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Abstract— In this paper we propose a multiple importance
sampling (MIS) method for the efficient symbol error rate (SER)
estimation of maximum likelihood (ML) multiple-input multiple-
output (MIMO) detectors. Given a transmitted symbol from the
input lattice, obtaining the SER requires the computation of an
integral outside its Voronoi region in a high-dimensional space,
for which a closed-form solution does not exist. Hence, the SER
must be approximated through crude or naive Monte Carlo
(MC) simulations. This practice is widely used in the literature
despite its inefficiency, particularly severe at high signal-to-noise-
ratio (SNR) or for systems with stringent SER requirements.
It is well-known that more sophisticated MC-based techniques
such as MIS, when carefully designed, can reduce the variance
of the estimators in several orders of magnitude with respect
to naive Monte Carlo in rare-event estimation, or equivalently,
they need significantly less samples for attaining a desired
performance. The proposed MIS method provides unbiased SER
estimates by sampling from a mixture of components that are
carefully chosen and parametrized. The number of components,
the parameters of the components, and their weights in the
mixture, are automatically chosen by the proposed method. As a
result, the proposed method is flexible, easy-to-use, theoretically
sound, and presents a high performance in a variety of scenarios.
We show in our simulations that SERs lower than 10−8 can be
accurately estimated with just 104 random samples.

Index Terms— Multiple importance sampling, symbol error
rate, Monte Carlo, multiple-input multiple-output (MIMO), max-
imum likelihood (ML) detection.

I. INTRODUCTION

Monte Carlo (MC) simulation is a key methodology for
performance evaluation in wireless communication links, for
many of which an exact computation is typically infeasible.
Monte Carlo simulations are routinely used to estimate the
symbol error rate (SER), the bit error rate (BER), or the
outage probability in wireless systems. However, naive Monte
Carlo simulation can be very inefficient and requires very
long simulation runs when the target probability is small.
For instance, the typical BER for lightwave communication
systems or satellite links (after error correction coding) can
be on the order of 10−9 to 10−12 [1] [2], the probability
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of a packet loss in packet switching systems is also on the
order of 10−9, and ultra-reliable low-latency communications
(URLLC) have requirements in terms of outage probability
lower than 10−6 [3]. A common rule of thumb is to simu-
late 10 or 100 times more samples than the inverse of the
probability we are trying to estimate. For systems with such
a stringent requirements, the MC simulation is infeasible due
to the need of performing an unreasonable large number of
trials. But even for more conventional systems with BER
requirements on the order of 10−3 − 10−5, MC simulation
can be costly in time and computational resources, especially
when it is necessary to evaluate the system performance in a
large number of scenarios due to, for example, user mobility.

In this paper, we develop an efficient simulation scheme
to study the SER of multiple-input multiple-output (MIMO)
systems using maximum likelihood decoding. The perfor-
mance of suboptimal linear MIMO detectors, such as the zero-
forcing (ZF) or the minimum mean-squared error (MMSE)
detectors, have been analyzed in [4] based on a high signal-
to-noise-ratio (SNR) approximation. The authors of [5] derived
approximate bit error rate (BER) expressions for the MMSE
MIMO receiver based on the Gamma distribution approxima-
tion for the signal-to-interference-plus-noise ratio (SINR). The
exact error performance of MMSE detection, possibly with
successive interference cancellation (SIC), was investigated
in [6], and closed-form SER expressions for the matched
filter (MF) detector in MIMO systems have recently been
derived in [7]. Based on the union bound, asymptotic SER
expressions for ML-MIMO systems decoder have been derived
in [8] [9]. However, these results only provide an upper bound,
which may be loose for scenarios involving a large number of
antennas, so to characterize the performance of ML-MIMO
decoders one must resort to computer simulations. When the
targeted SER is low and the number of antennas increases, MC
simulation becomes rapidly infeasible because of excessively
long run times required to generate errors (rare events) in
sufficiently large numbers for obtaining statistically significant
results.

To overcome this limitation of naive MC simulation, this
paper studies efficient simulation schemes based on impor-
tance sampling (IS) methods [10]–[12], which are particu-
larly suitable for rare-events estimation problems. The IS
methodology has been used for variance reduction in SER or
BER simulations in a wide range of scenarios since the late
seventies [13]–[17]. However, many digital communication
researchers are still unaware of the potential benefits of IS
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techniques to characterize the statistical performance of digital
communication systems, mostly due to the difficulty to find an
adequate IS algorithm [18].

In IS, the samples are simulated from a proposal probability
density function (pdf), different from the target pdf, with the
goal of increasing the number of errors during simulation.
Then, the samples are properly weighted using the ratio of
the target and the proposal pdfs in such a way the resulting
estimators are unbiased and consistent with the number of
samples [12]. In IS, the key for a successful performance
is in the choice of this proposal pdf. With a well-chosen
proposal, IS can reduce the variance of the estimators by
several orders of magnitude with respect to naive Monte Carlo
(or equivalently IS can work at a similar performance by using
significantly less number of samples). Many works in the
literature are devoted for the choice of the IS proposal, using
usually a mixture of components as proposal in multiple IS
(MIS) [19] and through an iterative adaptation of this proposal
in adaptive IS (AIS) [20]. In [21] a biased channel distribution
is proposed for the simulation of orthogonal space-time block
codes (OSTBCs) on Nakagami channels. The authors of [22]
used IS for the estimation of the outage probability of multi-
antenna receivers with generalized selection combining. In
a different setup, IS has been also used for approximating
outage capacity over generalized fading channels [23]–[25].
Adaptive importance sampling has been used in [26] for error
rate estimation in multiple access systems, and a nested IS
estimator to estimate the random-coding error probability of
coded modulation has been proposed in [27].

A multiple importance sampling technique called ALOE
(“At Least One rare Event”) [28], has recently been applied
to SER estimation in single-input single-ouput systems [29]
transmitting non-square 2D constellations [30]. ALOE is ex-
tremely efficient to estimate the integral of a Gaussian in a
region defined by a union of half-spaces, which is precisely the
error event in a digital communications system. Conditioned
to a transmitted symbol, an error occurs when the observation
falls in a union of half-spaces or, equivalently, outside a
given Voronoi region. The proposal in ALOE simulates the
system conditionally on an error taking place, which makes
it more efficient than other importance sampling techniques.
However, ALOE requires a perfect knowledge of the Voronoi
decision regions. This information is not available in MIMO
systems, where the Voronoi regions may be determined by a
very large number of unknown hyperplanes, which precludes a
direct application of ALOE to ML-MIMO decoders. A simple
alternative that uses just a few hyperplanes obtained from the
closest points to a given lattice point has been explored in [31],
but it provides biased estimators especially at low SNRs.

In this paper, we propose a novel IS-based method for
rare-event estimation, called defensive adaptive ALOE or
DA2LOE , particularly suited for SER estimation of the ML-
MIMO decoders. DA2LOE is a MIS method with a carefully
designed mixture proposal. In particular, we consider a pro-
posal with K + 1 components that are truncated versions of
the targeted distribution (this truncation is key for a more
efficient use of the computational budget). In this mixture,
K components are defined in a region that guarantees that

each sample produces at least one error (unlike in naive
Monte Carlo, where especially at medium-high SNR, most
samples produce zero errors), taking into account the K closest
neighbors to the transmitted signal in the transformed lattice.
The (K+1)-th proposal is designed in such a way the estima-
tor is unbiased, ensuring that all integration area is covered.
DA2LOE automatically selects the number of components,
their parameters, and the component weights in the mixture, all
by taking into account the dimension (number of antennas) and
the SNR. As a consequence, DA2LOE is a flexible, easy-to-
use, interpretable, and high-performance method that requires
very limited tuning.

A. Outline

The outline of this paper is as follows. In Section II we
present the ML detection problem in MIMO systems. In
Section III we briefly describe standard Monte Carlo, impor-
tance sampling, and multiple importance sampling methods.
The proposed algorithm DA2LOE is presented in Section IV.
Simulations results are provided in Section V. The paper is
concluded with a final discussion in Section VI.

B. Notation

In this paper, matrices are denoted by bold-faced upper case
letters, bold-faced lower case letters denote column vectors,
and scalars are denoted by light-face lower case letters. A
real matrix of dimension M ×N is denoted A ∈ RM×N and
x ∈ RM indicates that x is a real vector of dimension M . The
notation x ∼ NM (µ,R) indicates that x is an M -dimensional
Gaussian random vector of mean µ and covariance matrix R
and x ∼ CNM (µ,R) is used for complex normal vectors.
E[·] represents the expectation operator and the superscript
(·)> denotes transpose.

II. MIMO DETECTION

We consider a multiple-input multiple-output (MIMO) spa-
tial multiplexing system with T transmit and R receive an-
tennas, where the channel is unknown at the transmiter but
perfectly known at the receiver side. We assume R ≥ T . The
received signal follows the well-known baseband model

x = Hs + n, (1)

where H is an R× T matrix whose columns represent the
known complex channel gains from each transmit antenna to
the R receive antennas, s = (s1, . . . , sT )

> is the vector with
the unknown transmitted symbols, and n = (n1, . . . , nR)

> is
the noise vector. The noise is modeled as n ∼ CNR(0, σ2I).
Each symbol s belongs to a discrete constellation that we will
assume to be a square M -QAM (Quadrature Amplitude Mod-
ulation) signal. The average energy per symbol is normalized
so that E[|sk|2] =1.

We will find convenient to reformulate the problem in terms
of real variables as follows(
Re(x)
Im(x)

)
︸ ︷︷ ︸

x

=

(
Re(H) −Im(H)
Im(H) Re(H)

)
︸ ︷︷ ︸

H

(
Re(s)
Im(s)

)
︸ ︷︷ ︸

s

+

(
Re(n)
Im(n)

)
︸ ︷︷ ︸

n

.

(2)
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Then, without loss of generality we can focus on the system
model given by (1) but with real vectors and matrices, in this
case the symbols take values on a finite alphabet of integers,
n ∼ N2R(0, σ

2

2 I), and the vector s ∈ D2T belongs to a 2T -
dimensional square real lattice with cardinality |D2T | = MT .
For instance, if the number of antennas is T = 10 and we
transmit 64-QAM symbols, the number of lattice points is
6410 ≈ 1.15 · 1018.

The MIMO detection problem consists of estimating the
symbol vector ŝ ∈ D2T in (1) that minimizes the symbol
error probability. Under white Gaussian noise, the optimal
maximum likelihood (ML) decoder is obtained by solving an
Integer Least Squares problem

ŝ = min
s∈D2T

‖x−Hs‖22. (3)

Note that this problem is equivalent to constructing
the Voronoi diagram with all transformed points Hs with
s ∈ D2T , and estimating ŝ as the associated point to the
region where x falls. Maximum likelihood decoding therefore
amounts to finding the closest lattice point Hs to a given
noisy observation, x. This problem is known to be NP-hard
for generic channels [32], [33] meaning that the problem
complexity is exponential on the dimension of the lattice [34].
Using the Finke-Phost sphere-decoding (SD) algorithm [35],
ML detection can be achieved at an average complexity that
is cubic in the number of transmit antennas, as was shown
in [36]. Later Agrell et al. showed that the Schnorr-Euchner
(SE) enumeration strategy [37] reduces the complexity of
SD algorithms in comparison to [35], and very efficient SD
implementations have been proposed in [38]. Our goal in this
work is to develop efficient symbol error rate (SER) estimation
techniques for ML MIMO detection. Although we focus on
SER estimation, all methods in this paper can be generalized
to estimate the uncoded bit error rate (BER).

A. Problem statement

Let us assume that sq is transmitted and let Hq be its
associated Voronoi region, which is a polytope defined by
the intersection of finitely many hyperplanes in R2R. The
observation x = Hsq + n is the 2R-dimensional lattice point
distorted by the MIMO channel and perturbed by additive
Gaussian noise. Assuming that all symbols are transmitted
with equal probability, the symbol error probability (SER) is

Pe =
1

MT

MT∑
q=1

pe|sq , (4)

where

pe|sq =
∑
j 6=q

Tj,q
T
p(sj |sq) =

∑
j 6=q

Tj,q
T

Prob(Hsq + n ∈ Hj)

(5)
is the conditional SER when sq is transmitted, and Tj,q is
the number of complex symbol errors when sq is transmitted
and sj is detected. Each term Prob(Hsq + n ∈ Hj) is the
integral of a Gaussian distribution centered at Hsq ∈ R2R

in the polytope region Hj . Note that transmitting sq and

deciding sj can result in a different number of complex symbol
errors Tj,q ∈ {1, ..., T}; therefore each term in (5) is weighted
by Tj,q/T . If we weight each term in (5) by the ratio of
uncoded bits in error instead of Tj,q/T , then we would get
an estimate of the uncoded BER. The integrals required to
evaluate (5) are in general difficult to compute in closed-
form, and therefore Monte Carlo simulation is typically used
to estimate the SER. However, naive Monte Carlo simulation
(also called crude Monte Carlo) can be very inefficient and
requires very long simulation runs, especially at high signal-
to-noise ratios or when either the constellation size, M , or
the MIMO configuration, R× T , is large. Our goal thus is to
develop efficient sampling schemes to estimate pe|sq in (5).

III. SER ESTIMATION VIA IMPORTANCE SAMPLING

A. Standard Monte Carlo

For notational simplicity let us denote the transmitted vec-
tor as s, with associated decision region H ⊂ R2R, and let
pe , pe(s) be the conditional SER of interest, which can be
expressed as

pe =

∫
H
h(x)π̃(x)dx, (6)

where π̃(x) , N2R(Hs, σ
2

2 I) is the Gaussian distribution of
the observation, and the function h(x) = `(x)/T is the ratio of
wrongly detected symbols, i.e., `(x) is the number of symbol
errors when s is transmitted and x is received. Note that
h(x) = 0 when x ∈ H, i.e., when it falls in the Voronoi
decision region for s, whereas 1/T ≤ h(x) ≤ 1 when x ∈ H.
The standard Monte Carlo procedure consists on simulating N
i.i.d. samples from the targeted distribution and approximating
Eq. (6) as

p̂ (MC)
e =

1

N

N∑
n=1

h(xn), xn ∼ π̃(x), n = 1, ..., N. (7)

This procedure is reasonably efficient when h(xn) > 0 for
most samples. Standard Monte Carlo is known to be very
inefficient for rare events estimation [10], [11], i.e., when pe
is small, as it happens at high SNR in MIMO detection.

B. Importance sampling

Importance sampling (IS) is a Monte Carlo technique used
when sampling from π̃(x) is either not possible or not efficient
[11], [12]. The N samples are simulated instead from a so-
called proposal distribution, q(x), and the estimator of pe is
built as

p̂ (IS)
e =

1

N

N∑
n=1

wnh(xn), xn ∼ q(x), n = 1, ..., N, (8)

where wn = π̃(xn)
q(xn)

is the importance weight (also called
likelihood ratio). The estimator p̂ (IS)

e is unbiased if q(x) > 0
for all x where h(x)π̃(x) > 0. Note that the particular case
with q(x) = π̃(x) = N2R(Hs, σ

2

2 I) yields the standard Monte
Carlo estimator of Eq. (7). In this way, IS can also be seen as
a generalization of standard Monte Carlo. The key of IS is in
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the appropriate choice of the proposal q(x). The variance of
(8) is

Var
[
p̂ (IS)
e

]
=

1

N

∫
H
h2(x)π̃(x)dx− p2e

N
. (9)

and the optimal proposal, which achieves zero variance, is
given by q∗(x) = h(x)π̃(x)

pe
. The optimal proposal requires

to know pe, which is what we wish to estimate, hence it is
rarely available in practice [11], [12]. Intuitively, the variance
of the IS estimator increases when too many samples from
q(x) fall inH, and hence h(x) takes value zero. This is exactly
what happens with the MC estimator when σ2 decreases,
making MC simulation infeasible to estimate very low error
probabilities.

C. Multiple importance sampling and the ALOE algorithm

Multiple importance sampling (MIS) is a natural extension
of IS allowing for the simulation from a set of J proposals,
{qj(x)}Jj=1, instead of just one [19]. However, the extension
from one to several proposals is not straightforward and many
sampling and weighting schemes can be devised (see [19] for
a review). A conventional way to proceed is to simulate from
the mixture proposal as

xn ∼ qα =

J∑
j=1

αjqj(x), n = 1, ..., N, (10)

where α = [α1, ..., αJ ] is a simplex vector with all non-
negative weights in the mixture such that

∑J
j=1 αj = 1. The

MIS extension of Eq. (8) is

p̂ (MIS)
e =

1

N

N∑
n=1

h(xn)π̃(xn)

qα(xn)
, (11)

where the importance weight is now wn = π̃(xn)
qα(xn)

.
We recall that we aim at integrating h(x)π̃(x) in the region

H, where h(x) = `(x)
T is the ratio of symbol errors when x is

received. The region H can be described as the union of all
half-spaces in R2R generated by the hyperplanes that define
the border of H.

A natural way to adapt a MIS scheme to our problem is to
follow the choice of proposals in [28] called ALOE for “At
Least One rare Event”. In ALOE the number of proposals is
the number of hyperplanes that define the polytopeH. Let V =
{vj}Jj=1 be the set containing the J neighbors of Hs, where
we define a neighbor of Hs as a point in the transformed
(by the MIMO channel) lattice whose Voronoi region shares a
border with the Voronoi region of Hs. Each proposal in ALOE
is a truncated version of a Gaussian centered at Hs beyond
a hyperplane that defines the border between Hs and its j-th
neighbor vj .

More specifically, qj(x) =
ISj(x)π̃(x)

Pj
, where Pj =∫

ISj(x)π̃(x)dx is the integral of the target distribution in
the half-spaceHj = {x ∈ R2R |x>γj ≥ βj} where the hyper-
plane xTγj = βj is equidistant from Hs and vj . Under white
Gaussian noise, it is a simple exercise to show that the integral
in the half-space Hj concides with the integral in the half-
space R2R−1 × [dj/2,∞), where dj is the Euclidean distance

between the j-th neighbor vj and the transformed symbol Hs.
Since the noise variance is σ2/2 then Pj = Q(dj/(

√
2σ)),

where Q(·) = 1 − Φ(·) is the Q-function or tail distribution
of the standard normal pdf, and Φ(·) is the associated cdf.

The union set of the J proposals in ALOE covers the
integration area,

H =
J⋃
j=1

Hj ,

therefore the ALOE estimator is unbiased. Note also that each
draw from the mixture xn falls in a region where `(xn) > 0,
so there is at least one symbol error per draw.

In ALOE, the samples xn, n = 1, ..., N , are independently
simulated from qα. The procedure for the efficient simulation
from a truncated Gaussian distribution is described in [28] and
summarized in Appendix I.

Substituting the ALOE proposals in Eq. (11) yields the MIS
estimator

p̂ (ALOE)
e =

1

N

N∑
n=1

h(xn)π̃(xn)

qα(xn)
(12)

=
1

N

N∑
n=1

h(xn)∑J
j=1 αjIHj (xn)P−1j

. (13)

We first define p =
∑J
j=1 Pj , which is a union upper

bound of pe. The weights in the mixture proposal in Eq. (10)
are chosen as αj = Pj/p̄, for j = 1, ..., J (see [28] for a
justification). Then, the ALOE estimator is

p̂ (ALOE)
e =

p

N

N∑
n=1

h(xn)∑J
j=1 IHk(xn)

=
p

N

N∑
n=1

h(xn)

C(xn)
, (14)

where C(xn) =
∑J
j=1 IHj (xn) is the number of half-spaces

Hj where xn is present. ALOE is unbiased, and its variance
can be bounded as

Var
(
p̂ (ALOE)
e

)
≤ pe(p̄− pe)

N
,

i.e., the bound of the variance decays with the number of sam-
ples, N , and the scale factor depends on the true probability,
pe. It is straightforward to understand the high performance
of ALOE for high SNR scenarios for which pe is very small.
A deeper theoretical analysis of ALOE can be found in [28].

ALOE has recently been used for SER estimation of single-
input single-output (SISO) channels with non-square two-
dimensional constellations in [29]. With two-dimensional lat-
tices or constellations the Voronoi regions are determined by
just a few hyperplanes, which can easily be computed, and
hence an exact implementation of ALOE is possible. However,
for MIMO systems the number of hyperplanes J determining
a Voronoi region can be very large. Therefore, finding all
neighbors V = {vj}Jj=1 of Hs (i.e., those whose associated
polytopes share one hyperplane with the polytope that encloses
H) for each lattice point under test, Hs, is in general not
feasible. The best we can hope for is to select, applying a SD-
like algorithm, a set CK = {ck}Kk=1 containing the K closest
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points to Hs in the transformed lattice. We form in this way
a new estimator that we call ALOE-K

p̂ (ALOE-K)
e =

1

N

N∑
n=1

h(xn)∑K
k=1 αkIHk(xn)P−1k

(15)

=
p(ALOE-K)

N

N∑
n=1

h(xn)

C(xn)
(16)

where αk = Pk, for k = 1, ...,K, as in ALOE and p(ALOE-K) =∑K
j=1 Pj . For ALOE-K to be unbiased, the proposal support

QK =
K⋃
k=1

Hk should contain the whole integration area H.

If one neighbor of the set V = {vj}Jj=1 is missed, then the
mixture proposal will not cover the whole integration area and
hence ALOE-K will be negatively biased with

bias(ALOE-K) = E[p̂ (ALOE-K)
e ]− pe (17)

= −
∫
H\QK

h(x)π̃(x)dx < 0, (18)

i.e., p̂ (ALOE-K)
e underestimates the probability of error. In the

next section we propose an alternative MIS estimator that
incorporates a defensive component in the mixture to recover
the unbiasedness of the estimate, while adaptively selecting
the number of hyperplanes K.

IV. DEFENSIVE ADAPTIVE ALOE

Here we present the defensive adaptive ALOE (DA2LOE)
algorithm with three important features. First, DA2LOE is
unbiased thanks to the introduction of an extra proposal in the
mixture that plays a similar role as the defensive component
in defensive IS [39]. However, in DA2LOE the defensive
proposal is not the targeted distribution as in conventional
defensive IS, but a more efficient distribution that takes into
account the geometry on the problem as well as the rest
of proposals already included in the mixture. Moreover, the
weight of this proposal in the mixture is also automatically set.
Second, in addition to the defensive component the proposal
mixture in DA2LOE is composed of K Gaussians truncated
beyond a hyperplane, as in ALOE. Finally, DA2LOE allows
for an automatic choice of K jointly with the design of the
aforementioned defensive proposal.

A. Mixture proposal

The DA2LOE mixture proposal is

qα(x) =
K+1∑
k=1

αkqk(x), (19)

with K + 1 components qk(x) and non-negative associated
mixture weights αk. For each lattice point under test, Hs, we
choose its K+1 nearest neighbors CK+1 = {ck}K+1

k=1 , defined
in decreasing order of Euclidean distance, e.g., c1 is the closest
point to Hs (below we discuss the choice of K jointly with the
other parameters). The sphere decoding algorithm [38] can be
applied to find the K+1 nearest neighbors, CK+1 = {ck}K+1

k=1 ,
that belong to a hypersphere of appropriate radius centered at
Hs. To this end, an increasing radius search procedure can be

applied [40]. The K+1 DA2LOE components are selected as
follows.

• K ALOE-like components. We design the set of pro-
posals {qk(x)}Kk=1 similarly as in ALOE. Each proposal
qk(x) is a truncated version of a Gaussian centered at Hs
beyond each hyperplane that defines the pairwise border
between Hs and its k-th neighbor ck. In Appendix I, we
describe the procedure to both simulate from qk(x) and
find its associated normalizing constant Pk.

• One defensive component. The defensive proposal,
qK+1(x), is designed as follows. Let cK+1 be the (K +
1)-th closest point to Hs at Euclidean distance dK+1.
Note that cK+1 is the next closest point after the K
neighbors that determine the ALOE-like proposals. Then,
the defensive proposal is a truncated Gaussian distribution
conditionally on ||x−Hs||2 > dK+1/2, i.e.,

qK+1(x) = P−1K+1π̃(x)ISK+1
(x), (20)

where

SK+1 = {x ∈ R2R, ||x−Hs||2 ≥ dk+1/2}

is the outside of a hypersphere of radius dK+1/2 and
PK+1 =

∫
SK+1

π̃(x)dx is its normalizing constant. The
choice of the defensive proposal ensures that the mixture
covers all the support where the integrand of Eq. (6) takes
values different from zero, and hence DA2LOE is unbi-
ased. In Appendix I-C, we describe how to sample from
a multivariate normal truncated outside a hypersphere, as
well as the computation of PK+1.

B. Algorithm, choice of mixture weights, and estimator

Algorithm 1 summarizes the DA2LOE method. In Step 1
(Proposal adaptation), DA2LOE algorithm starts with the
defensive component in the mixture proposal, and iteratively
incorporates ALOE-like components. The choice of K is done
by sequentially adding points in increasing order of Euclidean
distance until a stopping rule is fulfilled, forming the set
CK+1 with the K + 1 closest points. Since the distances to
the neighbors d1 ≥ d2 ≥ . . . ≥ dK are increasing, and
Pk = Q(dj/(

√
2σ)) is a monotonically decreasing function,

then P1 ≥ P2 ≥ . . . ≥ PK . The algorithm stops incorporating
proposals when the K-th component has received a small
mixture weight, i.e., αK < γ, where γ is a threshold chosen
a priori (see the discussion in Section IV-D). In Step 2
(Sampling), N independent samples, {xn}Nn=1, are simulated
from the designed mixture proposal qα(x) as in Eq. (19).
The standard importance weights are computed in Step 3
(Weighting). Finally, the (unnormalized) IS estimator is built
in Step 4. Figure 1 displays a graphical representation of
DA2LOE and naive Monte Carlo.

The DA2LOE estimator is derived as follows. First, by
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standard IS arguments,

p̂ (DA2LOE)
e =

1

N

N∑
n=1

h(xn)π̃(xn)

qα(xn)
(21)

=
1

N

N∑
n=1

h(xn)

αK+1ISK+1
(xn)P−1K+1 +

∑K
k=1 αkIHk(xn)P−1k

.

(22)

The mixture weights of the K ALOE-like proposals are
chosen as αk = (1−αK+1) Pk∑K

k=1 Pk
, k = 1, ...,K, i.e., αk ∝

Pk, following arguments as in [28]. Note that
∑K+1
k=1 αk =

1, i.e., {αk}K+1
k=1 represents a probability mass function. The

choice of αK+1 is discussed in Section IV-D.
Substituting the choice of the mixture weights in Eq. (22),

the estimator can be written as

p̂ (DA2LOE)
e =

1

N

N∑
n=1

h(xn)
αK+1

PK+1
ISK+1

(xn) +
∑K
k=1

αk
Pk

IHk(xn)

=
1

N

N∑
n=1

h(xn)
αK+1

PK+1
ISK+1

(xn) + (1−αK+1)
p(ALOE-K)

∑K
k=1 IHk(xn)

=
1

N

N∑
n=1

h(xn)
αK+1

PK+1
ISK+1

(xn) + (1−αK+1)
p(ALOE-K) C(xn)

,

(23)

where we recall that p(ALOE-K) =
∑K
k=1 Pk and C(xn) =∑K

k=1 IHk(xn) is the number of half-spaces Hk where xn
is present.

C. Analysis of DA2LOE

In the following we discuss the unbiasedness of
DA2LOE and provide an upper bound for its variance.

Theorem 1: The DA2LOE estimation p̂ (DA2LOE)
e is unbi-

ased, i.e., E[p̂ (DA2LOE)
e ] = pe.

Proof : Note that, by construction, the proposal of
DA2LOE qα(x) fully covers H, the support where the
integrand of Eq. (6) takes values different from zero. Hence,
because of IS arguments, the DA2LOE estimator is unbiased
since it corresponds to the unnormalized IS estimator. See
Appendix II-A for a formal proof. �

Theorem 2: The variance Var[p̂ (DA2LOE)
e ] of DA2LOE can

be upper-bounded as

Var[p̂ (DA2LOE)
e ] =

∫
H

h2(x)π̃(x)
αK+1

PK+1
ISK+1

(x) + (1−αK+1)
p(ALOE-K) C(x)

dx− p2e

(24)

<
1

N

(
P 2
K+1

αK+1
+ pe

(
p(ALOE-K)

1− αK+1
− pe

))
.

(25)
Proof : See Appendix II-B for a proof. �

Algorithm 1 DA2LOE
Input: γ and ξ

1: 1. Proposal adaptation. Set k = 0
2: while αk > γ do
3: set k := k + 1
4: find ck and ck+1, the k-th and (k+1)-th closest points

to Hs, at distances dk and dk+1, respectively
5: define the half-space

Hk = {x ∈ R2R |x>γk ≥ βk}

which is equidistant from s and ck, and the set

Sk+1 = {x ∈ R2R | ||x−Hs||2 ≥ dk+1/2}

6: compute Pk =
∫
IHk(x)π̃(x)dx, i.e., the integral of

the target distribution in the half-space Hk
7: Compute Pk+1 =

∫
ISk+1(x)π̃(x)dx, the integral of

the target distribution outside the hypersphere Sk+1, and
set αk+1 = min(Pk+1, ξ)

8: recompute the mixture weights

αj = (1− αk+1)
Pj∑k
i=1 Pi

, j = 1, ..., k (26)

9:
10: end while
11: Set K := k as the final number of ALOE proposals
12: 2. Sampling. Simulate independently

xn ∼ qα(x) =
K+1∑
k=1

αkqk(x) (27)

13: 3. Weighting. The importance weight of the n-th sample
is

wn =
1

αK+1

PK+1
ISK+1

(xn) + (1−αK+1)
p(ALOE-K) C(xn)

. (28)

14: 4. Estimator. The IS estimator is given by

p̂ (DA2LOE)
e =

1

N

N∑
n=1

wnh(xn) (29)

=
1

N

N∑
n=1

h(xn)
αK+1

PK+1
ISK+1

(xn) + (1−αK+1)
p(ALOE-K) C(xn)

.

(30)

15: Output: p̂ (DA2LOE)
e

The bound in (25) provides useful insights on the choice of
K and αK+1 that are further discussed in the next section.

We now analyze the variance of ALOE-K in Eq. (16). Let us
first consider the case when the support of the mixture proposal

covers the integration area (i.e., when QK ,
K⋃
k=1

Hk = H).

Then, the variance can be bounded as Var[p̂ (ALOE-K)
e ] ≤

pe(p
(ALOE-K)−pe)
N , V

(ALOE)
, since it would particularize to the

ALOE estimator (see [28, Theorem 2]). In the case with
QK ⊂ H (the mixture proposal covers only a subset of the
support of the integrand), the ALOE-K variance is bounded
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as Var[p̂ (ALOE-K)
e ] ≤ p(ALOE-K)

e (p(ALOE-K)−p(ALOE-K)
e )

N , V
(ALOE-K)

,
where p(ALOE-K)

e = E[p̂ (ALOE-K)
e ] < pe is the expectation of the

ALOE-K estimator (which is negatively biased in this case).
Regarding DA2LOE, we recall that PK+1 is the integral

of the Gaussian out of a hypersphere with a radius that
depends on K. When K grows, PK+1 gets smaller. Then,
in the bound of (25), for a fixed αK+1, we can make the
term P 2

K+1

αK+1
arbitrarily small by increasing K. Moreover, we

can also reduce αK+1 in such a way that the ratio P 2
K+1

αK+1

is still negligible with respect to the second term in (25).
In summary, by increasing K and carefully reducing αK+1,
we can cover better the integration area with the K ALOE-
like proposals, while allowing us to reduce the weight of the
defensive component. In this scenario, the bound in (25) is
dominated by its second term as

Var[p̂ (DA2LOE)
e ] <

1

N

(
P 2
K+1

αK+1
+ pe

(
p(ALOE-K)

1− αK+1
− pe

))
≈ 1

N

(
pe

(
p(ALOE-K)

1− αK+1
− pe

))
, V

(DA2LOE)
.

(31)

First, note that by increasing K, we would eventually cover
the whole support of the integrand with the K ALOE-like
proposals, and then we could get V

(DA2LOE)
arbitrarily close to

V
(ALOE)

by reducing αK+1. In other words, we would recover
ALOE as a limiting case, since in this scenario, ALOE-K
becomes ALOE. Moreover, in this case, V

(DA2LOE)
can be re-

written as

V
(DA2LOE)

=
1

1 + pe(1−αK+1)
p(ALOE-K)−pe(1−αK+1)

V
(ALOE)

. (32)

The constant multiplying in the right-hand side of Eq. (32)
can be interpreted as the price to pay in DA2LOE to ensure
that the estimator is unbiased. Moreover, we note that (25)
can be a loose bound, and in practice the MSE in DA2LOE
will be in general smaller than in ALOE-K, especially at low
SNR where the bias of ALOE-K is particularly significant
(see the numerical validation in Section V). The extra cost
per sample of DA2LOE compared to ALOE-K is negligible,
and it is associated to checking whether xn is outside of the
hypersphere that defines the defensive component.

The variance of the naive Monte Carlo estimator is exactly
V (MC) = pe(1−pe)

N (see for instance [11]). ALOE-K guarantees
a variance reduction with respect to naive Monte Carlo when
p(ALOE-K) < 1, which happens at medium/high SNR for a
reasonable choice of K. Following similar arguments, when
the choice of K and αK+1 makes the first term of (25)
negligible, a variance reduction in DA2LOE is guaranteed if
p(ALOE-K)

1−αK+1
< 1 (and, since the estimator is unbiased, also a MSE

reduction is ensured). In practice, for most ranges of SNR,
DA2LOE largely outperforms naive Monte Carlo in terms of
variance for the same N , which is equivalent to say that in
general it can obtain better results with much fewer samples.

D. Adaptive choice of K and αK+1

The number of ALOE-like components in the mixture,
K, and the weight assigned to the defensive component,

αK+1, determine the accuracy of the estimator as well as
its complexity. In addition, at high SNR it is expected that
only a few closest symbols (hyperplanes) will contribute to
the conditional symbol error probability [41], so both K and
αK+1 should be chosen as a function of the noise variance.
Finally, note that DA2LOE has only two parameters, ξ and
γ, that are closely connected to the choice of K and αK+1.

First, note that αK+1 modulates the importance of the spher-
ically truncated proposal, and balances the tradeoff between
defensiveness (to give enough mass to regions not covered
by the ALOE proposals) and efficiency loss (to not give too
much mass to already covered regions or to regions in H).
For moderate/high SNR, the non-covered probability mass is
smaller, and it is possible to reduce the weight of the defensive
proposal. A sensible choice is αK+1 = PK+1. In this way,
we guarantee that the mixture proposal pdf qα(x) ≥ π̃(x) for
those points not covered by at least one of the K ALOE-like
proposals, i.e., for all {x : ||x−Hs||2 > dK+1/2}. However,
for high-dimensional problems PK+1 can be very close to one
(even for high K), which can compromise the efficiency of
DA2LOE when most of the mass is assigned to the defensive
proposal. For this reason, we propose to limit the defensive
weight αK+1 ≤ ξ. For higher dimensions, PK+1 needs a
higher SNR to drop significantly from 1, and hence other less-
defensive strategies could be devised. Regarding, the choice
of γ, which controls the adaptation of K, we recommend it to
be selected on the order of magnitude of 1/N . The rationale
is that when αK is smaller than 1/N , on average the proposal
would be chosen to simulate less than one sample out of the
N random draws, i.e., adding more components in the mixture
would not significantly change it. We recall that the use of the
defensive proposal attenuates the impact of missing potentially
relevant hyperplanes/proposals, making DA2LOE unbiased.

V. SIMULATION RESULTS

In this section, we study the performance of the proposed
MIS estimators for MIMO systems with M -QAM transmitted
signals by means of Monte Carlo simulations. We consider
Rayleigh MIMO channels with i.i.d. zero-mean and unit
variance complex Gaussian entries hij ∼ CN (0, 1). In each
simulation, the SER for a given Eb/N0 is estimated as follows:

1) Q codewords are generated by sampling uniformly the
2T dimensional squared real lattice defined by the
M−QAM constellation: sq ∈ D2T , q = 1, . . . , Q.

2) For each noiseless received codeword, Hsq , we draw N
samples from the proposal distribution xq,n ∼ q(x), n =
1, . . . , N . For the standard naive Monte Carlo algorithm,
q(x) = N2R

(
Hsq,

σ2

2 I
)

. For ALOE-K, q(x) is the K
component mixture proposal in (16). For DA2LOE, q(x)
is the K+1 component mixture proposal in (23), where
the last term of the mixture corresponds to the defensive
proposal.

3) We apply sphere decoding (SD) or any other approx-
imate ML detection to each received vector. When
the number of antennas is large, even efficient SD
implementations can be computationally costly. For
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(a) Raw Monte Carlo (σ2 = 0.3)
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(b) DA2LOE (σ2 = 0.3)
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(c) Raw Monte Carlo (σ2 = 0.015)
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(d) DA2LOE (σ2 = 0.015)

Fig. 1. In this 2-dimensional toy example we show the integration region
(gray background), the transmitted symbol (red cross), and the hyperplanes
delimiting the Voronoi region (black lines). The samples of naive Monte Carlo
and DA2LOE (with K = 2) algorithms are displayed with dots (different
colors mean different proposals). In DA2LOE , the solid lines describe
the truncation border of the three proposals (K = 2 hyperplanes and one
hypersphere).

this reason, we apply instead an approximate fixed-
complexity ML-decoding algorithm that takes advantage
of the fact that the number of visited lattice points, Q,
is in general much smaller than the total number of
received vectors NQ. The idea is the following: for
each of the Q visited lattice points, Hsq , we find its
S nearest neighbors using a SD-like algorithm. In our
simulations we take S = 300. The approximate ML-
decoding algorithm then finds for each noisy received
signal, xqn ∼ q(x), the closest lattice point to xqn
among the fixed-size subset of S nearest neighbors. Note
that for both MC and DA2LOE it is necessary to run
the SD algorithm, or its approximate version, for each
of the samples generated. In addition, the computational
complexity of SD increases with the number of symbols
in the constellation. Therefore, for large constellations
such as 1024-QAM, used for example for both 5G+ and
beyond-WiFi-6 applications, a simulation scheme such
as DA2LOE that provides unbiased, low-variance SER
estimates with as few samples as possible is even more
important.

4) Finally, the SER is obtained by averaging the conditional
SER estimates as

P̂e =
1

Q

Q∑
q=1

p̂e|sq , (33)

where p̂e|sq is the conditional error probability when sq
is transmitted, which is estimated as (7), (16), and (23)
for naive Monte Carlo (denoted as MC), ALOE-K and
DA2LOE, respectively.

With the proposed simulation setup, the SER is estimated
at each Eb/N0 with a total of Nt = QN samples. For the
proposed MIS estimators a number of samples on the order of
Nt ≈ 104 (we use in our simulations Q = 100 lattice points
and N = 100 random samples of the mixture for each lattice
point), allows us to obtain low variance estimates for error
probabilities lower than 10−10. Similar accuracies cannot be
reached with standard MC or previously proposed importance
sampling schemes.

As figures of merit to characterize the statistical perfor-
mance of the different estimators, we use the relative root
mean squared error (RRMSE) defined as

RRMSE =

√
E
[
(P̂e − Pe)2

]
Pe

, (34)

and the bias
Bias =

∣∣∣E [P̂e]− Pe∣∣∣, (35)

where Pe is the true symbol error probability. The expectations
in (34) and (35) are estimated by averaging the results of
500 independent simulations, whereas the true Pe is estimated
running ALOE with a high number of mixture proposals and
draws per mixture (we set K = 300).

A. Performance comparison: MC, ALOE-K and DA2LOE

In this subsection we compare the performance of naive
Monte Carlo (denoted as MC in the figures), ALOE-K, and
DA2LOE. For the three methods, the P̂e at each Eb/N0 is
estimated by generating Q = 100 codewords and N = 100
random draws of the mixture per codeword, for a total of
Nt = QN = 104 random samples. The parameters for
DA2LOE are ξ = 0.85 and γ = 1/(10N).

Experiment 1: Performance comparison for a 6×6 MIMO
system transmitting 64-QAM signals. We consider in the
first example a 6 × 6 MIMO channel transmitting 64-QAM
signals (i.e., T = R = 6, M = 64). Figure 2 shows the SER
curves for MC, ALOE-K with K = 10, K = 50, and K =
100 mixture components and DA2LOE. Fig. 3 shows (a) the
RRMSE and (b) the bias of the estimates. Figure Fig. 3(b) only
shows the results of ALOE with K mixture components, since
naive Monte Carlo and DA2LOE are unbiased estimators.

At low or moderate Eb/N0, ALOE with K mixture com-
ponents provides biased SER estimates. Note that the Voronoi
regions could be determined by many more hyperplanes than
the prefixed value K. In other words, the intersection of the K
half-spaces does not cover the whole integrating area where
the integrand takes significant values and hence the estimator
is biased. At high Eb/N0, however, the conditional symbol
error probability has an asymptotic behavior proportional to
Q
(
dmin√

2σ

)
, where Q(·) denotes the Gaussian Q-function and

dmin is the distance to the closest lattice point [41]. Therefore,
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S
E

R

Fig. 2. SER vs. Eb/N0 curves for MC, ALOE-K, and DA2LOE. 6 × 6
MIMO system transmitting 64-QAM signals.

in this regime only the closest hyperplanes contribute to the
integral and ALOE-K is practically unbiased.

The defensive component of DA2LOE eliminates the bias
at low Eb/N0 values, so DA2LOE and MC are both unbiased
estimators. In fact, in this regime MC is almost optimal and,
as we observe in Fig. 3(a), DA2LOE replicates its behavior.
As the SNR increases, the weight assigned to the defensive
component decreases and the number of components of the
mixture varies as shown in Fig. 4. When the Eb/N0 is
low, DA2LOE retains all possible hyperplanes (in this case
K = 100), whereas when the Eb/N0 is high only a few
hyperplanes are kept in the mixture. For intermediate values,
the behaviour can be non-monotonic due to the interplay
between the defensive and the non-defensive components on
the mixture.

In summary, the DA2LOE mixture proposal composed of an
adaptive number of hyperplanes plus a defensive component
gets unbiased and low-variance estimates with affordable
computational cost over the whole Eb/N0 range.

The SER curves for MC and DA2LOE along with their
confidence intervals are depicted in Fig. 5. The confidence
interval has been magnified to [−20σ, 20σ] for visualization
purposes. Even so, for high Eb/N0 values the confidence
interval region of DA2LOE is so small in comparison to that
of the MC estimate that it is not visible in the figure.

Experiment 2: Performance comparison for a 25 × 25
MIMO system transmitting 16-QAM signals. In the second
example we consider a 25 × 25 MIMO channel transmitting
16-QAM signals (i.e., T = R = 25, M = 16). Fig. 6 shows
(a) the RRMSE and (b) the bias of the estimates. Again,
DA2LOE provides unbiased and extremely accurate SER
estimates with just Nt = 104 random samples per Eb/N0

point. The number of component mixtures selected by
DA2LOE is shown in Fig. 7. Finally, Fig. 8 shows the SER
curves for MC and DA2LOE along with their confidence
intervals. Again we see the good performance of DA2LOE,

particularly good for the challenging range of high SNR
values.

Let us finally remark that DA2LOE estimates the SER for
a fixed MIMO channel realization, regardless of its structure
(e.g., correlation between antennas) or fading distribution [42].
Its final performance and computational complexity, however,
may depend on the channel characteristics. For instance, the
number of hyperplanes that determine the decision regions in-
creases as the number of antennas grows, or as the correlation
between the matrix entries increases. This, in turn, increases
the complexity of DA2LOE , since more hyperplanes need
to be included in the mixture to ensure a satisfactory per-
formace. Note also that DA2LOE is specifically designed for
ML MIMO detectors. If a linear MIMO decoder, followed by
a componentwise decisor, is used, then the decision regions are
hypercubes determined by a fixed number of 2T hyperplanes.
Consequently, for efficient SER estimation of linear MIMO
detectors there is no need to use DA2LOE and the simpler
ALOE-K estimator can be used instead.

VI. CONCLUSIONS

In this paper we have proposed an efficient SER estimator
for ML-MIMO decoders. The so-called DA2LOE generates
N samples from a mixture of K + 1 truncated Gaussians:
each of the first K components is a Gaussian truncated to
a half-space that ensures that each random sample produces
at least one error, while the last K + 1 component is a
Gaussian truncated to the outside of a hypersphere and acts
as a defensive component that makes the estimator unbiased.
The advantage of DA2LOE is that all samples from the first K
components of the mixture produce at least one symbol error,
which is a key feature of the algorithm, particularly for high
SNR when most samples in naive Monte Carlo would give
zero errors. DA2LOE is unbiased, and our simulations show
that it provides low variance estimates for SER values lower
than 10−8 with as few as N = 104 samples, largely reducing
the computational cost with respect to naive Monte Carlo.
The paper has focused on SER estimates for a fixed MIMO
channel realization. Nevertheless, the SER performance of
fading MIMO channels could be analyzed by first sampling
a channel realization from the fading distribution (probably
using some IS methodology adapted to the fading distribution)
and then applying DA2LOE . In this case, more efficient nested
IS procedures might be worth studying. Another future line
of research is to adapt DA2LOE to characterize the BER
performance of coded modulations. It would be also possible
to design other suitable defensive proposals that could be
sequentially adapted.

APPENDIX I
SAMPLING FROM TRUNCATED GAUSSIANS

A. Simulation from a truncated Gaussian N2L(0, I) in a half-
space

The proposals in the MIS implementation are truncated
Gaussian distributions. Let us first describe the simulation of
a truncated Gaussian π̃(x) = N2R(x; 0, I) in the half-space
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(a) Relative Root MSE (RRMSE) (b) Bias for ALOE-K with different number of mixture proposals. MC and
DA2LOE are unbiased and hence are not shown in the figure.

Fig. 3. Performance of MC, ALOE-K and DA2LOE for a 6× 6 MIMO system transmitting 64-QAM signals.

Fig. 4. Number of DA2LOE hyperplane components for a 6 × 6 MIMO
system transmitting 64-QAM signals.

described by x>ω ≥ τ , i.e., q(x) =
π̃(x)I

x>ω≥τ (x)

Z . It first
proceeds by simulating the sample x from the complementary
half-space (i.e., x>ω < τ ), and then delivering the −x for
numerical stability. The algorithm described in [43] proceeds
as follows:

1) Simulate z ∼ N2R(0, I)
2) Simulate u ∼ U(0, 1)
3) Let y = Φ−1(uΦ(−τ)), where Φ(·) denotes the cumu-

lative distribution function for the standard Gaussian
4) Let x = ωy +

(
I− ωωT

)
z

5) Output x := −x

Interestingly, Z = Φ(−τ) =
∫
Ix>ω≥τ (x)N2L(x; 0, I)dx is

the normalizing constant of the distribution. This normalizing
constant is used by the ALOE-K and DA2LOE algorithms.

-2 0 2 4 6 8 10 12

10-8

10-6

10-4

10-2

100

Fig. 5. SER vs. Eb/N0 for MC and DA2LOE with confidence intervals.
6× 6 MIMO system, 64-QAM signals.

B. Extension to a generic truncated Gaussian N2R(µ,Σ) in
a half-space

When the target distribution is a generic truncated Gaussian
N2R(µ,Σ) that must be integrated over the union of the half-
spaces described by the hyperplanes {γk, βk}Kk=1, one can
transform the problem as follows. First, we describe K half-
spaces with the hyperplanes x>ωk ≥ τk, where

ωk =
γTk Σ1/2√
γTk Σγk

, and τk =
βk − γTk µ√
γTk Σγk

, (36)

for k = 1, . . . ,K. Then, a Gaussian N2R(0, I) is integrated
over the union of the transformed half-spaces as described in
previous section.
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(a) Relative Root MSE (RRMSE) (b) Bias for ALOE-K with different number of mixture proposals. MC and
DA2LOE are unbiased and hence are not shown in the figure.

Fig. 6. Performance of MC, ALOE-K and DA2LOE for a 25× 25 MIMO system transmitting 16-QAM signals.

Fig. 7. Number of DA2LOE hyperplane components for a 25× 25 MIMO
system transmitting 16-QAM signals.

C. Simulation from a truncated Gaussian outside a hyper-
sphere

We denote the defensive DA2LOE proposal as

q(x) =
π̃(x)IS(a)(x)

Z
, (37)

where π̃(x) = N2R(x;µ, η2I), and

S(a) = {x ∈ R2R | ||x− µ||2 ≥ a

is the region outside of a hypersphere of radius a (with
a = dK+1/2 ind DA2LOE ) and Z =

∫
S(a) π̃(x)dx is its

normalizing constant. We can efficiently sample from q(x) by
using standard methods used in directional statistics [44]. We
proceed as follows:

Fig. 8. SER vs. Eb/N0 for MC and DA2LOE with confidence intervals.
25× 25 MIMO system, 16-QAM signals.

1) Simulate r ∼ χ2
2R(r|r > a), i.e., from the truncated χ2

distribution with 2R degrees of freedom, defined in the
interval (a,∞). This can be efficiently done as follows:

• Find c as the cdf of the distribution χ2
2R at

(
a
η

)2
(e.g., using in MATLAB the function chi2inv).

• Apply a modified inverse transform sampling by
first sampling uniformly u ∼ U(c, 1), and then
obtaining r as the evaluation of u in the inverse
cdf of χ2

2R.

2) Simulate z ∼ N2R(0, I) of dimension 2R.
3) Project z in the 2R− 1 unit sphere θ = z

||z|| .
4) Output x = µ+ ηθ

√
r.

The normalizing constant is simply Z = 1− c.
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APPENDIX II
DA2LOE ANALYSIS

A. Unbiasedness of DA2LOE

The expectation of the DA2LOE estimator, from Eq. (22),
is given by

E[p̂ (DA2LOE)
e ] (38)

= E
[

1

N

N∑
n=1

h(xn)

αK+1ISK+1
(xn)P−1K+1 +

∑K
k=1 αkIHk(xn)P−1k

]
(39)

where the expectation is with respect to the mixture proposal

qα, with support QK+1 =
K⋃
k=1

Hk
⋃
SK+1. Hence, from (39),

E[p̂ (DA2LOE)
e ]

=
1

N

N∑
n=1

∫
QK+1

h(x)

αK+1ISK+1
(xn)P−1K+1 +

∑K
k=1 αkIHk(x)P−1k

· qα(x)dx (40)

=

∫
QK+1

h(x)

αK+1ISK+1
(xn)P−1K+1 +

∑K
k=1 αkIHk(x)P−1k

(41)

·

(
αK+1ISK+1

(xn)P−1K+1π̃(x) +
K∑
k=1

αkIHk(x)P−1k π̃(x)

)
dx

=

∫
QK+1

h(x)π̃(x)dx (42)

where we have used that

qα(x) =

K+1∑
k=1

αkqk(x) (43)

= αK+1ISK+1
(x)P−1K+1π̃(x) +

K∑
k=1

αkIHk(x)P−1k π̃(x).

(44)

Next,

E[p̂ (DA2LOE)
e ] =

∫
H
h(x)π̃(x)dx +

∫
QK+1\H

h(x)π̃(x)dx

(45)

=

∫
H
h(x)π̃(x)dx (46)

= pe, (47)

where we have used H ⊆ QK+1 by construction of the
proposal, and h(x) = 0 for all x ∈ QK+1 \ H.

B. Variance of DA2LOE

Let us express the variance of the 1-sample DA2LOE
estimator (N = 1, for N > 1, simply divide by N ) as

Var[p̂ (DA2LOE)
e ] = E[w(x)2h(x)2]− E[w(x)h(x)]2 (48)

where

w(x) =
1

αK+1ISK+1
(x)P−1K+1 + (1−αK+1)

p(ALOE-K) C(x)
. (49)

Next, we make use of an auxiliary variable z, where z = 0
whenever the sampling is done from the defensive proposal,
and z = 1 otherwise (from the ALOE-like proposals). Hence,

E[w(x)2h(x)2] = P(z = 0)E[w(x)2h(x)2|z = 0] (50)

+ P(z = 1)E[w(x)2h(x)2|z = 1] (51)

= αK+1E[w(x)2h(x)2|z = 0] (52)

+ (1− αK+1)E[w(x)2h(x)2|z = 1] (53)

Next, since qK+1(x) = ISK+1
(x)P−1K+1π̃(x),

EqK+1
[w(x)2h(x)2|z = 0]

=

∫
h(x)2(

αK+1ISK+1
(x)P−1K+1 + (1−αK+1)

p(ALOE-K) C(x)
)2 qK+1(x)dx

(54)

= P−1K+1

∫
SK+1

h(x)2π̃(x)(
αK+1ISK+1

(x)P−1K+1 + (1−αK+1)
p(ALOE-K) C(x)

)2 dx
(55)

≤ P−1K+1

∫
SK+1

1(
αK+1P

−1
K+1

)2 dx (56)

=
PK+1

α2
K+1

∫
SK+1

dx (57)

=
P 2
K+1

α2
K+1

(58)

where we have used that h(x) ≤ 1 and that, when z = 0, the
sample is at least present in SK+1 (and could be also present
in the K half-spaces H). Next,

Eq(ALOE) [w(x)2h(x)2|z = 1]

=

∫
h(x)2(

αK+1ISK+1
(x)P−1K+1 + (1−αK+1)

p(ALOE-K) C(x)
)2 q(ALOE)(x)dx

(59)

≤
∫

1(
(1−αK+1)
p(ALOE-K) C(x)

)2 q(ALOE)(x)dx (60)

=

(
p(ALOE-K)

1− αK+1

)2 ∫
1

C(x)2
q(ALOE)(x)dx (61)

where we have used again that h(x) ≤ 1. Then, we use [28,
Theorem 2], establishing∫

1

C(x)2
q(ALOE)(x)dx ≤

(
p(ALOE-K))−1p(ALOE-K)

e (62)

≤
(
p(ALOE-K))−1pe, (63)

where p(ALOE-K)
e = E[p̂ (ALOE-K)

e ]. Note that p (ALOE-K)
e ≤ pe

since ALOE uses a subset of the set of half-spaces whose
union defines the integration set H . Then,

Eq(ALOE) [w(x)2h(x)2|z = 1] ≤
(
p(ALOE-K)

1− αK+1

)2 (
p(ALOE-K))−1 pe

(64)

= pe
p(ALOE-K)

(1− αK+1)2
. (65)
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Finally, we are able to bound the variance as

Var[p̂ (DA2LOE)
e ]

≤ αK+1

P 2
K+1

α2
K+1

+ (1− αK+1)pe
p(ALOE-K)

(1− αK+1)2
− p2e (66)

=
P 2
K+1

αK+1
+ pe

p(ALOE-K)

1− αK+1
− p2e (67)

=
P 2
K+1

αK+1
+ pe

∑K
k=1 Pk

1− αK+1
− p2e. (68)
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