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Consider a random vector X with distribution p(z) and a function h{X). Of interest is

b= EhX] = [ ha)pla)de (1
One Monte Carlo method to estimate (1) is to draw independent samples X,..., X, from p(z). Then
1 m
p=— ; h{X;) (2)
is a natural and unbiased estimate of u. Consider an alternative where samples X1, ..., Xy, are drawn from

a distribution f(x) not identical to p(x). Since (1) can be rewritten as

h(m)p(w) = r rjar = )l
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where w(z) = p(z)/(z),

1 m

—~ ; B(X:Jw(Xs) (4)
is also an unbiased estimate (1). This is the standard method of importance sampling and w(X;) is the
importance sampling weight of sample i. Note that £;[w(X)} = 1, but the sample average W = L 37" w(X;)
is in general not equal to one. Let w'(X;) = w(X;)/W be the standardized weights, which by definition have

sample average one. As an alternative to (4), another possible estimate of (1) is

L VP MX)w(Xe) _ % (5)
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where Z = h(X)w(X). There can be two reasons for choosing (5) over (4) as the estimate. In some cases,
(5) has a smaller MSE than (4). In other situations, the importance sampling weights w(X;) can only be
evaluated up to an unknown constant ¢. In that case, (4) cannot be computed, but (5) can because

21 MXDw(X)e | 3T M(X)w(Xs)
21 w(Xi)e ST w(Xi)

the constant ¢ cancels. In this note, we explore the efficiency of i and in particular are interested in the

ratio

Vary[f]
Var, 4]’

a measure of the relative efficiency between sampling from p(z) and sampling from f(z). From (5), it can

be seen that i is in effect a ratio estimate. Based on standard theory on ratio estimates, the bias is of order
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1/m and can be ignored for large m. Also, its variance, using the delta method (see for example Rice 1988),

has the approximation

Vary[ii] = —((E¢(Z]/ E;[W))*Vary (W] + Vars[Z] — 2(E;[Z]/ E¢[W])Covy [W, Z])

(6)
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(¢*Vary [W] + Vars [Z] — 2uCov, [W, Z])
First, note that
Cov;[W, 2] = E4[W 2] — Ef[WE[2] = B;[HW?] — p = E,[HW] — pt = Cov,[W, H] + pE,[W) — p (7)

where f = h(X) and in the last two steps the expectation and covariance are taken under p instead of f.

Similarly,

Vary[Z] = B¢ [W2H?| — Ef[WH] = E,[WH?) — p* (8)

By again applying the delta method and using only the first two moments of W and H, we get the approx-

imation
1
Ep[W H?| ~ E,[W]Ej[H] + EVarp[H]@Ep[W]) + Cov,[W, H](2E,[H]) ©)
= Ut Ep[W] + Var, [H] Ep[W] + 2uCov, [W, H]
It is also easy to show that the remainder term in the above approximation is
Ep[(W ~ BEp[WI)H — Ep[H])?] = E,[(W — Ep[W)(H — p)7] (10)
By a.ppl.ing (7) through (9) to (6) and simplifying, we get
. 1
Vary (] & —(Varp [H] By (W] + (1 + Varg [W] - E,[W1]) (11)

(Note that the term Cov,{W, H] disappears.) Because L1 Var,[H] = Var,[4] and E,[W] = Ef[W? =
Var{W]+ 1, (11) reduces to
Vary[f] ~ Vary[a)(1 + Var [W])

or

Varg[@]
Var, (] 1+ Vary [W] (12)

Obviously this approximation can be off substantially if the remainder term (10) is not small. What is

nice about (12) is that it does not involve A(X). This makes it particularly usefully as a measure of the
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relative efficiency of importance sampling using standardized weights when many different &'s are of potential

interest. Indeed, in sampling, when importance sampling is used, the rule of thumb is to consider

m
1 + Vars[W]

as the effective sample size. Given a sample, if w(X;) can be evaluated up to a constant, then Vary[W] can

be estimated by the sample variance of the standardized weights.
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