which can be exploited to avoid approximating all
corresponding error probabilities. Moreover, one can allocate
different number of samples, Nm, for the approximation of
the error probability associated to each of the M symbols.
However, this fine tuning goes beyond the scope of this paper.

III. SIMULATION RESULTS

In this section we estimate the SER of arbitrary 2D dig-
ital constellations with the proposed MIS technique. As an
example, we consider the family of improper constellations
proposed in [3], whose two-dimensional signal points belong
to a non-square lattice. Improper signals, which are correlated
with their complex conjugate, have proven beneficial in several
interference-limited wireless networks such as the interference
channel [21]–[23], Z-interference channel [24], underlay cog-
nitive radio networks [25], [26], and relay channels [27].
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Fig. 2: The red asterisk represents the symbol sm = 0.1343 +
0.2136j. The blue solid lines represent the K = 6 hyperplanes
that define the half-spaces, whose union describes R. The
points represent the samples simulated from the mixture
proposal qα (each component in a different color).

In all these scenarios, we wish to transmit a digital com-
munications signal with a given circularity coefficient, which
is the parameter that determines the degree of impropriety of
the signal. The circularity coefficient of a zero-mean complex
random variable X , is defined as [28]

κ =
∣E[X2]∣
E[∣X ∣2] , 0 ≤ κ ≤ 1 (19)

We consider a constellation with M = 64 symbols and circu-
larity coefficient κ = 0.8, whose signal points are shown in Fig.
1a. We estimate the SER curve using ALOE and conventional
Monte Carlo transmitting only N = 1280 symbols at each
Eb/N0 value, i.e., each estimator uses N = 1280 samples (we
transmit 20 times each of the M = 64 symbols). Moreover,
we also compare with a standard IS algorithm with a unique
Gaussian proposal centered at each symbol s, and variance
α2σ2I, with α > 1, i.e., the proposal is overdispersed w.r.t. the
target π̃(x), since IR(x)π̃(x) is clearly more dispersed than
π̃(x) (see the discussion about the optimal proposal in [29],
[30] and the use of overdispersed IS proposals in [31]). We
try a grid of values of α ∈ {1,1.5,2, ...,5}, and we select the
case with the smallest RRMSE. The experiment is repeated
200 times and the RRMSEs defined in (9) are depicted in Fig.
3. For high Eb/N0 values, ALOE provides four to five orders
of magnitude improvement over the usual naive Monte Carlo.

IV. CONCLUSIONS

A multiple importance sampling technique called ALOE is
used in this paper to estimate the symbol error rate probability
of 2D constellations designed over arbitrary lattices. ALOE is
extremely efficient to estimate the integral of a Gaussian in a
region defined by a union of half-spaces, which is precisely the
error event in a digital communications system. At high signal-
to-noise ratios, ALOE provides orders of magnitude speedup
with respect to conventional Monte Carlo simulation. As
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Fig. 3: Relative error variance of SER curves estimated with
ALOE, Raw-MC, and a standard IS algorithm.

future work, we plan to extend the proposed SER estimation
technique to other noise distributions, to higher dimensional
lattices originated by multi-antenna systems, as well as to
fading channels. constellations with enhanced features.

ACKNOWLEDGMENTS

The authors want thank Art B. Owen for his insightful
comments.

APPENDIX

A. Simulation from a truncated Gaussian N (0, I)
The proposals in the MIS implementation are truncated

Gaussian distributions. Let us first describe the simulation
of a truncated Gaussian N (0, I) in the half-space described
by xTω ≥ τ , which first proceeds by simulating the sample
x from the complementary half-space (i.e., xTω < τ ), and
then delivering the −x for numerical stability. The algorithm
described in [19] proceeds as follows:

1) Simulate z ∼ N (0, I)
2) Simulate u ∼ U(0,1)
3) Let y = Φ−1(uΦ(−τ)), where Φ(τ) denotes the cumula-

tive distribution function for the standard Gaussian
4) Let x = ωy + (I −ωωT )z
5) Output x = −x

B. Extension to a generic truncated Gaussian N (µ,Σ)
When the target distribution is a generic truncated Gaussian
N (µ,Σ) that must be integrated over the union of the half-
spaces described by the hyperplanes {γk, βk}Kk=1, one can
transform the problem as follows. First, we describe K half-
spaces with the hyperplanes ωTk x ≥ τk, where

ωk =
γTk Σ1/2
√
γTk Σγk

, and τk =
βk − γTk µ√
γTk Σγk

, (20)

for k = 1, ...,K. Then, a Gaussian N (0, I) is integrated over
the union of those half-spaces as described in previous section.
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