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Importance Gaussian Quadrature
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Abstract—Importance sampling (IS) and numerical integration
methods are usually employed for approximating moments of
complicated target distributions. In its basic procedure, the IS
methodology randomly draws samples from a proposal distribu-
tion and weights them accordingly, accounting for the mismatch
between the target and proposal. In this work, we present a
general framework of numerical integration techniques inspired
by the IS methodology. The framework can also be seen as an
incorporation of deterministic rules into IS methods, reducing
the error of the estimators by several orders of magnitude in
several problems of interest. The proposed approach extends
the range of applicability of the Gaussian quadrature rules. For
instance, the IS perspective allows us to use Gauss-Hermite rules
in problems where the integrand is not involving a Gaussian
distribution, and even more, when the integrand can only be
evaluated up to a normalizing constant, as it is usually the
case in Bayesian inference. The novel perspective makes use of
recent advances on the multiple IS (MIS) and adaptive (AIS)
literatures, and incorporates it to a wider numerical integration
framework that combines several numerical integration rules that
can be iteratively adapted. We analyze the convergence of the
algorithms and provide some representative examples showing the
superiority of the proposed approach in terms of performance.

Keywords—Importance sampling, quadrature rules, numerical
integration, Bayesian inference.

I. INTRODUCTION

The number of applications where it is required to approx-
imate intractable integrals is countless. There is a plethora of
approximate methods in the wide of literature in engineering,
statistics, and mathematics. These methods are often divided
into two main families: the numerical integration (determinis-
tic) methods and the Monte Carlo (random) methods.

Gaussian quadrature is a family of numerical integration
methods based on a deterministic (and optimal, in some sense)
choice of weighted points (or nodes) [1].1 The approximation
is then constructed through a weighted linear combination
(according to the weights) of a nonlinear transformation
of the points. This non-linearity, as well as the choice of
the nodes and weights, depend on the specific integral to
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1The term numerical integration is often considered synonym of numerical
quadrature, or simply quadrature. Some authors prefer to use the term
quadrature for one-dimensional integrands, using the term cubature for higher
dimensions [2]. For the sake of brevity, in this paper we will use the term
quadrature indistinctly regardless of the dimension.

solve. The nodes are deterministically chosen in order to
minimize the error in the approximation, which explains the
high performance when they can be applied. Thus, when
their application is possible, the corresponding algorithms
have become benchmark techniques in their fields. As an
example in signal processing, Gauss-Hermite rules have been
successfully applied in a variety of applications of stochastic
filtering, often with remarkable performance [3]. Particularly,
the Quadrature Kalman filter (QKF) [4], [5] and its variants
for high-dimensional systems [6], [7] showed improved per-
formance over simulation-based methods when the Gaussian
assumption on noise statistics holds. QKF falls in the category
of sigma-point Kalman filters, where other variants can be
found depending on the deterministic rule used to select and
weight the nodes. For instance, one encounters also the popular
Unscented Kalman filter (UKF) [8] or the Cubature Kalman
filter (CKF) [9], both requiring less computational complexity
than QKF while degrading its performance in the presence of
high nonlinearities [10]. Moreover, quadrature methods have
also been applied in the static framework in a multitude of
applications in physics, econometric, and statistics at large
[11], [12], [13]. However, the application of these method-
ologies is generally limited to Gaussian noise perturbations in
the assumed probabilistic model [14].

The second family is constituted by the Monte Carlo
algorithms, where the nodes are generated randomly (i.e.,
they are samples) [15], [16]. Arguably, the two main Monte
Carlo subfamilies are Markov chain Monte Carlo (MCMC)
and importance sampling (IS), and both of them are often
used to approximate integrals that involved a specific target
distribution. In the former, a Markov chain is constructed
in a way that its stationary distribution exists and coincides
with the target distribution after a burn-in period. IS simulates
samples from a simpler proposal distribution and weights them
properly to perform integral approximations. IS provides valid
estimators without requiring a burn-in period while enjoys
of solid theoretical guarantees such as consistency of the
estimators and explicit convergence rates, [17], [18]. Due
to their advantages and limitations, in the literature several
authors have proposed novel schemes attempting to merge the
benefits of both previous families, e.g., including deterministic
procedures within the Monte Carlo techniques. This is the case
of quasi Monte Carlo methods [19] and variance reduction
methods [17, Chapter 8].
Contributions. In this work, we propose a theoretically-
grounded framework based on quadrature rules. The IS-based
interpretation allow us to propose novel quadrature methods,
and pave the way to more sophisticated adaptive mecha-
nisms in very generic settings. We develop the framework
by explicitly using the Gauss-Hermite rule (i.e., for Gaussian
distributions), but our perspective can be applied to a much
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wider class of quadrature rules for integration in a variety of
sets. The basic method on which we develop the framework
is referred to as importance Gauss-Hermite (IGH) method.
We propose a novel estimator, inspired by the self-normalized
IS estimator, that can be used when the target distribution
can be evaluated only up to a normalizing constant. IGH
extends the applicability of the Gauss-Hermite rules to a more
generic class of integrals which involve other non-Gaussian
distributions. This is done by the introduction of the so-called
proposal density, which is Gaussian in the case of IGH, in a
similar manner to the proposal in IS. We also provide error
bounds for the approximations of the integrals in IGH, a
related discussion regarding the optimal choice of the proposal
function, and a through discussion about the computational
complexity. Once the IS perspective is introduced, other more
sophisticated schemes can be employed, including the use of
several proposal pdfs, as in multiple IS (MIS) [20], or the
adaptation of the proposals as in adaptive IS (AIS) [18]. Recent
works have deeply studied the MIS framework, showing for
instance that many weighing schemes are possible when more
than one proposal are available [20], [21]. We propose two
novel IGH-based schemes with multiple proposals and discuss
their performance both from a theoretical point of view and
via numerical simulations. Next, we provide some guidelines
for the selection and the adaptation of the proposals in IGH. In
particular, we propose two novel simple and high-performance
adaptive IGH algorithms that are theoretically justified. Due to
our re-interpretation of quadrature rules from a statistical point
of view, we propose statistically inspired mechanisms to adjust
the complexity, and a novel metric (named ESS-IGH) for self-
assessing the new importance quadrature methodology.
Connections to the literature. In [22], the change of measure
is proposed in the context of Gauss-Hermite quadrature, using
a single Gaussian distribution. This introduced measure, that
here we call proposal under our statistical perspective, is set
to the Laplace approximation. The paper considers a unimodal
integrand and assumes the maximum to be known. The relation
of this simple change of measure with importance sampling
is only mentioned in [23], although the methodology is not
developed. The change of measure is also compared with
the Laplace approximation [24] (see also [25] for a recent
application). In a recent paper [26], the authors apply a
change of measure in a more restricted setup (similarly to
[22]), in order to approximate the marginal likelihood with
quadrature rules in the context of Gaussian processes. In
summary, the methodological power of this change of measure,
has not been sufficiently explored in the literature, neither the
statistical interpretation of quadrature rules. For instance, the
weighted nodes in quadrature methods bear interesting paral-
lelism with importance sampling. A better understanding of
these connection will allow in the future for further significant
methodological advances.
Structure of the paper. The rest of the paper is organized
as follows. In Section II we present the problems and briefly
discuss importance sampling and numerical integration meth-
ods. In Section III, we introduce the importance quadrature
framework, particularizing for the case of Gauss-Hermite
rules, and introducing the basic IGH method. We discuss

the theoretical properties, the choice of the proposal, the
computational complexity, and we provide two toy examples
and a final discussion where we propose a method for sparse-
grids in higher dimensions, and a metric to self-assessed impor-
tance quadrature methods. Section IV generalizes the IGH for
multiple proposals, and we propose two quadrature methods
based on two different interpretations coming from the MIS
literature. We also discuss the theoretical properties of the
methods. Section V introduces and adaptive version of IGH,
and a discussion about further extensions of the framework.
In Section VI we present three numerical examples: 1) a
challenging multimodal target; 2) a signal processing example
for inferring the parameters of an exoplanetary system; and 3)
a Bayesian machine learning problem for estimating hyperpa-
rameters in a Gaussian process (GP). Finally, we conclude the
paper with some remarks in Section VII.

II. PROBLEM STATEMENT AND BACKGROUND

Let us first define a r.v. X ∈ D ⊆ Rdx with a probability
density function (pdf) π̃(x). In many applications, the interest
lies in computing integrals of the form

I =

∫
D
f(x)π̃(x)dx, (1)

where f can be any integrable function of x with respect to
π̃(x). Unfortunately, in many practical scenarios, we cannot
obtain an analytical solution for Eq. (1) and approximated
methods need to be used instead. An illustrative example is
the case of Bayesian inference, where the observed data as
y ∈ Rdy parametrize the posterior pdf of the unknown vector
x ∈ Rdx which is defined as

π̃(x|y) =
`(y|x)p0(x)

Z(y)
∝ π(x|y) = `(y|x)p0(x), (2)

where `(y|x) is the likelihood function, p0(x) is the prior
pdf, and Z(y) is the normalization factor. This example is
even more complicated, since Z(y) is also unknown, and then
π̃(x|y) can be evaluated only up to a normalizing constant.
From now on, we remove the dependence on y to simplify
the notation.

In the following, we review the basics of importance
sampling (IS) and deterministic numerical integration with
Gaussian distributions.

A. Importance sampling (IS)
The basic implementation of IS can be readily understood

by first rewriting Eq. (1) as

I =

∫
D
f(x)π̃(x)dx

=

∫
D

f(x)π̃(x)

q(x)
q(x)dx, (3)

where q(x) is the so-called proposal pdf with non-zero value
for all x where the integrand is non-zero. The integral in Eq.
(3) can be approximated via IS by first simulating a set of
N samples {xn}Nn=1 from a proposal pdf, q(x), with heavier
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tails than |f(x)|π(x). Then, each sample is associated an
importance weight given by

wn =
π(xn)

q(xn)
, n = 1, . . . , N. (4)

Finally, an unbiased and consistent estimator (with increasing
N ) can be built as

ÎUIS =
1

NZ

N∑
n=1

wnf(xn), (5)

which is often denoted as the unnormalized importance sam-
pling (UIS) estimator. In many applications, Z is unknown
and the UIS cannot be directly applied. Instead, using the
same samples and weights, the integral in Eq. (1) can be
approximated with the self-normalized IS (SNIS) estimator as

ĨSNIS =

N∑
n=1

w̄nf(xn), (6)

where w̄i = wi∑N
j=1 wj

are the normalized weights. Note that
the SNIS estimator can be obtained by plugging the unbiased
estimate Ẑ = 1

N

∑N
j=1 wj instead of Z in Eq. (5) [15].

The variance of UIS and SNIS estimators is related to the
discrepancy between π(x)|f(x)| and q(x), and hence adap-
tive schemes are usually implemented in order to iteratively
improve the efficiency of the method [18].

B. Numerical Integration based on Gaussian quadrature
A vast literature in the numerical integration is available,

and the specific rules and their justification go beyond the
scope of this paper (see for instance in [1] a review of
simple quadrature rules). Here we focus in Gaussian quadrature
methods, where a set of weighted nodes are carefully chosen.
Common Gaussian quadrature rules are the Gauss-Legendre
quadrature for integrals in the bounded domain [−1, 1] and
the Gauss-Hermite (GH) quadrature for integrals involving
Gaussian distributions. Moreover, other variants are available,
including the Gauss-Kronrod quadrature and Gauss-Patterson
quadrature. In multidimensional integration, many other rules
exist as well, especially with the aim of avoiding an expo-
nential growth of the number of points with the dimension
(sparse quadrature rules) [17, Chapter 8]. Some of the most
popular approach are the so-called product rule cubature,
constructed by directly extending a quadrature rule [27], or
the Smolyak cubature, which is known to be more efficient
in the selection of points by exploiting sparsity [28]. The
use of sparse grids in multi-dimensional examples allows for
computationally efficient integration techniques [29]. For some
further details, see Appendix E and Table III. In this work, for
simplicity, we focus on the GH rule. However, all the schemes
and concepts presented in this work can be easily extended to
other Gaussian quadrature rules. Since we mainly focus on the
GH rule, now we review methods that approximate integrals
over Gaussian distributions. Let us consider the integral of the
form

I =

∫
D
h(x)N (x;µ,Σ)dx , (7)

where N (x;µ,Σ) represents a Gaussian pdf with mean µ
and covariance Σ, and h is a (possibly non-linear) function
of the unknown variable x. This integral, which computes
a specific moment of a Gaussian distribution I = E[h(x)],
can be efficiently computed leveraging the aforementioned
deterministic rules.

Those deterministic methods approximate the integrals with
a set of weighted samples/points. We refer the interested
reader to [30], [31]. More specifically, the set of deterministic
samples and weights are defined as S = {xn, vn}Nn=1. Here we
focus on the Gauss-Hermite quadrature rules without loss of
generality with the aim of being specific, although we point out
that the choice of points and weights in S for approximating
the integral in Eq. (1) is not unique. The resulting Gauss-
Hermite estimator of the integral is given by

I ≈ ÎGH =

N∑
n=1

vnh(xn). (8)

In GH quadrature, the points xn are roots of the Hermite
polynomial, and the weights vn are also function of such
polynomial (see the last row of Table III for an explicit
expression and Appendix E for more details). It is worth
noting that in GH, N = αdx points are selected, where α
corresponds to the number of unique values per dimension (i.e.,
the resulting points form a multidimensional grid). Therefore,
the complexity grows exponentially with the dimension of x
although this issue can be alleviated using other determin-
istic rules with lower complexity rates such as cubature or
unscented rules (requiring N = 2α and N = 2α + 1 nodes,
respectively) [10].

In the case of quadrature rules, exact integration in Eq.(8)
occurs when h(x) is a polynomial of order less or equal
than 2α − 1. Conversely, there is an integration error when
the function has a degree higher than 2α − 1. For the unidi-
mensional case, dx = 1, the error associated to the Gauss-
Hermite quadrature rule is related to the remainder of the
Taylor expansion of h(x) [32], [5]

e =
α!h(2α)(ε)

(2α)!
, (9)

where h(2α)(x) is the 2α-th derivative of h(·) and ε is in the
neighborhood of x. This error analysis can be extended to the
multidimensional case, considering that the restriction on the
degree should apply per dimension. At this point, we would
like to notice that (9) can be bounded as

e ≤ α!||h(2α)||∞
(2α)!

, (10)

where || · ||∞ is the supremum operator. Hence, for any h(·)
where the supremum of the 2α-th derivative grows slower than
(2α)!
α! , we can guarantee that the upper bound of the error

decreases when we increase the number of quadrature points.
Note that in all cases, reducing ||h(2α)||∞, implies decreasing
the upper bound of the error. In Appendix D, we provide a
result showing that when α grows, then the bound on the error
tends to zero such that e→ 0.
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III. IMPORTANCE QUADRATURE SCHEMES

In the following, we develop a novel quadrature-based
framework that approximates the integral of Eq. (1) for a
generic non-Gaussian distribution π̃(x) = π(x)

Z . To that end,
we aim at applying deterministic integration rules under an
importance sampling perspective by introducing one or several
proposal densities. This connection between quadrature meth-
ods and IS allows us to develop further non-trivial extensions
of quadrature methods, the extension to the case of multiple
proposals, the extension of existing adaptive IS procedures, and
the development of new adaptive methodologies. We recall that
specific importance quadrature methods can be implemented
depending on the integration domain D. In the following, and
without loss of generality, we focus on D = Rdx and on the
Gauss-Hermite quadrature rules.

A. Basic importance Gauss-Hermite (IGH) method
Let us rewrite the targeted integral in Eq. (3) as

I =

∫
D
h(x)q(x)dx, (11)

where
h(x) = f(x)

π̃(x)

q(x)
, (12)

and q(x) is the introduced proposal pdf with q(x) > 0 for
all values where f(x) π̃(x)q(x) is non-zero.2 Note that this re-
arrangement is the same as the usual IS trick of Eq. (3). We
now choose a Gaussian proposal q(x) = N (x;µ,Σ), which
allows us to re-interpret I as the expectation of h(x) under
the distribution q(x), as in Eq. (7). The weighted samples
are deterministically chosen with the Gauss-Hermite rules
discussed in Section II-B, reason why we called the method im-
portance Gauss-Hermite (IGH) method. Following this double
interpretation (from IS and quadrature perspectives), we have
an extra degree of freedom in the choice of the parameters of
the Gaussian proposal pdf q(x) = N (x;µ,Σ).

Let us summarize the basic IGH method in Algorithm 1,
which will serve as a basis for further extensions below. In
Step 1, N deterministic points, {xn}Nn=1, and their associated
quadrature weights {vn}Nn=1, are chosen according to the
Gauss-Hermite rule. In Step 2, we compute the importance
weights according to the standard expression of Eq. (4).
Interestingly, the IGH weights, {w′n}Nn=1, are computed as the
product of the quadrature and the IS weight, in Eq. (14). Note
that the weights are multiplied by a factor of N , so they can be
used at the estimator of Z in Eq. (17). The unnormalized IGH
estimator is given in Eq. (15) in Step 4 (only if Z is known)
while the self-normalized estimator is given in (16) of Step 5.

B. Two toy examples
We present two illustrative toy examples that provide useful

insights about the behavior of IGH and the importance of the
choice of the proposal, motivating the next sections.

2Note that we use the terminology of IS for the proposal q(x) although the
samples are not simulated.

Algorithm 1 Basic Importance Gauss-Hermite (IGH) algo-
rithm
Input: N , µ, Σ

1: Select N points xn and the associated quadrature weights vn,
for n = 1, . . . , N , considering a Gaussian pdf q(x) = N (µ,Σ).

2: Account for the mismatch between π(x) and q(x) by calculating
the importance weights as

wn =
π(xn)

q(xn)
, n = 1, . . . , N . (13)

3: Compute the quadrature importance weights as

w′n = wnvnN , (14)

i.e., the product of the importance weight and the quadrature
weight.

4: The unnormalized estimator is built as

ÎIGH =
1

ZN

N∑
n=1

w′nf(xn) (15)

if Z is known.
5: The self-normalized estimator is built as

ĨIGH =

N∑
n=1

w̄′nf(xn) , (16)

where w̄′n =
w′n∑N
j=1 w

′
j

. The normalizing constant Z can be
approximated as

ẐIGH =
1

N

N∑
n=1

w′n . (17)

Output: {xn, w′n}Nn=1

1) Toy example 1. Approximation of the central moments of
a modified Nakagami distribution: The goal is to obtain the
central moments of a modified Nakagami distribution given by

π̃(x;µ, σ2, r) =
|x|r

Zσ2,r
exp

(
− (x− µ)2

2σ2

)
, (18)

where x ∈ R and Zσ2,r =
∫
|x|r exp

(
− (x−µ)2

2σ2

)
dx. Note

that for some values of the distribution parameters (µ, σ2, r),
π̃ is a symmetric version of the Nakagami distribution. We
approximate now the first 5 even moments, p ∈ {2, 4, 6, 8, 10},
with IGH (note that all odd moments are zero due to the
symmetry of the pdf). Let us choose the IGH proposal
q(x) = N (x;µ, σ2), from which we select the N deterministic
weighted points {xn, vn}Nn=1. The unnormalized IGH estima-
tor reduces to

ÎIGH =
1

Zσ2,rN

N∑
n=1

w′nh(xn) (19)

=
1

Zσ2,rN

N∑
n=1

vn
π(xn)

q(xn)
f(xn) (20)

=
1

Zσ2,rN

N∑
n=1

vnx
r+p
n . (21)
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Fig. 1. Toy example 1. Target π̃(x;µ, σ2, r) =
|x|r
Z
σ2,r

exp
(
− (x−µ)2

2σ2

)
,

with r = 4, µ = 0, σ = 1, and q(x) = N (x; 0, 1). Function f(x) = xp.

Note that we have chosen the Gaussian proposal such that the
exponential term of the target cancels out with the proposal at
the IS weight. Note also that h(x) = π(x)

q(x) f(x). According to
(10), and since dx = 1 and α = N , the error bound of (21) is

|Î − I| ≤ N !||h(2N)||∞
(2N)!

=
N !|| (xr+p)(2N) ||∞

(2N)!
. (22)

Hence, if 2N > r + p then the numerator of Eq. (22) is zero,
and the estimator has zero error, i.e., |ÎIGH − I| = 0 if the
order of the moment satisfies p ≤ 2N − r − 1. Fig. 1 shows
the relative absolute error of ÎIGH when the number of samples
is N = 5 and the parameter of the target is r = 4. From
Eq. (22), we know that all moments p ≤ 2N − r − 1 = 5,
must be approximated with zero error. Indeed, the figure
shows a tiny error of 10−15 for all p < 5, due to the finite
computer precision. For, p > 5 however, the error becomes
significant. Note that in this case, the upper bound of Eq. (22)
is no longer valid since the bound goes to infinity. Finally,
note that the selected IGH proposal is particularly good for
the considered target distribution. The use of the Laplace
approximation as proposal would not necessarily achieve a
successful performance in this problem (for N = 5, the relative
error is around 10−5).

2) Toy example 2. Optimal proposal in IS and IGH: Let us
consider a unidimensional Gaussian target π̃(x) = N (x; 1, 1)
and we aim at estimating the mean of the target, i.e., f(x) = x,
in such a way that we know the solution for this toy problem
(I = 0). We apply IS and IGH with the same proposal q(x) =
N (x; 1, σ2). We evaluate the performance of the estimators
for different values of σ, using N = 5 samples/points in both
algorithms. Moreover, we use a version of IS where, instead of
sampling, we obtain the points using randomized quasi Monte
Carlo (QMC) [33]. We name this naive approach importance
QMC (IQMC). In particular, we obtain the points from the
Halton sequence [34] (skipping the first point), and use the
Rosenblatt transform so their marginal distribution is the
desired normal distribution. We use a randomized version using
the Cranley-Patterson rotation [17, Chapter 17]. The results
are averaged over 200 independent runs. Figure 2(a) shows
the the (mean squared error of the unnormalized estimators in
IS (dotted blue), IGH (dashed red), and IQMC (solid black),
when σ ∈ [0.85, 5]. We also display the squared error of IGH
when the Laplace approximation is set as a proposal (dotted
gray). Similarly, Figure 2(c) shows the (mean) squared error
of the self-normalized estimators, and Figure 2(c) displays the

(mean) squared error of the normalizing constant estimator. In
all figures, the blue circle represents the minimum MSE in IS.

In all IS-based estimators, the minimum MSE is achieved
with a σ ∈ [1, 2], but the minimum is not achieved at the
same value for the three estimators (see [17, Chapter 9] for
a discussion). The squared error in the IGH estimators are
in general several orders of magnitude below the variance of
the corresponding IS estimators. Moreover, the minimum error
is achieved for a σ = 1 in the three QIS estimators, which
coincides with the standard deviation of the target distribution.
Note that IQMC always outperforms IS, but it is still far from
the performance of IGH with its optimal proposal. Finally,
note that using the Laplace approximation as proposal in IGH
provides an adequate performance (but not optimal).

In this same setup, now we fix σ = 1.5 and we approximate
the normalizing constant with IS, IQMC, and IGH. Note that
the choice of σ is particularly good for IS, as shown in Fig.
2(c). In Figure 3, we show the evolution of the (mean) squared
error in IS, IQMC, and IGH for several values of N ∈ [3, 20].
We also display the IGH with the Laplace approximation as
proposal. We see that the convergence rate in this toy example
is much faster in IGH than in IS or IQMC.

C. Analysis of the basic IGH and discussion
It is interesting to note that in IS the proposal needs to

have heavier tails than the integrand, i.e. h(x) = f(x)π(x)q(x)
must be bounded. In contrast, in the Toy Example 1, when
p ≤ 2N − r − 1, the integrand is |x|pN (x; 0, 1) while the
IGH proposal N (x; 0, 1) has lighter tails. Let us interpret this
from two points of view. On the one hand, regarding Eq.
(10), the proposal must be chosen in a way that h(x) is not
necessarily bounded, but its 2α-th derivative is, so the error
of the IGH estimator is also bounded. In general, if we aim
at a perfect integration, then we need to find a q(x) such that
the 2α-th derivative of h(x) is zero. On the other hand, in
an i.i.d. (random) simulation, the samples are concentrated
proportionally to the pdf, while in Gaussian quadrature, from a
statistical perspective, the tails are over-represented in terms of
nodes (but with an associated weight that is smaller when the
distance from the mean to the node grows). For this reason,
IGH can still obtain good results with a narrow q(x). This
suggests that a Laplace approximation of the integrand, as used
for instance in [22], while providing a good performance in
some settings, it is not necessarily the best choice (this is also
supported by the two toy examples). The results of IGH from
the toy examples 1 and 2 are indeed promising, when compared
to IS methods. The superior performance comes with some
challenges that need to be addressed in order to make IGH a
universal methodology that can be used in practical problems.
Theoretical guarantees. Let us first address the convergence
of the basic IGH method.

Theorem 1: The unnormalized, ÎIGH, self-normalized ĨIGH,
and normalizing constant, ẐIGH, estimators in IGH converge
to I when N →∞.
Proof. See Appendix A. �

Remark 1: We recall the re-arrangement of (11) is only
valid if q(x) has probability mass for all points where h(x) 6=
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(b) Mean estimator (self-normalized).
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(c) Normalizing constant estimator.

Fig. 2. Toy example 2. Target π̃(x) = N (x; 1, 1) and q(x) = N (x; 0, σ2), with σ ∈ {0.7, 5}. We display the (mean) squared error of the following
estimators: (a) Unnormalized estimator of the target mean. (b) Self-normalized estimator of the target mean. (c) Estimator of the normalizing constant. The
blue circle represents the minimum MSE in IS. The dashed gray line represents the performance of IGH when the proposal is set to the Laplace approximation
(hence with a fixed σ).

0, similarly to what happens in IS. Clearly, this is the case in
IGH since q(x) is Gaussian.

The consistency of the estimators ensure the validity of
the methodology, but it does not necessarily imply that the
approach is efficient for any proposal q(x). Similarly to IS,
the performance of IGH depends on the appropriate choice of
a proposal density. Note that the bounds in the approximation
error given in Section II-B apply directly here. We recall
that in IS, the optimal proposal that provides a zero-variance
UIS estimator is the one proportional to the integrand of
the targeted equation as described above in Section II-A.
Interestingly, this result is connected to the optimal proposal
in IGH.

Proposition 1: Let us consider a Gaussian proposal q(x;θ)
where θ contains both the mean and the covariance matrix, and
a function f which is non-negative for all values where π(x) >
0. Let us suppose that the optimal IS proposal q∗(x;θ∗) =
f(x)π(x)∫
f(x)π(x)dx

is Gaussian. Then, the same proposal q∗(x;θ∗)

used in IGH provides a zero-error unnormalized estimator.
Proof : By plugging q∗(x;θ∗) in Eq. (12), then h∗(x) =∫
f(x)π(x)dx = I , i.e., a constant. Since the Gauss-Hermite

rules integrate polynomials perfectly up to order 2α, the error
in this case is zero even with N = 1 point. �

Remark 2: If the optimal IS and IGH optimal proposal does
not exist in the parametric form q(x;θ), then the proposal
that minimizes the variance of the UIS estimator does not
necessarily coincide with the proposal that minimizes the error
of the IGH estimator as we show in the second toy example.
Note that an extension of the previous proposition can be found
in the case that f is non-positive in the support of π̃(x). The
case where f takes both positive and negative signs requires
the use of multiple proposals (and two samples to obtain a
zero-variance IS estimator). More details can be found in [17,
Chapter 13.4]

In real-world problems, it is unlikely that the optimal
proposal belongs to the Gaussian family, and hence h(x) is
usually not a constant (nor a polynomial) because of the ratio
of densities. Therefore, the unnormalized IGH estimator can
ensure no error in the estimation of the first 2α terms of the
Taylor expansion of h(x), while integration errors will come

from the higher-order terms.
In the following, we present two toy examples. The first

example shows a case where the proposal is chosen in such a
way h(x) is a low-order polynomial, so perfect integration is
possible. The second example discusses the best proposal in
IS and IGH when perfect integration is not possible, showing
that the optimal proposal in IGH is not necessarily the same
as in IS.
Computational complexity. We first discuss the computa-
tional complexity of IGH and related methods for fixed number
of points/samples N , and then we briefly discuss the selec-
tion of N . The complexity of deterministic and stochastic
integration methods depends on the number of points N at
which the target function h(·) needs to be evaluated. For
instance, in the standard Bayesian inference framework, every
point requires the evaluation of all available data, which may
be computationally expensive. Recall that the computational
cost of drawing a multi-dimensional sample from a Gaussian
distribution is O(d2x) [35]. Additionally, the evaluation of
a multivariate Gaussian pdf is O(d3x). In Algorithm 1, we
observe that, since the quadrature points are deterministic,
they can be stored and only linear scaling and translation
(to adjust for µ and Σ) is necessary. As such, the O(d2x)
term does not apply in IGH. In contrast, since h(·) involves
evaluating q(·), the complexity in IGH is dominated by this
operation as CIGH = O(Nd3x) under the assumption that the
complexity of evaluating q(·) is similar to that of f(·) and
π̃(·). Analogously, under Gaussian proposal pdf and same
number of points N , the IS method has similar complexity
CIS = O(Nd3x) since the complexity of drawing from q(·) is
negligible compared to evaluating from q(·) in the asymptotic
analysis (i.e., O(d2x + d3x) = O(d3x)).

IS and Gaussian quadrature algorithms (including the novel
IGH framework) require a number of points/samples N that
scales exponentially with the dimension, suffering from a
similar curse of dimensionality. In connection to this, some
quadrature rules (e.g., Gauss-Hermite) generate a number of
points of the form N = αdx , where α ∈ N+ is the number of
points per dimension (i.e., not all arbitrary choices N ∈ N+

are possible). This can be cumbersome for some problems,
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Fig. 3. Evolution of the (mean) squared error in the approximation of Z in
IS and IGH when increasing the number of samples/points N .

e.g., when it is possible to select a proposal in such a way
h(x) becomes very smooth and one needs a small N (see
previous section). In this case, quadrature sparse grids could
be used instead [29]. However some drawbacks may appear,
e.g., in the Smolyak’s quadrature rule some weights can be
negative, which implies that the numerical approximation can
be negative even if the integrand is strictly positive ([29,
Section 3.4] and [17, Chapter 7.8]). This can be a problem
for importance quadrature techniques when the self-normalized
estimator is used, since the normalization of the weights loses
our statistical interpretation, and more practically, it can yield
to negative estimations of the normalization constant or to
even-order moments (see [29, Section 3.4] for more details).
We propose here an alternative to lighten the IGH-based
methods by resampling N ′ < N points with replacement from
the pool of N points, with probability equal to its associated
quadrature weight. It is easy to show that the new (random)
estimator, where the quadrature weights of the resampled
points are set to 1/N ′, is unbiased w.r.t. to the costly ÎIGH
estimator, and converges to it when N ′ grows (see the example
in Section VI-A). Note that this does not reduce the number of
points required in order to have a certain level of accuracy, but
allows to chose an arbitrary number of points N ′ ∈ N+ where
the target will be evaluated (unlike most quadrature rules).
Many other similar strategies could be devised, although this
goes beyond the scope of this paper.
Self-assessed IGH. Another important issue is the self-
assessment of particle-based methods. In IS, the usual measure
is an approximation of the effective sample size (ESS). See a
discussion about this metric in [36]. We believe that in IGH,
another similar metric should be used instead. Following, a
recent work about proper metrics in weighted particle-based
methods [37], we propose an ESS-like metric for IGH as

ESS-IGH =
N

N−1∑
i6=j∗ v

2
i+(1−vj∗)

2

(∑N
n=1(w̄′n − vn)2

)
+ 1

.

(23)
where j∗ = arg minj vj . See the derivation and more details
in Appendix F. Note that ESS-IGH fulfills the five desired
properties described in [37]. For instance, the maximum
ESS-IGH = N is only reached in the best scenario when all
importance weights wn are the same (and hence the target is
identical to the proposal). Also, the minimum ESS-IGH = 1
only occurs in the worst scenario, when only one weight

is different from zero, and the associated node receives the
minimum quadrature point. Note that, unlike the ESS in IS,
the worst-case scenario happens when the point is the furthest
point from the mean of the IGH proposal (which has the
smallest vj). In our statistical IGH perspective, this intuition
also fits with in this extreme case: not only there is only one
effective point, but that the relevant target mass is in the tail of
the implicit quadrature proposal (which justifies to receive the
minimum ESS-IGH = 1). We find this an interesting property,
since unlike ESS which is invariant to the node/sample which
takes the maximum weight, the ESS-IGH is more penalized
when the unique non-zero weighted node is further in the tail.
Automatic IGH. At this point, we would like a sophisticated
method that: 1) selects the parameters (mean and covariance)
of the proposal density in a way that the integral has minimum
error; 2) can operate in situations where the target pdf has
multiple modes; 3) can use more than one proposal in order to
provide extra flexibility for tackling non-standard distributions;
and 4) can adapt to a plethora of complicated problems in an
automatic manner. Addressing these challenges is the purpose
of the next sections.

IV. MULTIPLE IMPORTANCE GAUSS-HERMITE METHOD

The novel perspective of the basic IGH method can be
extended to the case where it is beneficial to use several
proposal densities, {qm(x)}Mm=1. In the IS literature, it is
widely accepted that using several proposals (or a mixture
of them) can improve the performance of the method [38],
[39], [20]. The justification lays on the fact that the efficiency
of IS improves when the mismatch between |f(x)|π̃(x) and
q(x) decreases. A mixture of proposals is then more flexible
in order to reconstruct the targeted integrand.

The extension of IGH from single to multiple proposals is
not straightforward as we will show below. In order to establish
the basis of this extension, let us first propose a generic
multiple IGH (M-IGH) method in Alg. 2. The algorithm
receives the parameters of the M proposals, and the number of
weighted points per proposal, N . Although N can be different
for each proposal, Nm, in this paper we will consider that
Nm = N, ∀m for simplicity of notation and the explanation.
In Step 1, the N points and associated weights per proposal
are chosen. Step 2 computes the importance weights according
to some generic weighting scheme w(x) = π(x)

ϕm(x) , where
ϕm(x) is a function that can be different for each proposal
(see below for more details about the choice of ϕm(x)). In
Step 3, the importance quadrature weights are computed. The
unnormalized M-IGH estimator is computed in Eq. (26) of
Step 4, and the self-normalized M-IGH estimator in Eq. (27)
of Step 5. Note that again an estimator of the normalizing
constant is also available in Eq. (28).

Similarly to what happens in MIS [20], there are several pos-
sible re-arrangements of the targeted integral that, introducing
the set of M proposals, allow for an integral approximation.
In the case of IGH, we can extend the basic re-arrangement
in Eqs. (11)-(12) in different ways that will lead to different
weighting schemes and interpretations. As we show below,
these re-arrangements translate into different implementations
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of Alg. 2, and in particular, in specific choices of the ϕm in
the weights of Eq. (25).

Algorithm 2 Generic Multiple Importance Gauss-Hermite (M-
IGH) method
Input: N , {µm,Σm}Mm=1

1: Select N points xm,n and the associated quadrature weights vn,
for n = 1, . . . , N , associated to each Gaussian pdf qm(x) =
N (µm,Σm).

2: Compute the importance weights as

wm,n =
π(xm,n)

ϕm(xm,n)
, m = 1, . . . ,M ; n = 1, . . . , N . (24)

3: Compute the importance quadrature weights as

w′m,n = wm,nvnN , (25)

that is, the product of the importance weight and the quadrature
weight.

4: The unnormalized estimator is built as

ÎM-IGH =
1

ZMN

M∑
m=1

N∑
n=1

w′m,nf(xm,n) (26)

if Z is known.
5: The self-normalized estimator is built as

ĨM-IGH =

M∑
m=1

N∑
n=1

w̄′m,nf(xm,n) , (27)

where w̄′m,n =
w′m,n∑M

i=1

∑N
j=1 w

′
i,j

. The normalizing constant Z can
be approximated as

ẐM-IGH =
1

MN

M∑
m=1

N∑
n=1

w′m,n . (28)

Output: {xm,n, w′m,n}M,Nm=1,n=1

A. Standard multiple IGH (SM-IGH)

This approach is a particular case of Alg. 2, where the
importance weight in Eq. (24) for each point xm,n is computed
as wm,n =

π(xm,n)
qm(xm,n)

, i.e., ϕm(x) = qm(x). Its derivation
follows the re-arrangement of the targeted integral, similar to
(11)–(12), but now involving the M proposal distributions. It
is possible to rewrite I as

I =
1

M

M∑
m=1

∫
f(x)π̃(x)

qm(x)
qm(x)dx (29)

=
1

M

M∑
m=1

∫
hm(x)qm(x)dx , (30)

where hm(x) = f(x)π̃(x)
qm(x) . Note that it is possible to approx-

imate the M integrals in (30) by performing M independent
IGH algorithms as in previous section, and the unnormalized
estimator of Eq. (27) is simply the average of the M parallel
estimators. The self-normalized estimator of Eq. (27) however

involves the normalization of all MN weights. Interestingly,
the re-arrangement of (29) is inspired in the standard multiple
MIS scheme (SM-MIS), denoted N1 scheme in the generalized
MIS framework of [20]. For this reason, we denote this
algorithm as standard multiple IGH (SM-IGH). In the SM-
MIS scheme, each sample has an importance weight where
only the proposal that was used to simulate the sample appears
in the denominator. Note that in [20] it is shown that the MIS
scheme N1 provides a worse performance (largest variance)
for the unnormalized estimator in comparison with other MIS
schemes (see also [40, Section 4.1.1.]). This poor peformance
in MIS is not necessarily translated into a bad performance
of the SM-IGH scheme, as we discuss below. However, both
SM-MIS and SM-IGH share the construction of the importance
weight as wm,n =

π(xm,n)
qm(xm,n)

. The importance weight can be
seen as a ratio that measures the mismatch between the target
distribution and the denominator of the weight. Therefore,
in SM-IGH when π̃ has a complicated form that cannot be
mimicked with a Gaussian proposal, no matter how many
proposals are employed and how their parameters are selected,
the mismatch of π̃ with respect to each proposal will be high.
In other words, a given Gaussian qm(x), regardless of the
choice of its parameters, will be unable to mimic the target,
yielding hm(x) very different from a low-order polynomial. In
next section, we propose an alternative scheme to overcome
this limitation. The following theorem proves the convergence
of SM-IGH with N .

Theorem 2: The unnormalized and self-normalized SM-IGH
estimators converge to I when N →∞.
Proof. See Appendix B.

B. Deterministic mixture IGH (DM-IGH)
We present a second variant of Alg. 2 with ϕm(x) =

1
M

∑M
j=1 qj(x), i.e., the same denominator for all samples of

all proposals, which is based on an alternative re-arrangement.
Let us first define ψ(x) ≡ 1

M

∑M
m=1 qm(x), the mixture of all

(Gaussian) proposals. The alternative re-arrangement of I that
involves ψ(x) is given by

I =

∫
f(x)π̃(x)

ψ(x)
ψ(x)dx

=

∫
f(x)π̃(x)

ψ(x)

1

M

M∑
m=1

qm(x)dx (31)

=
1

M

M∑
m=1

∫
h(x)qm(x)dx , (32)

where now the same function

h(x) =
f(x)π̃(x)

ψ(x)
=

f(x)π̃(x)
1
M

∑M
m=1 qm(x)

, (33)

is present in all M integrals. This re-arrangement is inspired
by the deterministic mixture MIS (DM-MIS) scheme, denoted
as N3 in [20], where it is proved to provide the smallest
variance in the UIS estimator among of all known MIS
schemes. Several reasons explain the good behavior of the
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DM-MIS scheme (see the discussion in [40, Section 4.1.1]).
Similarly, in the DM-IGH, the M integrands sharing the
same function h(x) that contains the mixture ψ(x) with all
proposals on its denominator.3 We recall that π̃ can be skewed,
multimodal, or with different tails than a Gaussian, and while
the Gaussian restriction in the proposals is limiting, under
mild assumptions, any distribution can be approximated by
a mixture of Gaussians [41], [42]. In the case of DM-IGH,
and following similar arguments in Section III-C, if the M
Gaussians are selected in such a way h(x) can be approximated
by a low-order polynomial, then all M integrals in Eq. (32)
will be approximated with low error, and the DM-IGH will
be accurate. Note that DM-IGH requires O(NM2) operations
compared to O(NM) operations in SM-IGH. We now prove
the convergence of the DM-IGH method.

Theorem 3: The unnormalized and self-normalized DM-
IGH estimators converge to I when N →∞.
Proof. See Appendix C.

Corollary 1: As a result of Theorem 3, one can form a
partition of proposals and apply the DM-IGH method in each
partition, combining then the estimators similarly to the case
in MIS [21], [43], [44].

V. SELECTION AND ADAPTATION OF THE PROPOSAL

The proposed IGH methodology and its variants requires
the selection of the mean and covariances of the (potentially
multiple) proposal distributions. As in IS, an adequate selection
of those parameters is crucial in obtaining the desired results
from IGH. In this section, we provide two adaptive extensions
to the IGH methodology such that the inference process can
be automated and performed adaptively with little practitioner
interaction.

A. Adaptive multiple IGH (AM-IGH)
We propose a first adaptive IGH algorithm that iteratively

adapts the proposals through moment matching mechanisms
(see [18] for a description of moment-matching strategies in
adaptive IS). We describe the new method in Alg. 3 naming
it as adaptive multiple IGH (AM-IGH). The algorithm runs
for T iterations4, adapting the parameters of the proposal
q(t)(x) = N (µ(t),Σ(t)) at each iteration t. The importance
weights are computed in (34), where the generic function
in the denominator ϕ(t,τ) is discussed below. Note also that
at each iteration, the importance weights corresponding to
previous t−1 iterations might be also recomputed for a reason
that will be apparent below. Then, the quadrature importance
weights are computed in Eq. (35), which are then normalized
in Eq. (36). Finally, the proposal is adapted through moment
matching using the set of all Nt (re)-weighted points. In
particular, we match the first and second moments of the target,
which allows for the update of the mean and covariance matrix
of the proposal.

3Note that we are forcing the Gaussians in the mixture to be equally
weighted, but it would be straightforward to extend the scheme to the case
where the mixture is ψβ(x) =

∑M
m=1 βmqm(x) instead.

4The term multiple comes from the fact that after T iterations, T different
proposals have been used (see [45] for more details).

The generic Alg. 3 can be particularized for different choices
of the function ϕ(t,τ)(x) in the denominator of the weights.
One reasonable choice is to use ϕ(t,τ)(x) = qτ (x), i.e.,
applying the proposal that was used to choose the points that
are being weighted. In this case, it is not necessary to reweight
the points of the previous t− 1 iterations, i.e., only N weight
calculations are done at each iteration. Another possible choice
is ϕ(t,τ)(x) = 1

t

∑t
i q

(i)(x
(τ)
n ). Hence, all the sequence of

proposals is used in the mixture of the denominator. However,
in order to balance the presence of a proposal in the weight
of future points, the past points must also be reweighted to
incorporate the future proposals. Therefore, at each iteration
t, not only the N new points receive a weight, but also the
past N(t − 1) points need to be reweighted. This has a clear
connection with the DM-IGH of Section IV-B. By plugging
this choice in Alg. 3, the method has certain parallelism with
the celebrated IS-based AMIS algorithm [45] that obtains a
high performance in a plethora of applications (see [18] for
more details). One limitation of this weighting scheme is that
the cost in proposal evaluations grows quadratically with T
(while it is linear when the choice ϕ(t,τ)(x) = qτ (x)). Another
limitation is that the consistency of the AMIS algorithm has
not yet been proved (or the lack of it). Recently, a new method
for alleviating the computational complexity of AMIS was
proposed, also improving the stability of the algorithm [46].
The method choses iteratively and automatically a mixture
ϕ(t,τ)(x) with a reduced number of components. A similar
mechanism can also be used in the proposed AM-IGH frame-
work.

Algorithm 3 Adaptive Multiple Importance Gauss-Hermite
(AM-IGH) method
Input: N , T , µ(1) Σ(1)

1: for t = 1, . . . , T do
2: Select N points x

(t)
n and the associated quadrature weights

vn, for n = 1, . . . , N , associated to the Gaussian pdf q(t)(x) =
N (µ(t),Σ(t)).

3: Compute (and recompute) the (previous) importance weights
as

w(τ)
n =

π(x
(τ)
n )

ϕ(t,τ)(x
(τ)
n )

, n = 1, . . . , N ; τ = 1, . . . , t. (34)

4: Compute the importance quadrature weights as

w
′(τ)
n = w(τ)

n vnN, n = 1, . . . , N ; τ = 1, . . . , t , (35)

that is, the product of the importance weight and the quadrature
weight.

5: Compute the normalized importance weights as

w̄
′(τ)
n =

w
′(τ)
n∑t

i=1

∑N
k=1 w

′(i)
k

, τ = 1, . . . , t . (36)

6: Estimate the mean and the covariance of the target with the
set of available weighted Nt points, and set µ(t+1) Σ(t+1) to
those values.
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TABLE I. SUMMARY OF IGH METHODS IN TERMS OF PROPOSAL AND
TARGET EVALUATIONS PER POINT.

standard IGH SM-IGH DM-IGH AM-IGH M-PIGH
proposal eval. 1 1 M TM∗ M

target eval. 1 1 1 1 1
multiple prop. no yes yes yes∗ yes

adaptive no no no yes yes

B. Multiple Population IGH (M-PIGH)

In many scenarios, the target distribution is multimodal
and/or with a shape that cannot be well approximated by a
Gaussian distribution. This is well known in the AIS literature,
where most of methods employ several proposal densities in
order to approximate the target distribution with a mixture
the adapted proposals. Examples of the adaptation of multiple
proposals in IS can be found in [47], [48], [45], [49], [40]
among many others.

Here, we propose a second adaptive scheme, called multiple
population IGH (M-PIGH), whose adaptation relies fully in the
deterministic rules re-interpreting the adaptivity mechanism of
M-PMC [48], an AIS algorithm (hence fully based in Monte
Carlo). In summary, the original M-PMC iteratively adapts
a mixture proposal of kernels (including the parameters of
the kernels and their weight in the mixture) in a stochastic
EM-based manner in order to minimize the KL-divergence
between the mixture proposal and the target distribution. In
M-PIGH, we select quadrature points and weights instead of
sampling from the kernels. In order to not over-complicate the
novel algorithm with a variable number of points per kernel,
we do not adapt the weight of each kernel in the mixture
proposal (hence, we do adapt the mean and covariances of
the Gaussian kernels). For sake of brevity, we briefly describe
the algorithm. M-PIGH adapts a mixture with M equally-
weighted Gaussian kernels, that are initialized with some mean
and covariance matrices. For T iterations, M-PIGH selects the
points and quadrature weights as in IGH, compute the im-
portance weights using the whole mixture in the denominator
(implementing the DM-IGH approach) and builds the usual
IGH estimators. The means and covariances of next iterations
are computed through the Rao-Blackwellized version of the
moment matching proposed in [50] and later implemented
in [48]. A multimodal numerical example is presented in
Section VI-B, where we compare the proposed M-PIGH and
the original M-PMC. Finally, Table summarizes computational
complexity of all proposed algorithms. Moreover, it displays
whether the algorithms use multiple proposals and whether
they are adaptive. Note that the AM-IGH algorithm can be
implemented with M = 1 proposal, but also with M ≥ 1

VI. SIMULATION RESULTS

In the first example, we build a posterior distribution and
test the AM-IGH in a challenging signal-processing example.
In the second example, we test the M-PIGH in a multimodal
scenario. In the third example, we consider a Bayesian machine
learning example where the hyperparameters of a Gaussian
process are learned.

A. Inference in a exoplanetary model

In this section, we consider an astrophysics problem that
deals with an exoplanetary system [51], [52]. We consider a
simplified model of a Keplerian orbit and the radial velocity
of a host star where the observations are given by

yr(td) = v + k

[
cos

(
2π

p
td + ω

)
+ e cos (ω)

]
+ ξ , (37)

where td, with d = 1, . . . , D, represent the time instants,
yr(td) is the r-th observation obtained at the td-th instant, with
r = 1, . . . , R, V is the mean radial velocity, k is an amplitude,
p is the period, ω is longitude of periastron, e the eccentricity
of the orbit and ξ ∼ N (0, σ2

o) models the variance of the
observation noise, σ2

o being known. Note that t1, t2, . . . , tD
are (known) time instants where the observations are acquired.
In this example, we consider that the five parameters of the
system (v, k, p, e, ω) are unknown, i.e., we aim at inferring the
random variable X = [V,K, P,E,Ω]> in dimension dx = 5.
In this Bayesian inference problem, we consider uniform
priors as follows: p(V ) = U [−15, 15], p(K) = U [0, 50],
p(P ) = U [0, 365], p(E) = U [0, 2π], and p(Ω) = U [0, 1].

For this example, we implement the AM-IGH method
with N = 105 samples/points per iteration, and T = 20
iterations. We simulate the model with the values X =
[3, 2, 200, π, 0.2]>, D = 40 time instants, and σ2

o = 2 for
the observation noise. We made several tests for different
values of R and since the results were coherent and did not
provide any new insights, we discuss here those with R = 1.
We approximate the first moment of the posterior distribution
of X given the set of data. Fig. 4 shows the MSE in the
estimate of the mean of the posterior distribution building
the estimators with the samples at each iteration t. In both
AM-IGH and AMIS (for comparison), the means of the Gaus-
sian proposals have been initialized randomly in the square
[−1.5, 6]×[1, 4]×[100, 400]×[π2 , 2π]×[0.1, 0.4], and averaged
over 100 independent runs. First, we observe that AM-IGH
converges faster to a stable point. Second, AMIS has still not
converged to a stable proposal distribution at the last iteration.
We recall that the cost of AMIS in proposal evaluations is
quadratic with T , which becomes a limitation when many
iterations are needed to find a good proposal. It is worth noting
that the achieved MSE of AM-IGH is several orders of mag-
nitude below that of AMIS. Moreover, we have implemented
two versions of AM-IGH that used the resampling strategy
proposed in Section III-C, using N ′ = N/2 and N ′ = N/5
resampled nodes. Interestingly both algorithms converge faster
than AM-IGH (N ′ = N/2 is the fastest), but AM-IGH obtains
a better performance after few iterations (with N ′ = N/2
being better than N ′ = N/5). The interpretation is simple: in
all cases, the best performance is attained after some iterations,
and the performance is limited by the number of nodes at
the given iteration. We also display the solution given by
the Laplace approximation [22], finding the mode through
a costly simulated annealing [53] with E = 2 · 106 target
evaluations). For unimodal distributions, a good initialization
of AM-IGH may be this Laplace approximation, including the
use of the Hessian as in [22], although it is hard to display
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Fig. 4. Ex. 1. MSE in the estimate of the mean of the posterior distribution
in the exoplanetary model (averaged over the dx = 5 dimensions).

a fair comparison since finding the mode is a tough problem
when the target is non-concave in the logarithmic domain (as
in the considered problem).

B. Multimodal distribution
In this example we aim at approximating moments of a

multimodal distribution given by the mixture

π(x) =
1

5

5∑
i=1

N (x;νi,Ci), x ∈ R2, (38)

with the following mean vectors and covariance matrices:
ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 = [13, 8]>, ν4 =
[−9, 7]>, ν5 = [14,−14]>, C1 = [2, 0.6; 0.6, 1], C2 =
[2, −0.4;−0.4, 2], C3 = [2, 0.8; 0.8, 2], C4 = [3, 0; 0, 0.5],
and C5 = [2, −0.1;−0.1, 2].

In this numerical example, due to the multi-modality, we
implement M-PIGH, the novel adaptive quadrature method
presented in Section V-B. Unlike in [54], here the adaptive
mechanism is also based on IGH. Table II shows the MSE in
the estimation of the mean of the target and the normalizing
constant, with both the (stochastic) M-PMC algorithm and the
(deterministic) M-PIGH algorithm. In order to compare their
behavior, we initialized randomly the location parameters of
the kernels within the [−4, 4] × [−4, 4] square, i.e., without
covering any modes of the target, in order to better evaluate
the adaptivity of the algorithms. For both, M-PMC and M-
PIGH we use an adaptive mixture with M = 25 propos-
als/kernels, N = 25 samples/points per proposal and iteration,
for T ∈ {5, 10, 20}. We try three different initializations for
the scale parameters of the proposals, with Σ

(1)
m = σ2

1I with
σ1 ∈ {1, 2, 5}. The results are averaged over 100 random
initializations. In all cases, we compare both algorithms with
equal number of target evaluations. We see that M-PIGH
outperforms M-PMC in all setups, obtaining in some cases
an improvement of more than one order of magnitude. For a
small scale parameter initialization σ1 = 1, both algorithms
have trouble improving their estimate, although M-PIGH is
able to significantly improve while M-PMC does not. Larger
initial scale parameters benefit both algorithms. We also see
that when the number of iterations T is increased, M-PIGH
decreases the MSE in a larger factor than the M-PMC: the

quadrature rules are not only useful for a better approximation
but also for a faster adaptation.

C. Learning Hyperparameters in Gaussian processes with
automatic relevance determination

Gaussian processes (GPs) are Bayesian state-of-the-art
methods for function approximation and regression [55], where
selecting the covariance function and learning its hyperparam-
eters is the key to attain significant performance. Here we
present an example in the context of estimating the hyperpa-
rameters in the automatic relevance determination (ARD co-
variance functions [56, Chapter 6]. The observations are P data
pairs {yj , zj}Pj=1, with yj ∈ R and zj = [zj,1, . . . , zj,L]> ∈
RL, where L is the dimension of the input features. We denote
the joint output vector as y = [y1, . . . , yP ]>. The goal is
to infer an unknown function f which links the variables y
and z as

y = f(z) + e, (39)

where e ∼ N(e; 0, σ2). The function f(z) is considered to be
a realization of a GP [55], f(z) ∼ GP(µ(z), κ(z, r)), where
µ(z) = 0, z, r ∈ RL with kernel function

κ(z, r) = exp

(
−

L∑
`=1

(z` − r`)2

2δ2`

)
. (40)

The hyper-parameters δ` > 0 corresponding to each input
dimension are stacked in δ = δ1:L = [δ1, . . . , δL]. We consider
the problem of learning the posterior of all hyper-parameters
of the model, given by

θ = [θ1:L = δ1:L, θL+1 = σ] = [δ, σ] ∈ RL+1,

i.e., all the parameters of the kernel function in Eq. (40) and
the standard deviation σ of the observation noise. We assume a
prior p(θ) =

∏L+1
`=1

1

θβ`
Iθ` where β = 1.3 and Iv = 1 if v > 0,

and Iv = 0 if v ≤ 0. Note that we are focusing on learning
the marginal posterior of p(θ|y), which can be obtained from
p(θ, f |y), taking into account that p(f |θ,y) is tractable (see
[57] for more details about this example).

In Fig. 5 we consider the case with L = 3, so the target
is in R4, and set a ground truth of δ∗ = [1, 3, 1], σ∗ = 1

2
(recall that θ∗ = [δ∗, σ∗]). We have generated P = 500
pairs of data, {yj , zj}Pj=1, drawing zj ∼ U([0, 10]L) and
yj according to the model in Eq. (39). We implement the
AM-IGH algorithm of Table 3 with ϕ(t,τ)(x) = q(t)(x), and
with ϕ(t,τ)(x) = 1

t

∑t
j q

(j)(x), with τ = 1, ..., t, which we
denote AM-IGH (DM) in the plot. We also compare with
the MC-based method AMIS [45], which incorporates similar
weights, and a QMC version of AMIS, named LAIQMC,
where the random sampling is substituted by randomized
QMC samples (see the details in the second toy example).
We consider also the LAIS algorithm [58], with M = 1
proposal, and an IGH version of it, denoted as LA-IGH (also
with M = 1 proposal). Moreover, we introduce a variation
of LAIS where, the lower layer implements a randomized
QMC version (as explained above). We name this version as
LAIQMC. In all LAIS-based algorithms, we use the variant
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TABLE II. EX. 2 MSE IN THE ESTIMATION OF THE MEAN AND THE NORMALIZING CONSTANT OF THE M-PMC (AIS METHOD) AND THE M-PIGH
(NOVEL ADAPTIVE QUADRATURE METHOD).

T = 5 T = 10 T = 20
σ1 = 1 σ1 = 3 σ1 = 5 σ1 = 1 σ1 = 3 σ1 = 5 σ1 = 1 σ1 = 3 σ1 = 5

MSE (mean estimate) M-PMC 46.4 55.6 11.7 67.7 57.9 8.25 72.8 63.1 7.59
M-PIGH 18.8 6.94 3.12 9.56 5.13 1.3 8.3 4.21 0.245

MSE (Z estimate) M-PMC 1.04 0.681 0.0989 0.824 0.63 0.0299 0.729 0.571 0.026
M-PIGH 0.34 0.058 0.034 0.2 0.0385 0.0137 0.141 0.0257 0.00607

0 2000 4000 6000 8000

target evaluations
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10
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LAIS (DM weights)

LAIQMC (DM weights)

LA-IGH (DM weights)

AMIS (DM weights)

AIQMC (DM weights)

AM-IGH

AM-IGH (DM weights)

Fig. 5. Ex. 3. Mean squared error of several learning algorithms in the
estimation of the mean of the posterior distribution of the hyperparameters of
a Gaussian process. All algorithms are compared as a function of the total
number of target evaluations (i.e., samples or points) E = NMT . For each
algorithm and configuration, the number of iterations T is set in such a way
E = 104.

with temporal DM weights (the whole sequence of proposals
appear as a mixture in all weights), as described for AM-
IGH above. More precisely, both LAIS and LA-IGH run a
Metropolis-Hastings (MH) chain of length T , generating the
sequence µ1, . . . ,µT of location parameters for the IS and
IGH methods, respectively. We use a variance σ2 = 0.4 in all
algorithms, with the curves being similar for other choices. In
all algorithms, we set N = 625 samples/nodes per iteration.
All considered algorithms are iterative, and the comparison is
done in terms of target evaluations. We compute the posterior
mean (ground truth) with an exhaustive and very costly Monte
Carlo approximation so we can compare the methods (see [57]
for more details). We see that LAIS and LA-IGH exhibit a
better performance for a low number of target evaluations (few
iterations). The proposed LA-IGH always outperforms LAIS in
all the setups we have tested. The proposed AM-IGH and AM-
IGH-DM algorithm largely outperform all competitors when
the number of iterations is increased. Interestingly, the cheaper
version AM-IGH (only one proposal evaluation per sample) is
still very competitive w.r.t. the other alternatives, although it
provides two orders of magnitude larger error than the AM-
IGH-DM.

VII. CONCLUSIONS

In this paper, we have introduced a generic framework for
numerical integration, extending its range of application due
to (a) the introduction of a novel importance sampling (IS)
perspective, and (b) the incorporation of several ideas from
the IS literature. The framework can also be interpreted as an
incorporation of deterministic rules into IS methods, reducing
the error of the estimators by several orders of magnitude. The

potential of the proposed methodology was shown on three
numerical examples, as well as two toy examples used in the
motivation of the method. This IS perspective allows the use
of quadrature rules (in particular, this work focused on Gauss-
Hermite rules, although it can be easily applied to other types
of Gaussian quadrature rules) in problems where the integrand
does not fulfill the standard requirements in numerical inte-
gration. Moreover, the new IS-based framework can also be
used when the normalizing constant is unknown, extending
its applicability to Bayesian inference. The methodology is
completed with a set of extensions, including the use of
mixtures of proposals and adaptive approaches to automatically
adjust the parameters. Finally, the methodology comes with
convergence guarantees and error bounds, which are validated
in the discussed examples showing MSE results orders of mag-
nitude below state-of-the-art importance sampling methods.

APPENDIX A
PROOF OF THEOREM 1

First, note that ÎIGH can be rewritten as in (8) if q(x) is
non-zero for all x where π̃(x) is non-zero. Then, due to the
quadrature arguments reviewed in Section II-B, ÎIGH converges
to I . The convergence of the self-normalized estimator ĨIGH is
also guaranteed due to similar arguments in IS [15, Section
3.3.2]. Note that (16) can be rewritten as ĨIGH = ÎIGHZ

ẐIGH
.

Both ÎIGH, the unnormalized estimator in (15), and ẐIGH, the
normalizing constant estimator in (17), converge to the desired
quantities when N goes to infinity (note that ẐSM-IGH is a
particular case of ÎSM-IGH with f(x) = 1). Then, since both
the numerator and denominator converge, and since Z 6= 0 by
construction, we have that Ĩ → I when N goes to infinity. �

APPENDIX B
PROOF OF THEOREM 2

We first write unnormalized SM-IGH estimator by substi-
tuting ϕm(x) = qm(x) in Eq. (24):

ÎSM-IGH =
1

ZMN

M∑
m=1

N∑
n=1

w′m,nf(xm,n)

=
1

ZMN

M∑
m=1

N∑
n=1

vn
π(xm,n)

qm(xm,n)
f(xm,n) . (41)

Due to the properties of the Gauss-Hermite integration,
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when N goes to infinity,

lim
N→∞

ÎSM-IGH =
1

ZM

M∑
m=1

lim
N→∞

1

N

N∑
n=1

vn
π(xm,n)

qm(xm,n)
f(xm,n)

=
1

MZ

M∑
m=1

∫
π(x)

qm(x)
f(x)qm(x)dx

=
1

Z

∫
π(x)f(x)dx = I. (42)

Since ẐSM-IGH also converges with M (we recall that it is
a particular case of ÎSM-IGH with f(x) = 1). Due to the
same arguments of Section III-C, and the convergence of
both ÎSM-IGH and ẐSM-IGH then self-normalized ĨSM-IGH also
converges with N . �

APPENDIX C
PROOF OF THEOREM 3

Let us first write explicitly the unnormalized DM-IGH
estimator as

ÎDM-IGH =
1

ZMN

M∑
m=1

N∑
n=1

w′m,nf(xm,n)

=
1

ZMN

M∑
m=1

N∑
n=1

vn
π(xm,n)

1
M

∑M
j=1 qj(xm,n)

f(xm,n)

Again, following quadrature arguments, when N goes to
infinity,

lim
N→∞

ÎDM-IGH =

=
1

ZM

M∑
m=1

lim
N→∞

1

N

N∑
n=1

vn
π(xm,n)

1
M

∑M
j=1 qj(xm,n)

f(xm,n)

=
1

MZ

M∑
m=1

∫
π(x)

1
M

∑M
j=1 qj(x)

f(x)qm(x)dx

=
1

Z

∫
π(x)

1
M

∑M
j=1 qj(x)

f(x)
1

M

M∑
m=1

qm(x)dx

=
1

Z

∫
π(x)f(x)dx = I. (43)

Similarly, since ẐDM-IGH also converges with M because of
the same reasons as in the IGH and SM-IGH methods, then
self-normalized ĨDM-IGH also converges to I when N goes to
infinity. �

APPENDIX D
BOUND ON THE QUADRATURE ERROR

We aim at upper bounding the error as in Eq. (10) and
showing that asymptotically, as α → ∞, the error vanishes.
Notice that when the function can be approximated with a
polynomial of degree 2α − 1, the error is zero. Therefore, in
the following analysis we are interested in situations where the
nonlinearity is such that p ≥ 2α, where p is the order of the

nonlinearity. We make use of useful results regarding bounds
of the supremum of a function’s derivative [59], [60]. Let fp(x)
a polynomial of order p such that, in the open interval (a, b),
its supremum is bounded by a constant M0, i.e., sup |fp(x)| =
M0, then the following inequality holds for the first derivative

|f (1)p (x)| ≤ 2M0 n
2

b− a
= M1, (44)

and, in general, for the i-th derivative we have that

|f (i)p (x)| ≤ K(i, p)
M0

(b− a)i
= Mi, (45)

where

K(i, p) =
2ip2(p2 − 1) · · · (p2 − (i− 1))

1 · 3 · 5 · · · (2i− 1)
(46)

=
p

p+ i
22i · i!

(
p+ i

2i

)
, (47)

and equality only holds for Chebyshev polynomials. We aim
at showing that Mi ≥ Mi+1, meaning that the supremum of
the derivative i + 1 is bounded from above by the supre-
mum of the i-th derivative. Using the above expressions
Mi+1

Mi
= 1

b−a
p2−i

i(i+1/2) , which, for large i, tends to 0 such that
Mi+1

Mi
≤ 1 is satisfied asymptotically. This result is supported

by a d’Alembert’s ratio test analysis, which states that if the
limit of the ratio is such that limi→∞

∣∣∣Mi+1

Mi

∣∣∣ < 1 , then the
series converges absolutely.

APPENDIX E
GAUSSIAN QUADRATURE RULES

For the sake of simplicity and without loss of generality,
let us consider dx = 1, i.e., x ∈ R. A quadrature formula
Î =

∑α
n=1 vnh(xn) is an approximation of integral of type

I =
∫
D h(x)q(x)dx in Eq. (11), i.e.,

I =

∫
D
h(x)q(x)dx ≈ Î =

α∑
n=1

vnh(xn) . (48)

The function q(x) plays the role of a weighting function (i.e.,
a density) and it is not required to be normalized, i.e., we
only need to assume that

∫
D q(x)dx < ∞, i.e., q(x) is an

unnormalized density [1], [2]. Given the function q(x), in order
to properly select these 2α unknown values (all the weights
vn’s and all the nodes xn’s), we can consider a nonlinear
system of 2α equations matching the first 2α non-central
moments, i.e.,
N∑
n=1

vnx
r
n =

∫
D
xrq(x)dx, for r = 0, . . . , 2α− 1 , (49)

where vn’s and xn’s play the role of unknown and the
integrals

∫
D x

rq(x)dx (i.e., r-th moment of q(x)) should be a
known value. Therefore, if the first 2α non-central moments∫
D x

rq(x)dx are available, the non-linear system is well-
defined. However, since this system of equations is highly
nonlinear, generally the solution is not available [1], [2].
Some specific choices of density q(x) admit a closed-form
expression. Table III shows some relevant examples.
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TABLE III. GAUSSIAN QUADRATURE RULES

Gaussian Quadrature Rule weighted function q(x) Domain D Nodes xn Weights vn
Legendre q(x) ∝ 1 [−1, 1] roots of Legendre polynomials Pα(x) vn = 2

(1−xn)[P ′α(xn)]2

Chebyshev-Gauss q(x) ∝ 1√
1−x2

(−1, 1) xn = cos
(

2n−1
2α π

)
vn = π

α

Chebyshev-Gauss-2 q(x) ∝
√
1− x2 [−1, 1] xn = cos

(
n
α+1π

)
vn = π

α+1 sin
(

n
α+1π

)
Gauss-Laguerre q(x) ∝ exp(−x) [0,∞) roots of Laguerre polynomials Lα(x) vn = xn

(α+1)2[Lα+1(xn)]2

Gauss-Hermite q(x) ∝ exp(−x2) (−∞,∞) roots of Hermite polynomials Hα(x) vn = 2α−1α!
√
π

α2[Hα−1(xn)]2

APPENDIX F
ESS-IGH

Let us define the Euclidean distance between the two
pmfs that define the IGH approximation {w̄′n}Nn=1 and the
quadrature approximation {vn}Nn=1

L2 =

√√√√ N∑
n=1

(w̄′n − vn)2 (50)

=

√√√√ N∑
n=1

v2n

(
wn∑N

j=1 wjvj
− 1

)2

(51)

=

√√√√ N∑
n=1

v2n

(
wn

Ẑ
− 1

)2

. (52)

When all the importance weights, wn are equal, L2 = 0.
Following the arguments in [37], the maximum in (52) happens
when only one importance weight wn is different from zero.
But unlike in IS, here the position of the single non-zero weight
plays a role (note that here the nodes are no longer i.i.d. as in
IS, and hence they are not exchangeable). Let us denote

j∗ = arg min
j
vj ,

and hence vj∗ is the minimum quadrature weight. Then, the
maximum L2 is

L∗2 =

√∑
i 6=j∗

(0− vi)2 + (1− vj∗)2, (53)

=

√∑
i 6=j∗

v2i + (1− vj∗)2, (54)

i.e., the worst-case is determined by the case where the
unique non-zero weight is the one associated to the minimum
quadrature weight. In Section III-C we given an intuition why
this result is relevant.

Next, we can build a metric ESS-IGH that fulfilled the five
desired properties stated in [37], e.g., we would like that ESS-
IGH takes its maximum when all the importance weights are
the same (which corresponds to the target being identical to the
proposal), and its minimum when one extreme point takes the
only non-zero weight. We impose the structure ESS-IGH =

1
aL2

2+b
, choosing a and b in such a way ESS-IGH = 1

in the worst scenario (L2 =
√∑

i 6=j∗ v
2
i + (1− vj∗)2), and

ESS-IGH = N in the best case (L2 = 0), which yields
a = N−1

NL∗22
and b = 1

N . Hence,

ESS-IGH =
N

N−1
L2∗

2

(∑N
n=1 v

2
n

(
wn
Ẑ
− 1
)2)

+ 1

(55)

=
N

N−1
L2∗

2

(∑N
n=1(w̄′n − vn)2

)
+ 1

. (56)
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