
1

Compressed Monte Carlo
with application in particle filtering

Luca Martino>, Vı́ctor Elvira∗
> Dep. of Signal Processing, Universidad Rey Juan Carlos (URJC) and Universidad Carlos III de Madrid (UC3M)

∗ School of Mathematics, University of Edinburgh (UK)

Abstract—Bayesian models have become very popular over the
last years in several fields such as signal processing, statistics, and
machine learning. Bayesian inference requires the approximation
of complicated integrals involving posterior distributions. For this
purpose, Monte Carlo (MC) methods, such as Markov Chain
Monte Carlo and importance sampling algorithms, are often
employed. In this work, we introduce the theory and practice
of a Compressed MC (C-MC) scheme to compress the statistical
information contained in a set of random samples. In its basic
version, C-MC is strictly related to the stratification technique,
a well-known method used for variance reduction purposes.
Deterministic C-MC schemes are also presented, which provide
very good performance. The compression problem is strictly
related to the moment matching approach applied in different
filtering techniques, usually called as Gaussian quadrature rules
or sigma-point methods. C-MC can be employed in a distributed
Bayesian inference framework when cheap and fast communica-
tions with a central processor are required. Furthermore, C-MC
is useful within particle filtering and adaptive IS algorithms,
as shown by three novel schemes introduced in this work. Six
numerical results confirm the benefits of the introduced schemes,
outperforming the corresponding benchmark methods. A related
code is also provided.1

Index Terms—Bayesian inference, MCMC, importance sam-
pling, particle filtering, Gaussian quadrature, sigma points,
herding Algorithms, distributed algorithms

I. INTRODUCTION

An essential problem in signal processing, statistics, and
machine learning is the estimation of unknown parameters
in probabilistic models from noisy observations. Within the
Bayesian inference framework, these problems are addressed
by constructing posterior probability density functions (pdfs)
of the unknowns [4], [45]. Unfortunately, the computation
of statistical quantities related to these posterior distributions
(such as moments or credible intervals) is analytically
impossible in most real-world applications. As a consequence,
the design of efficient computational algorithms is of utmost
interest. Monte Carlo (MC) techniques come to the rescue for
solving the most difficult problems of inference [27], [44].
They are benchmark tools for approximating complicated
integrals involving sophisticated multidimensional target
densities, based on drawing of random samples [44], [34].
Markov Chain Monte Carlo (MCMC) algorithms, Importance
Sampling (IS) schemes, and its sequential version (particle
filtering) are the most important classes of MC methods [45].

E-mail: luca.martino@urjc.es.
1The code is provided at http://www.lucamartino.altervista.org/CMC

CODE pub EX1.zip

Determinism and support points. In order to reduce the
computational demand of the Monte Carlo methods and the
variance of the corresponding estimators, deterministic
procedures have been included within the sampling
algorithms. In the so-called variance reduction techniques
(e.g., conditioning, stratification, antithetic sampling, and
control variates), negative correlation is induced among
the generated samples, hence obtaining more efficient
estimators [41], [49]. In Quasi-Monte Carlo (QMC) methods,
deterministic sequences of samples are employed, based on the
concept of low-discrepancy, avoiding all kinds of randomness
[15], [16], [39]. In the same line, deterministic approximations
of the posterior distribution based on quadrature, cubature
rules, or unscented transformations are often applied, when
are available [1], [21], [50], [45]. These techniques provide a
set of particles deterministically chosen (often called sigma
points), to match perfectly the estimation of a pre-established
number of moments of the posterior density. Most of them are
derived for integrals that involve a Gaussian distribution [45].
These techniques are usually used in filtering applications
as an extension of the standard Kalman filtering and as
an alternative to the particle filtering techniques based on
MC sampling. The quadrature rules are very efficient since
with N weighted particles summarized exactly the first 2N
non-central moments. However, quadrature approximations
are available only for certain target densities. Indeed, the
true values of the moments must be known and a solution
of a highly non-linear system must be provided. This is
possible only for specific target densities. More generally,
the idea of sigma points is strictly connected to the need of
summarizing a given distribution (and/or function) with a set
of representative, support points, deterministically selected
[30], [29]. This is an important topic is in computational
statistics and has gained increasing attention in the last
years: some relevant examples are the herding algorithms [9],
[10], [24], [18], the studies about the representative points
previously mentioned [29], [30], as well as space-filling and
experimental designs [42]. Some of them have been applied
jointly with MC schemes or used for numerical integration
problems [24], [18].

Contribution. In this work, we introduce different schemes
for compressing the information contained in N Monte
Carlo samples into M < N weighted particles. They are
based on the so-called stratification approach [41], [44]. In
the Compressed Monte Carlo (C-MC) schemes, we replace

2

the particle MC approximation obtained by N unweighted
samples (e.g., generated by an MCMC algorithm) or weighted
samples (e.g., generated by an IS algorithm), with another
particle approximation with M < N summary weighted
samples. We desire to reduce the loss of information in
terms of moment matching, in the same fashion of the
quadrature rules. In this sense, the M summary particles can
be considered as approximate sigma points. Furthermore, for
a specific choice of the partition (specifically, see the case of
unweighted C-MC samples in Section IV-C), an approximate
low-discrepancy sequence is obtained, i.e., a QMC sequence is
generated. Several alternatives and extensions are presented,
including the random or deterministic selection of the
summary particles.
The C-MC approach has a direct application in a parallel
or distributed Bayesian framework with a centralized node,
as discussed in Section V-A and graphically represented
in Figure 2 . In this scenario, different local low-power
nodes must transmit to a central node the results of their
local Bayesian analysis, to provide a common complete
inference [38], [3], [43]. The transmission should have the
minimum possible cost and contain the maximum amount
of information. Hence, the information must be properly
compressed before being transmitted (see Section V for
further details). C-MC can be considered an improvement of
the bootstrap strategy, applied in different works regarding
parallel sequential Monte Carlo schemes, where several
resampled particles are transmitted jointly with a proper
aggregated weight [3], [43], [48], [31]. However, the range
of application of C-MC is not only restricted to the distributed
scenario. We introduce two novel particle filtering schemes
based on the C-MC approach. The first scheme enhances the
well-known Gaussian particle filter (GPF) [23]. This proposed
algorithm contains the GPF as a special case (with M = 1)
and the regularized particle filter (with M = N) [12]. The
second proposed scheme, called compressed particle filter
(C-PF), requires the evaluation of the measurement model
only M times instead of N . Therefore, the C-PF is faster
than a standard particle filter and is particularly convenient
when the likelihood evaluation is costly. We also provide an
example of C-MC in modern adaptive IS schemes to allow
the use of expensive mixtures as the denominator of the
importance weights [33], [46]. More details are provided in
Section V. Finally, note that similar and related ideas have
been presented in different works and several applications,
such as diffusion estimation [8], [40], smoothing techniques
[13], and as alternative resampling procedures in particle
filtering [25], [26]. The benefits of the proposed schemes are
shown in six different numerical experiments.
Structure of the work. Section II introduces the basic setup
of the Bayesian inference problem and describes the goal
of the paper jointly with some possible solutions already
presented in the literature. In Section III, we introduce the
C-MC method whereas, in Section IV, we provide further
analyses. In Section V, we describe different applications
of C-MC, several novel algorithms, and further extensions.
Section VI provides six numerical experiments, and some
conclusions are contained in Section VII. The main acronyms

of the work are summarized in Table I.

Table I
MAIN ACRONYMS OF THE WORK.
pdf probability density function
MC Monte Carlo

QMC Quasi-Monte Carlo
MCMC Markov Chain Monte Carlo

IS Importance Sampling
C-MC Compressed Monte Carlo
C-PF Compressed Particle Filter
MSE Mean Square Error

II. BACKGROUND

A. Problem statement
In many real-world applications, the interest lies in obtain-

ing information about the posterior density of a set of unknown
parameters given the observed data. Mathematically, denoting
the vector of unknowns as x = [x1, ..., xdx]> ∈ D ⊆ RdX and
the observed data as y ∈ RdY , the pdf is defined as

π̄(x|y) =
`(y|x)g(x)

Z(y)
∝ π(x|y) = `(y|x)g(x), (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf,
and Z(y) is the normalization factor, that is usually called
marginal likelihood or Bayesian model evidence. From now
on, we remove the dependence on y to simplify the notation. A
particular integral involving the random variable X ∼ π̄(x) =
1
Zπ(x) is then given by

I(h) , Eπ̄[h(X)] =

∫
D
h(x)π̄(x)dx =

1

Z

∫
D
h(x)π(x)dx,

(2)
where h(x) can be any integrable function of x.2 For simplic-
ity, we assume that the functions h(x) and π̄(x) are continuous
in D, and the integrand function, h(x)π̄(x), in Eq. (2) is
integrable. More generally, we are interested in finding a
particle approximation π̂(N)(x) of the measure of π̄(x) [27].
In many practical scenarios, we cannot obtain an analytical
solution for the integral in Eq. (2). One possible alternative
is to use different deterministic quadrature rules or formulas
based on sigma points for approximating the integral I(h)
[1], [21], [45]. However, these deterministic techniques are
available only in specific scenarios, i.e., for some particular
pdfs π̄(x). Hence, Monte Carlo schemes are often preferred
and applied to estimate I and provide a particle approximation
π̂(N)(x).

B. Monte Carlo (MC) sampling techniques
If it is possible to draw N independent samples, {xn}Nn=1,

directly from π̄(x), then we can construct a particle approx-
imation π̂(N)(x) = 1

N

∑N
n=1 δ(x − xn) of the measure of π̄

2To simplify the notation, we have assumed h(x) : RdX → R and the
integral I(h) ∈ R is a scalar value. However, a more proper assumption is
h(x) : RdX → Rν and I(h) ∈ Rν where ν ≥ 1. All the techniques and
results in this work are valid for the more general mapping with ν ≥ 1, but
we keep the simpler notation for ν = 1. With ν > 1, we would have a vector
of integrals I(h). For instance, if h(x) = x we have ν = dX , and we have
one integral for each component of x.

3

[44]. This is the foundation of MC methods, denote as standard
or direct MC. Therefore, replacing π̄(x) with π̂(N)(x) in Eq.
(2), we obtain the standard Monte Carlo estimator of I ,

Î(N)(h) =
1

N

N∑
n=1

h(xn). (3)

However, when sampling from π̄(x) is not possible, alternative
MC methods are used [27], [44]. For instance, the MCMC
algorithms generate correlated samples {xn}Nn=1 that, after
a burn-in period, are distributed according to π̄(x). Another
possible approach is based on the importance sampling (IS)
technique [44], [4]. In the following, we describe the basic
ideas behind the IS schemes. Consider N samples {xn}Nn=1

drawn from a proposal pdf, q(x), with heavier tails than the
target, π̄(x). We assign a weight to each sample and then we
can be normalized them as follows,

wi =
π(xi)

q(xi)
, w̄i =

wi∑N
j=1 wj

, (4)

with i = 1, ..., N . Therefore, the moment of interest can be
approximated as

Î(N)(h) =
1

NẐ

N∑
i=1

wih(xi) (5)

=

N∑
i=1

w̄ih(xi), (6)

where Ẑ = 1
N

∑N
j=1 wj is a unbiased estimator of Z =∫

D π(x)dx [44]. One can consider that, in the standard
Monte Carlo and MCMC methods, the normalized weights are
w̄i = 1/N . Then, all the described Monte Carlo estimators can
be summarized by Eq. (6), and the particle approximation of
the measure of π̄ is given by

π̂(N)(x) =

N∑
n=1

w̄nδ(x− xn), (7)

where δ(x) is the Dirac delta function. This formulation
encompasses jointly MCMC and IS, and in the former case,
we have access to the values of the unnormalized weights wn.
Hence, in the IS setting, an estimator Ẑ = 1

N

∑N
n=1 wn of the

marginal likelihood Z is also available.

C. Goal

In this work, we address the problem of summarizing the
information contained in a set of N weighted or unweighted
samples generated by a Monte Carlo sampling technique, with
a smaller amount M < N of weighted samples. This problem
is strictly related to the more general challenge: summarizing
the required information of a given target density π̄(x), using a
particle approximation (with the smallest amount of weighted
particles). Generally, there is a loss of information. More
precisely, given a Monte Carlo approximation π̂(N)(x) in Eq.
(7), with N samples, we desire to construct another particle

approximation

π̃(M)(x) =

M∑
m=1

āmδ(x− sm), (8)

where M < N ,
∑M
m=1 ām = 1, and sm ∈ D, sharing

with π̂(N) the required properties. The goal is to compress
the statistical information contained in π̂(N)(x), reducing as
much as possible the loss of information. We refer to ām as
summary weights and, to sm, as summary particles. The rate
of compression is clearly given by η = N

M . Note that when
η = 1 we have no compression whereas, when η = N , we
have the maximum compression (1 ≤ η ≤ N).

D. Related works

In the literature, two families of possible solutions have
been proposed for different but related purposes. The first
one is based on a bootstrap technique, and can be always
used. The second one is the moment-matching approach, and
is available only for a limited type target pdfs π̄(x).

Bootstrap solution. Let assume that we have N unweighted
samples. A simple approach for compression consists in
choosing uniformly M samples within the N possible ones.
Similarly, in the case of weighted samples, this strategy
consists in resampling M times within the set {xn}Nn=1

according to the normalized weights w̄n, n = 1, ..., N
[3]. Then, a proper aggregated weight is associated to the
resampled particles [3], [32], [31]. This kind of compression
scheme has been widely used in different works (explicitly
or implicitly), from distributed particle filtering methods and
other sophisticated Monte Carlo algorithms [3], [43], [36],
[48].

Moment-matching solution. For simplicity and without
loss of generality, let us consider dX = 1, i.e., x ∈ R.
For some specific types of target pdfs π̄(x) and specific
domains D, it is possible to obtain a deterministic particle
approximation π̃(M)(x) =

∑M
m=1 ρmδ(x − sm) where the

weights ρm and the particles sm are solutions of the nonlinear
moment-matching system below,
M∑
m=1

ρms
r
m =

∫
D
xrπ̄(x)dx for r = 1, ..., R = 2M, (9)

where the true values of the first 2M non-central moments,∫
D x

rπ̄(x)dx, must be known. Hence we have 2M unknowns
(the M weights ρm and the M particles sm) and R = 2M
equations. Since the system is highly nonlinear, in general,
the analytical solution is available only in few particular
cases. These solutions are known as Gaussian Quadratures
[45], the corresponding deterministic particle approximation
provide a perfect-matching with the first 2M moments (zero
loss of information in the approximation of these moments).
Quadrature rules and related sigma point methods have been
widely applied within several generalized Kalman filtering
techniques [1], [21], [45].

4

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 1. One run of a C-MC scheme with M = 10, for two different clouds of N = 103 samples (represented by dots). Each figure represents a different
target π̄(x) (shown by the contour plots). The size of the circles is proportional to the corresponding summary weight.

III. COMPRESSED MONTE CARLO (C-MC)

In this work, we introduce a compression approach that
improves the bootstrap strategy and extends the applicability
of the moment-matching scheme, both described above. We
consider the cases of compressing unweighted and weighted
samples, e.g., the N samples have been previously generated
by an MCMC algorithm or an IS technique, respectively.
Figure 1 shows two examples of C-MC approximation with
M = 10 summary particles. The size of the circles is
proportional to the corresponding summary weight.

A. Stratification

The underlying grounds of C-MC are based on the so-called
stratified sampling [28], [41]. The idea is to divide the support
domain D of the random variable X into M separate and
mutually exclusive regions. More specifically, let us consider
an integer M ∈ N+, and a partition P = {X1,X2,,XM}
of the state space with M disjoint subsets,

X1 ∪ X2 ∪ ... ∪ XM = D,
Xi ∩ Xk = ∅, i 6= k, ∀i, j ∈ {1, ...,M}.

(10)

We assume that all Xm are convex sets. Then, in the simplest
version of the stratification approach, one sample is drawn
from each sub-region, and finally all the generated samples
are combined for providing an estimator of I(h). We also
denote the area of π̄(x) restricted in Xm as

ām = P(X ∈ Xm) =

∫
Xm

π̄(x)dx =
1

Z

∫
Xm

π(x)dx,

=
Zm
Z

=
Zm∑M
j=1 Zj

,
(11)

where Zm =
∫
Xm

π(x)dx and Z =
∑M
j=1 Zj =

∫
D π(x)dx.

Note that
∑M
m=1 ām = 1. The target density can be expressed

as a mixture of M non-overlapped densities,

π̄(x) =

M∑
m=1

ām

[
1

ām
π̄(x)IXm

(x)

]
=

M∑
m=1

āmπ̄m(x), (12)

where

π̄m(x) =
1

ām
π̄(x)IXm

(x) =
1

Zm
π(x)IXm

(x), (13)

is the m-th density in the mixture, and IXm
(x) is an indicator

function that is 1 when x ∈ Xm and 0 otherwise.

Stratified MC estimators. In order to simulate a sample x∗

from π̄(x), we can draw an index j∗ ∈ {1, ...,M} according
to the probability mass function ām, m = 1, ...,M and
the draw x∗ ∼ π̄j∗(x). Alternatively, we could yield an
approximation of the measure of π̄, drawing one sample
from each region, i.e., sm ∼ π̄m(x), and then assign to each
sample the weight ām, m = 1, ...,M . Therefore, in this
scenario, the corresponding estimator of the integral I(h) in
Eq. (2) and the particle approximation are, respectively,

Ĩ(M)(h) =

M∑
m=1

āmh(sm), and (14)

π̃(M)(x) =

M∑
m=1

āmδ(x− sm), (15)

where sm ∼ π̄m(x) = 1
Zm

π(x)IXm
(x), hence sm ∈ Xm.

See the Supplementary Material, for extensions and
further details.

B. C-MC algorithms

Let consider N weighted samples {xn, w̄n}Nn=1 generated
by a MC scheme, and let M be a constant value such that M <
N . Given the partition in Eq. (10), i.e., X1∪X2∪...∪XM = D
formed by convex, disjoint sub-regions Xm, we denote the
subset of the set of indices {1, ..., N},

Jm = {i = 1, ..., N : xi ∈ Xm},

which are associated with the samples in the m-th sub-region
Xm. The cardinality |Jm| denotes the number of samples in
Xm, and we have

∑M
m=1 |Jm| = N .

C-MC approximation. We can compress the information

5

contained in the particle approximation of Eq. (7), constructing
an empirical stratified approximation based on M weighted
particles {sm, âm}Mm=1, i.e.,

π̃(M)(x) =

M∑
m=1

âmδ(x− sm), (16)

so that for a specific moment the resulting estimator is

Ĩ(M)(h) =

M∑
m=1

âmh(sm), (17)

where âm is an approximation of ām =
∫
Xm

π̄(x)dx in Eq.
(11), considering the given samples.

Normalized C-MC weights. We can write

âm =

∫
Xm

π̂(N)(x)dx =

N∑
i=1

w̄i

∫
Xm

δ(x− xi)dx,

=
∑
i∈Jm

w̄i. (18)

Hence, in the case of compressing samples generated by a
standard MC or MCMC schemes, since w̄i = 1

N , we obtain
âm = |Jm|

N that is again an estimate of the probability ām =
P(X ∈ Xm) in Eq. (11). In the IS case, we can also obtain
the expression âm as the ratio of the MC estimators

Ẑm =
1

N

∑
i∈Jm

wi, Ẑ =

M∑
m=1

Ẑm =
1

N

N∑
n=1

wn, (19)

i.e.,

âm =
Ẑm

Ẑ
=
∑
i∈Jm

wi∑N
n=1 wn

=
∑
i∈Jm

w̄i, (20)

as suggested by Eq. (11). Note that, in all cases, we have
0 ≤ âm ≤ 1 and

∑M
m=1 âm = 1.

Stochastic choice of sm. We consider different strategies
for the selection of the summary particles sm. The first one
is a stochastic approach based on the stratified sampling:
each summary particle sm is resampled within the set of
samples xi ∈ Xm, i.e., {xi, with i ∈ Jm}, according to the
normalized weights,

w̄m,i =
wi∑

k∈Jm
wk

=
w̄i∑

k∈Jm
w̄k

=
w̄i
âm

, i ∈ Jm. (21)

In the case of samples generated by standard MC or MCMC
schemes, then we obtain w̄m,i = 1

|Jm| .

Deterministic choice of sm. In the same fashion of
the deterministic rules and sigma-point construction discussed
in Section II-D, we can also set

sm =
∑
j∈Jm

w̄m,jxj , (22)

or, if we are interested on the approximation of a specific
integral involving a function h, we can set

sm =
∑
j∈Jm

w̄m,jh(xj). (23)

These deterministic rules provides a good performance and
enjoy interesting properties, as discussed in the next sections
and Appendix A.

Other C-MC weights. In some applications, it is required to
define an aggregated weight

W =

N∑
n=1

wn = NẐ, (24)

which is associated to the discrete measure π̃(M). It is useful
in the distributed scenario, as described in Section V [3],
[43], [31]. In the case of samples drawn by a standard Monte
Carlo or MCMC scheme, the unnormalized weights wn are un-
known, but we can set W = N . In the IS scenario, we can also
define the unnormalized C-MC weights am = 1

N âmW = Ẑm.
These weights, am, can be employed for reconstructing the
estimator of the marginal likelihood. Indeed, we have

Z̃ =
1

N

M∑
m=1

am =
1

N

M∑
m=1

Ẑm = Ẑ, (25)

recovering perfectly the IS estimator Ẑ. Table II summarizes
the main expressions introduced in this section.

Table II
SUMMARY OF THE MAIN C-MC EXPRESSIONS.

Scheme wi w̄i âm am W

IS π(xi)
q(xi)

wi
N∑

n=1
wn ∑

i∈Jm

w̄i

Ẑm

Ẑ
Ẑm

N∑
i=1

wi

MCMC —
1

N

|Jm|
N

— N

Ẑm = 1
N

∑
i∈Jm

wi Ẑ = 1
N

∑N
i=1 wi w̄m,j =

w̄i
âm

Additional observation. Note also that the estimator Î(N)(h)
can be expressed as linear combination of partial estimators,
i.e.,

Î(N)(h) =

N∑
i=1

w̄ih(xi) =

M∑
m=1

∑
i∈Jm

w̄ih(xi),

=

M∑
m=1

âm
∑
i∈Jm

w̄m,ih(xi)

=

M∑
m=1

âmÎm(h), (26)

where we have used w̄m,i = w̄i

âm
as shown in Eq. (21), and we

6

have define the partial estimators Îm(h) =
∑
i∈Jm

w̄m,ih(xi),
for m = 1, ...,M . Namely, the MC estimator Î(N)(h) of I(h)
can be expressed as a convex combination of the M partial
MC estimators, since

∑M
m=1 âm = 1. A similar expression is

valid for the particle approximations, i.e.,

π̂(N)(x) =

M∑
m=1

âmπ̂m(x), where (27)

π̂m(x) =
∑
i∈Jm

w̄m,iδ(x− xi). (28)

IV. ANALYSIS OF C-MC

Proper partition and consistency. Let us focus on the way
the partition is formed. A partition rule is proper if, when
M = N , then |Jm| = 1 (note that m = n in this case), i.e.,
in the limit case of M = N we consider all the MC samples
as summary samples. Recall that, for M < N , the C-MC
estimators are unbiased as shown in the Supp. Material
(with Km = 1 and V = M). Furthermore, if the partition
rule is proper then, for M = N , the C-MC estimators will
coincide with the non-compressed MC estimators. Hence, as
M → N and N →∞, the consistency is ensured.

Save in transmission. Let us consider the parallel or
distributed framework with a common central node. In
C-MC, only the M pairs {âm, sm}Mm=1 are transmitted to
the central node, instead of the N pairs. Since, x, s ∈ RdX ,
without compression, we need to transmit NdX scalar values
in case of unweighted samples, or N(dX +1) scalar values in
the case of weighted samples. With the proposed compression
scheme, the transmission of only M(dX + 1) scalar values is
required.

A. Compression Loss

Loss for the deterministic C-MC. Let us consider the deter-
ministic choice of the summary particles as

sm =
∑
j∈Jm

w̄m,jxj , m = 1, ...,M. (29)

Hence, keeping fixed {xn, w̄n}Nn=1 and the partition, the
summary particles sm defined in Eq. (29) are also fixed. Recall
that the standard MC estimator and the corresponding C-MC
estimator are

Î(N)(h) =

N∑
n=1

w̄nh(xn), Ĩ(M)(h) =

M∑
m=1

âmh(sm).

For a specific function h, the information loss for a C-MC
scheme can be measured with the squared error, i.e.,

`(h) = (Î(N)(h)− Ĩ(M)(h))2, (30)

or more generally,

`(h, f) = (Î(N)(h)− Ĩ(M)(f))2, (31)

where f(x) is another integrable function. Furthermore,
considering a family H of R functions, i.e., H =
{h1(x), ..., hR(x)}, we can write we can define the loss as

LR =

R∑
r=1

ξ2
r`(hr) =

R∑
r=1

ξ2
r

(
Î(N)(hr)− Ĩ(M)(hr)

)2

, (32)

which is a weighted average of the squared errors, with
weights ξ2

r . For instance, we can set ξ2
r ∝ 1

[Î(N)(hr)]
2 if

Î(N)(hr) 6= 0, so that LR is equivalent to a sum of the
relative errors, or simply ξ2

r = 1
R . Moreover, recalling that

Î(N)(h) =
∑M
m=1 âmÎm(h) as shown in Eq. (26), we can

write

`(h) =
(
Î(N)(h)− Ĩ(M)(h)

)2

=

 M∑
m=1

âm
∑
j∈Jm

w̄m,jh(xj)−
M∑
m=1

âmh(sm)

2

.

We can rewrite it as

`(h) =

 M∑
m=1

âm

 ∑
j∈Jm

w̄m,jh(xj)− h(sm)

2

.

Recalling π̂m(x) =
∑

j∈Jm

w̄m,jδ(x−xj) and the definition of

sm in Eq. (29), we can also write

`(h) =

(
M∑
m=1

cm(h)

)2

, (33)

where

cm(h) = âm

[∑
j∈Jm

w̄m,jh(xj)− h
(∑
j∈Jm

w̄m,jxj

)]
, (34)

and we have replaced the specific choice sm =∑
j∈Jm

w̄m,jxj in Eq. (29). Using also the equalities w̄m,j =
w̄j

âm
and âm =

∑
j∈Jm

w̄j , we obtain

cm(h) =
∑
j∈Jm

w̄jh(xj)− âmh
(∑
j∈Jm

w̄m,jxj

)
, (35)

=
∑
j∈Jm

w̄j

[
h(xj)− h

(∑
j∈Jm

w̄m,jxj

)]
. (36)

The expressions (34)-(36) only depend on the MC samples
{xn, w̄n} and the partition, that we have considered pre-
established and fixed. Note also that if h is a linear function,
then we have a zero-loss compression, i.e., `(h) = 0. The
choice in Eq. (29) is interesting since it provides a very
good performance (see Section VI) and also resembles a
deterministic quadrature rule with weighted nodes (it can be
interpreted an approximate sigma-point construction [21],
[45]).

Zero-loss compression. If we are interested only in
one specific integral I(h) =

∫
D h(x)π̄(x)dx, it is convenient

to apply C-MC with the following summary particles

sm =
∑
j∈Jm

w̄m,jh(xj), (37)

7

as highlighted by the theorem below.

Theorem 1. If sm as in Eq. (37) is chosen, for
m = 1, ...,M , and the linear mapping f(x) = x, we
have Î(N)(h) = Ĩ(M)(f), i.e., zero-compression loss
`(h, f) = 0.

See Appendix A for the proof. Therefore, if we are
interested only in one specific integral involving π̄(x), we
can obtain a perfect compression by choosing the summary
particles as in Eq. (37). With the choice in Eq. (37), sm ∈ R
is a scalar value since we have assumed h(x) : RdX → R
for simplicity, instead of the more general assumption
h(x) : RdX → Rs, and s ≥ 1. However, all the presented
results are valid for the general case with s ≥ 1.

Zero-loss estimator of the marginal likelihood. In the
weighted sample scenario, we have also the estimator of the
marginal likelihood Ẑ = 1

N

∑N
n=1 wn. The corresponding C-

MC estimator is Ĩ(M) = 1
M

∑M
m=1 am = 1

M

∑M
m=1 Zm = Ẑ

as shown in Eq. (25), hence the loss is
(
Ĩ(M) − Ẑ

)2

= 0.
Namely, we always recover the IS estimator of the marginal
likelihood, without any loss.

Loss for the stochastic C-MC. Let us consider the case
when sm is resampled randomly in each partition, according
to the weights w̄m,j in Eq. (21). Given the set of weighted
samples S = {xn, w̄n}Nn=1, we can define the conditional
expected mean-square error,

`(h) = Eπ̂m
[(Ĩ(M)(h)− Î(N)(h))2|S]. (38)

Note that, in this case, we have

Eπ̂m
[h(sm)|S] =

∑
j∈Jm

w̄m,jh(xj) = Îm(h). (39)

Given Eq. (26), we can also write as

Î(N)(h) =

M∑
m=1

âmÎm(h) =

M∑
m=1

âmEπ̂m
[h(sm)|S], (40)

so that

Ĩ(M)(h)− Î(N)(h) =

M∑
m=1

âm

(
h(sm)− Eπ̂m

[h(sm)|S)]
)
.

Taking the expectation of both sides, we have

Eπ̂m
[Ĩ(M)(h)− Î(N)(h)|S]

=

M∑
m=1

âm

(
Eπ̂m

[h(sm|S]− Eπ̂m
[h(sm)|S]

)
= 0,

where we have also used the property E[E[Z]] = E[Z].
Therefore, the conditional mean error is zero, then conditional
expected mean-square error can be easily expressed as

`(h) = Eπ̂m
[(Ĩ(M)(h)− Î(N)(h))2|S]

=

M∑
m=1

â2
mEπ̂m

[(
h(sm)− Eπ̂m

[h(sm)|S]
)2∣∣∣S].

Finally, noting that the term Eπ̂m

[(
h(sm) −

Eπ̂m
[h(sm)|S]

)2∣∣∣S] is the definition of the variance of
the random variable h(sm), we obtain

`(h) =

M∑
m=1

â2
mvarπ̂m

[h(sm)|S]. (41)

Recalling that âm =
∑
i∈Jm

w̄i and expressing the variance
varπ̂m

[h(sm)|S] in terms of weights and samples as shown in
Appendix B, we can also write the expected loss as

`(h) =

M∑
m=1

[∑
i∈Jm

w̄i
∑
i∈Jm

w̄i|h(xi)|2 −
∣∣∣ ∑
i∈Jm

w̄ih(xi)
∣∣∣2] ,

`(h) =

M∑
m=1

cm(h), (42)

where

cm(h) =
∑
i∈Jm

w̄i
∑
i∈Jm

w̄i|h(xi)|2 −
∣∣∣ ∑
i∈Jm

w̄ih(xi)
∣∣∣2. (43)

Note that the expression of `(h) above is independent from the
stochastically-chosen summary particles sm. This motivates an
adaptive procedure for building a good partition, as discussed
below.

B. Compression by kernel density estimation

In Eq. (16), we can replace the delta functions with ker-
nel functions K(x|sm,Σm), for instance Gaussian kernels
N (x|sm,Σm), of mean sm and with a dX × dX covariance
matrix Σm the dX × dX obtained by an empirical estimation
considering the samples in Xm, i.e.,

Σm =
∑
j∈Jm

w̄m,j(xj − sm)(xj − sm)> + δI, (44)

where sm is defined in Eq. (22) and δ > 0. Thus, we also
have

π̃(M)(x) =

M∑
m=1

âmK(x|sm,Σm), (45)

where K(·) represents a so-called kernel function with location
parameter sm and covariance matrix Σm. In a distributed sce-
nario, the M triplets {âm, sm,Σm}Mm=1 must be transmitted
in the central node. The transmission of M(1

2d
2
X + 3

2dX + 1)
scalar values are required. Alternatively, we can use

Σm = Σ = diag(σ̂2
1 ,, σ̂

2
dX) + δI, (46)

where σ̂2
i = varπ̂[xi,n] with i = 1, ..., dX and n = 1, ..., N .

Hence, only M(2dX + 1) scalar values must be transmitted.

C. Choice of the partition

In this section, we discuss some examples of practical
choices of the partition, and then a possible adaptive proce-
dure. Given the N samples xn = [xn,1, ..., xn,dX]> ∈ D ⊆
RdX , with n = 1, ..., N . Then, we list three practical choices
from the simplest to the more sophisticated strategy:

8

P1 Random grid, where each component of the elements of
the grid are contained within the intervals min

n=1,...,N
xn,i

and max
n=1,...,N

xn,i, for each i = 1, ..., dX .

P2 Uniform deterministic grid, where each component of the
elements of the grid are contained within the intervals

min
n=1,...,N

xn,i and max
n=1,...,N

xn,i, for each i = 1, ..., dX .

P3 Voronoi partition obtained by a clustering algorithm with
M clusters (e.g., the well-known k-means algorithm).

Adaptive procedure. Set t = 0 and choose an initial partition
P0 = {X1,X2, ...,XM0

} of the domain D, with M0 = |P0|
disjoint sub-regions, obtained applying the procedure P2,
for instance. Decide also the stopping condition, choosing a
maximum number of sub-regions Mmax < N or a threshold
for the loss, L. Therefore, while Mt ≤ Mmax or `(h) ≥ L
(where `(h) is computed as in Eq. (33) or (42)), split the m∗-
th sub-region, with

m∗ = arg max
m

cm(h). (47)

Repeat the procedure above, until the desired stopping
condition is reached. For the stochastic C-MC scheme, this
procedure can be extended jointly for several functions h.
Recall that we define as a proper partition rule, any partition
rule such that when M = N , then sm = xn and âm = w̄n
(note that m = n in this case), i.e., in the limit case with
M = N we consider all the MC samples as summary samples.

Unweighted C-MC particles. Let us consider to have
N samples generated by a standard MC or an MCMC
algorithm, i.e., we have w̄i = 1

N for i = 1, ..., N . We can
choose a partition such that the C-MC weights, âm, are
equals. Indeed, if the partition is chosen such that |Jm| = M

N
for all m, then âm = 1

M . In this case, the partition is
related to the empirical quantiles of the target distribution.
In this scenario, we can interpret the C-MC particles as an
approximate quasi-Monte Carlo (QMC) samples. Indeed, as
the number of MC samples N grows, the distribution of
the nodes sm follows the definition of low-discrepancy [39].
Furthermore, since âm = 1

M for all m then, in a distributed
scenario, the transmission of summary weights can be
avoided: the only information still required is the aggregated
weight W = N , as we show in the next section. However, we
recall that the performance in terms of information loss (see
Section IV-A) depends on the cost cm(h) in each sub-region.

V. APPLICATION OF C-MC AND EXTENSIONS

A. Application to distributed inference

Distributed algorithms have become a very active topic dur-
ing the past years favored by fast technological developments
(e.g., see [7]). In this section, we consider L independent
computational nodes where the Monte Carlo computation is
performed in parallel. In the literature, specific techniques
have been designed for providing a distributed or diffused
inference depending on whether a central node is available
or not, respectively [37], [14], [17]. Here, we focus on a cen-
tralized distributed framework, i.e., we consider a central node
where the transmitted local information is properly combined,

as represented in Figure 2. We distinguish three different
scenarios. In the first one, from now on referred to as the
parallel framework, the same dataset y ∈ RdY and the same
model is shared by all the local nodes [3], [43], [36]. Thus,
all the L nodes address the same inference problem, i.e., they
deal with the same posterior density. In the second scenario,
referred to as model selection case, all the nodes have access to
the entire dataset y, but each local node considers a different
possible model (different likelihood and/or prior functions),
hence they deal with different posteriors [35]. The third case
is the distributed scenario, where the observed data are divided
over the L local nodes, y = [y1, ...yL]>. Hence, each node
addresses a different sub-posterior density which considers
only a subset of the data, y` ∈ Rd` (note that

∑L
`=1 d` = dY)

[38], [47]. In these frameworks, a particle compression is often
required for reducing the computational and the transmission
cost. Below, we develop the three frameworks.
Parallel framework. We assume the use of N` particles
{x(`)

n }N`
n=1 in each local node. First of all, we consider the

transmission of all the particles of the central node, without
any compression. In this case, the complete Monte Carlo
approximation with N =

∑L
`=1N` particles can be expressed

as

π̂
(N)
tot (x) =

L∑
`=1

W`∑N`

j=1Wj

N∑̀
n=1

β̄(`)
n δ(x− x(`)

n) (48)

=

L∑
`=1

ρ̄` π̂
(N`)
` (x), (49)

where ρ̄` = W`∑N`
j=1Wj

, and β̄(`)
n = 1

N`
, W` = N` in the case of

unweighted samples, or β̄(`)
n = 1

N`Ẑ(`)

π(x(`)
n)

q(x
(`)
n)

, W` = N`Ẑ
(`)

in the case of weighted samples. Therefore, the complete
Monte Carlo approximation π̂(N)

tot (x) is a convex combination
of the L local particle approximations π̂(N`)

` (x). If we apply a
compression scheme transmitting M` < N` samples, π̃(M`)

` (x)
as in Eq. (16) or (45), then the joint particle approximation in
the central node is

π̃
(M)
tot (x) =

L∑
`=1

ρ̄` π̃
(M`)
` (x). (50)

with M =
∑L
`=1M`. We aim to have a small loss of

information between the particle approximations, π̃(M)
tot and

π̂
(N)
tot . In [3], [43], [48], [31], the bootstrap strategy described

in Section II-D is applied for the compression. In the numerical
experiments, we compare the performance of this strategy with
the C-MC approach.
Model Selection. The model selection application is an exten-
sion of the parallel framework. Indeed, all the nodes process
the entire set of data y, but each local node considers a
different possible model M`, hence they address different
posterior distributions π̄(x|y,M`). In order to tackle this
problem, based on the Bayesian Model Averaging (BMA)
approach, we need an estimation of the marginal likelihood
of each model Ẑ(`) (e.g., see [35]). For this reason, it is
preferable to apply an IS scheme where an estimator of the

9

marginal likelihood is easily provided. In this scenario, we
have again π̂

(N)
tot (x) =

∑L
`=1

N`Ẑ
(`)∑L

k=1NkẐ(k)
π̂

(N`)
` (x) without

compression, and π̃
(M)
tot (x) =

∑L
`=1

N`Ẑ
(`)∑L

k=1NkẐ(k)
π̃

(M`)
` (x),

with compression. In this scenario, ρ̄` = N`Ẑ
(`)∑L

k=1NkẐ(k)
, for

` = 1, ..., L, represents an approximation of the posterior
probability mass function (pmf) of the model given the data,
i.e., p(M`|y).
Distributed framework. For simplicity, let us consider N` = N

L
and M` = M

L , for all ` = 1, ..., L. In this case, all the nodes
consider the same model as in the parallel scenario, but each
local node can process only a portion of the observed data,
y` ∈ Rd` , with

∑L
`=1 d` = dY . Considering a disjoint subsets

of data and a split contribution of the prior as in [38], the
complete posterior can be factorized as

π̄tot(x) ∝
L∏
`=1

π̄`(x). (51)

In different works [38], [47], local approximations of the sub-
posteriors are provided and transmitted to the central node,
obtaining

π̂
(N)
tot (x) ∝

L∏
`=1

π̂
(N`)
` (x). (52)

The simplest approach considers Gaussian local approxima-
tions [38], [47]. A more sophisticated approach proposed in
[38, Section 3.2] considers a mixture of Gaussian pdfs as KDE
local approximation using all the N` = N

L samples in each
node, i.e.,

π̂
(N`)
` (x) =

N∑̀
n=1

β̄(`)
n N (x|x(`)

n , δI), (53)

with δ > 0 and I is a dX × dX identity matrix. It is
easy to see that π̂(N)

tot (x) in Eq. (52) can be expressed as a
mixture of NL

` Gaussian components [38], [20]. It is possible
to draw from this mixture of densities, but clearly the cost
depends of the number of NL

` components [20]. Therefore,
here the advantage of using a compressed local mixture,
π̃(M`)(x) =

∑M`

m=1 âmN (x|sm,Σm) with M` < N`, is even
more apparent than in the parallel scenarios described above.
Indeed, using C-MC, we obtain π̂

(M)
tot (x) ∝

∏L
`=1 π̃

(M`)
` (x),

that can be expressed as a mixture of ML
` Gaussian pdfs [38],

[20].

B. Application to particle filtering

In this section, we show how C-MC can be employed for a
performance improvement or a decrease of the computational
cost within particle filtering (PF) algorithms. Let us consider
the following state-space model{

xt ∼ p(xt|xt−1)
yt ∼ p(yt|xt)

, t = 1, . . . , T, (54)

described by the propagation kernel, p(xt|xt−1), and the
likelihood function p(yt|xt). Below, we provide two novel
schemes based on C-MC.
Improved Gaussian particle filter (I-GPF). The Gaussian

.

Central Node

Local Node

1
<latexit sha1_base64="xK8QlNJxaZFaGDMZZqQIIEn+MgA=">AAACEnicbVDLSsNAFJ34rPEVdelmsFh0UxIR1F3BjQuRCvYBTSiTyaQdOsmkMxOxhHyDG3/FjQtF3Lpy5984bbPQ1gMXDufcy733+AmjUtn2t7GwuLS8slpaM9c3Nre2rZ3dpuSpwKSBOeOi7SNJGI1JQ1HFSDsRBEU+Iy1/cDn2W/dESMrjOzVKiBehXkxDipHSUtc6rriRzx+ya44Rgzc8IDl0XbMC3eEwRQGcujCHTtcq21V7AjhPnIKUQYF61/pyA47TiMQKMyRlx7ET5WVIKIoZyU03lSRBeIB6pKNpjCIivWzyUg4PtRLAkAtdsYIT9fdEhiIpR5GvOyOk+nLWG4v/eZ1UhedeRuMkVSTG00VhyqDicJwPDKggWLGRJggLqm+FuI8EwkqnaOoQnNmX50nzpOrYVef2tFy7KOIogX1wAI6AA85ADVyBOmgADB7BM3gFb8aT8WK8Gx/T1gWjmNkDf2B8/gDEcZw4</latexit><latexit sha1_base64="xK8QlNJxaZFaGDMZZqQIIEn+MgA=">AAACEnicbVDLSsNAFJ34rPEVdelmsFh0UxIR1F3BjQuRCvYBTSiTyaQdOsmkMxOxhHyDG3/FjQtF3Lpy5984bbPQ1gMXDufcy733+AmjUtn2t7GwuLS8slpaM9c3Nre2rZ3dpuSpwKSBOeOi7SNJGI1JQ1HFSDsRBEU+Iy1/cDn2W/dESMrjOzVKiBehXkxDipHSUtc6rriRzx+ya44Rgzc8IDl0XbMC3eEwRQGcujCHTtcq21V7AjhPnIKUQYF61/pyA47TiMQKMyRlx7ET5WVIKIoZyU03lSRBeIB6pKNpjCIivWzyUg4PtRLAkAtdsYIT9fdEhiIpR5GvOyOk+nLWG4v/eZ1UhedeRuMkVSTG00VhyqDicJwPDKggWLGRJggLqm+FuI8EwkqnaOoQnNmX50nzpOrYVef2tFy7KOIogX1wAI6AA85ADVyBOmgADB7BM3gFb8aT8WK8Gx/T1gWjmNkDf2B8/gDEcZw4</latexit><latexit sha1_base64="xK8QlNJxaZFaGDMZZqQIIEn+MgA=">AAACEnicbVDLSsNAFJ34rPEVdelmsFh0UxIR1F3BjQuRCvYBTSiTyaQdOsmkMxOxhHyDG3/FjQtF3Lpy5984bbPQ1gMXDufcy733+AmjUtn2t7GwuLS8slpaM9c3Nre2rZ3dpuSpwKSBOeOi7SNJGI1JQ1HFSDsRBEU+Iy1/cDn2W/dESMrjOzVKiBehXkxDipHSUtc6rriRzx+ya44Rgzc8IDl0XbMC3eEwRQGcujCHTtcq21V7AjhPnIKUQYF61/pyA47TiMQKMyRlx7ET5WVIKIoZyU03lSRBeIB6pKNpjCIivWzyUg4PtRLAkAtdsYIT9fdEhiIpR5GvOyOk+nLWG4v/eZ1UhedeRuMkVSTG00VhyqDicJwPDKggWLGRJggLqm+FuI8EwkqnaOoQnNmX50nzpOrYVef2tFy7KOIogX1wAI6AA85ADVyBOmgADB7BM3gFb8aT8WK8Gx/T1gWjmNkDf2B8/gDEcZw4</latexit><latexit sha1_base64="xK8QlNJxaZFaGDMZZqQIIEn+MgA=">AAACEnicbVDLSsNAFJ34rPEVdelmsFh0UxIR1F3BjQuRCvYBTSiTyaQdOsmkMxOxhHyDG3/FjQtF3Lpy5984bbPQ1gMXDufcy733+AmjUtn2t7GwuLS8slpaM9c3Nre2rZ3dpuSpwKSBOeOi7SNJGI1JQ1HFSDsRBEU+Iy1/cDn2W/dESMrjOzVKiBehXkxDipHSUtc6rriRzx+ya44Rgzc8IDl0XbMC3eEwRQGcujCHTtcq21V7AjhPnIKUQYF61/pyA47TiMQKMyRlx7ET5WVIKIoZyU03lSRBeIB6pKNpjCIivWzyUg4PtRLAkAtdsYIT9fdEhiIpR5GvOyOk+nLWG4v/eZ1UhedeRuMkVSTG00VhyqDicJwPDKggWLGRJggLqm+FuI8EwkqnaOoQnNmX50nzpOrYVef2tFy7KOIogX1wAI6AA85ADVyBOmgADB7BM3gFb8aT8WK8Gx/T1gWjmNkDf2B8/gDEcZw4</latexit>

Local Node

`
<latexit sha1_base64="6HC6U/SY7gZscbJXe5qZqJGe2z4=">AAACFXicbVDLSsNAFJ34rPVVdelmsFhcSElEUHcFNy5EKtgHNKFMJjft0EkmnZmIJfQn3Pgrblwo4lZw5984fSy09cCFwzn3cu89fsKZ0rb9bS0sLi2vrObW8usbm1vbhZ3duhKppFCjggvZ9IkCzmKoaaY5NBMJJPI5NPze5chv3INUTMR3epCAF5FOzEJGiTZSu3BcciNfPGTXghKOb0QAQ+y6+RJ2+/2UBHjiYiMC5+1C0S7bY+B54kxJEU1RbRe+3EDQNIJYU06Uajl2or2MSM0oh2HeTRUkhPZIB1qGxiQC5WXjr4b40CgBDoU0FWs8Vn9PZCRSahD5pjMiuqtmvZH4n9dKdXjuZSxOUg0xnSwKU461wKOIcMAkUM0HhhAqmbkV0y6RhGoTZN6E4My+PE/qJ2XHLju3p8XKxTSOHNpHB+gIOegMVdAVqqIaougRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx+B6J2+</latexit><latexit sha1_base64="6HC6U/SY7gZscbJXe5qZqJGe2z4=">AAACFXicbVDLSsNAFJ34rPVVdelmsFhcSElEUHcFNy5EKtgHNKFMJjft0EkmnZmIJfQn3Pgrblwo4lZw5984fSy09cCFwzn3cu89fsKZ0rb9bS0sLi2vrObW8usbm1vbhZ3duhKppFCjggvZ9IkCzmKoaaY5NBMJJPI5NPze5chv3INUTMR3epCAF5FOzEJGiTZSu3BcciNfPGTXghKOb0QAQ+y6+RJ2+/2UBHjiYiMC5+1C0S7bY+B54kxJEU1RbRe+3EDQNIJYU06Uajl2or2MSM0oh2HeTRUkhPZIB1qGxiQC5WXjr4b40CgBDoU0FWs8Vn9PZCRSahD5pjMiuqtmvZH4n9dKdXjuZSxOUg0xnSwKU461wKOIcMAkUM0HhhAqmbkV0y6RhGoTZN6E4My+PE/qJ2XHLju3p8XKxTSOHNpHB+gIOegMVdAVqqIaougRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx+B6J2+</latexit><latexit sha1_base64="6HC6U/SY7gZscbJXe5qZqJGe2z4=">AAACFXicbVDLSsNAFJ34rPVVdelmsFhcSElEUHcFNy5EKtgHNKFMJjft0EkmnZmIJfQn3Pgrblwo4lZw5984fSy09cCFwzn3cu89fsKZ0rb9bS0sLi2vrObW8usbm1vbhZ3duhKppFCjggvZ9IkCzmKoaaY5NBMJJPI5NPze5chv3INUTMR3epCAF5FOzEJGiTZSu3BcciNfPGTXghKOb0QAQ+y6+RJ2+/2UBHjiYiMC5+1C0S7bY+B54kxJEU1RbRe+3EDQNIJYU06Uajl2or2MSM0oh2HeTRUkhPZIB1qGxiQC5WXjr4b40CgBDoU0FWs8Vn9PZCRSahD5pjMiuqtmvZH4n9dKdXjuZSxOUg0xnSwKU461wKOIcMAkUM0HhhAqmbkV0y6RhGoTZN6E4My+PE/qJ2XHLju3p8XKxTSOHNpHB+gIOegMVdAVqqIaougRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx+B6J2+</latexit><latexit sha1_base64="6HC6U/SY7gZscbJXe5qZqJGe2z4=">AAACFXicbVDLSsNAFJ34rPVVdelmsFhcSElEUHcFNy5EKtgHNKFMJjft0EkmnZmIJfQn3Pgrblwo4lZw5984fSy09cCFwzn3cu89fsKZ0rb9bS0sLi2vrObW8usbm1vbhZ3duhKppFCjggvZ9IkCzmKoaaY5NBMJJPI5NPze5chv3INUTMR3epCAF5FOzEJGiTZSu3BcciNfPGTXghKOb0QAQ+y6+RJ2+/2UBHjiYiMC5+1C0S7bY+B54kxJEU1RbRe+3EDQNIJYU06Uajl2or2MSM0oh2HeTRUkhPZIB1qGxiQC5WXjr4b40CgBDoU0FWs8Vn9PZCRSahD5pjMiuqtmvZH4n9dKdXjuZSxOUg0xnSwKU461wKOIcMAkUM0HhhAqmbkV0y6RhGoTZN6E4My+PE/qJ2XHLju3p8XKxTSOHNpHB+gIOegMVdAVqqIaougRPaNX9GY9WS/Wu/UxaV2wpjN76A+szx+B6J2+</latexit>

Local Node

L
<latexit sha1_base64="sLC27mZbfPnyhql2OVW0NG0vAn8=">AAACEnicbVDLSsNAFJ3UV42vqEs3g8Wim5KIoO4KblwUqWAf0IQymUzaoZNMOjMRS8g3uPFX3LhQxK0rd/6N08dCWw9cOJxzL/fe4yeMSmXb30ZhaXllda24bm5sbm3vWLt7TclTgUkDc8ZF20eSMBqThqKKkXYiCIp8Rlr+4Grst+6JkJTHd2qUEC9CvZiGFCOlpa51UnYjnz9kNY4Rgzc8IDl0XbMM3eEwRQGcujCHta5Vsiv2BHCRODNSAjPUu9aXG3CcRiRWmCEpO46dKC9DQlHMSG66qSQJwgPUIx1NYxQR6WWTl3J4pJUAhlzoihWcqL8nMhRJOYp83Rkh1Zfz3lj8z+ukKrzwMhonqSIxni4KUwYVh+N8YEAFwYqNNEFYUH0rxH0kEFY6RVOH4My/vEiapxXHrji3Z6Xq5SyOIjgAh+AYOOAcVME1qIMGwOARPINX8GY8GS/Gu/ExbS0Ys5l98AfG5w/tXZxT</latexit><latexit sha1_base64="sLC27mZbfPnyhql2OVW0NG0vAn8=">AAACEnicbVDLSsNAFJ3UV42vqEs3g8Wim5KIoO4KblwUqWAf0IQymUzaoZNMOjMRS8g3uPFX3LhQxK0rd/6N08dCWw9cOJxzL/fe4yeMSmXb30ZhaXllda24bm5sbm3vWLt7TclTgUkDc8ZF20eSMBqThqKKkXYiCIp8Rlr+4Grst+6JkJTHd2qUEC9CvZiGFCOlpa51UnYjnz9kNY4Rgzc8IDl0XbMM3eEwRQGcujCHta5Vsiv2BHCRODNSAjPUu9aXG3CcRiRWmCEpO46dKC9DQlHMSG66qSQJwgPUIx1NYxQR6WWTl3J4pJUAhlzoihWcqL8nMhRJOYp83Rkh1Zfz3lj8z+ukKrzwMhonqSIxni4KUwYVh+N8YEAFwYqNNEFYUH0rxH0kEFY6RVOH4My/vEiapxXHrji3Z6Xq5SyOIjgAh+AYOOAcVME1qIMGwOARPINX8GY8GS/Gu/ExbS0Ys5l98AfG5w/tXZxT</latexit><latexit sha1_base64="sLC27mZbfPnyhql2OVW0NG0vAn8=">AAACEnicbVDLSsNAFJ3UV42vqEs3g8Wim5KIoO4KblwUqWAf0IQymUzaoZNMOjMRS8g3uPFX3LhQxK0rd/6N08dCWw9cOJxzL/fe4yeMSmXb30ZhaXllda24bm5sbm3vWLt7TclTgUkDc8ZF20eSMBqThqKKkXYiCIp8Rlr+4Grst+6JkJTHd2qUEC9CvZiGFCOlpa51UnYjnz9kNY4Rgzc8IDl0XbMM3eEwRQGcujCHta5Vsiv2BHCRODNSAjPUu9aXG3CcRiRWmCEpO46dKC9DQlHMSG66qSQJwgPUIx1NYxQR6WWTl3J4pJUAhlzoihWcqL8nMhRJOYp83Rkh1Zfz3lj8z+ukKrzwMhonqSIxni4KUwYVh+N8YEAFwYqNNEFYUH0rxH0kEFY6RVOH4My/vEiapxXHrji3Z6Xq5SyOIjgAh+AYOOAcVME1qIMGwOARPINX8GY8GS/Gu/ExbS0Ys5l98AfG5w/tXZxT</latexit><latexit sha1_base64="sLC27mZbfPnyhql2OVW0NG0vAn8=">AAACEnicbVDLSsNAFJ3UV42vqEs3g8Wim5KIoO4KblwUqWAf0IQymUzaoZNMOjMRS8g3uPFX3LhQxK0rd/6N08dCWw9cOJxzL/fe4yeMSmXb30ZhaXllda24bm5sbm3vWLt7TclTgUkDc8ZF20eSMBqThqKKkXYiCIp8Rlr+4Grst+6JkJTHd2qUEC9CvZiGFCOlpa51UnYjnz9kNY4Rgzc8IDl0XbMM3eEwRQGcujCHta5Vsiv2BHCRODNSAjPUu9aXG3CcRiRWmCEpO46dKC9DQlHMSG66qSQJwgPUIx1NYxQR6WWTl3J4pJUAhlzoihWcqL8nMhRJOYp83Rkh1Zfz3lj8z+ukKrzwMhonqSIxni4KUwYVh+N8YEAFwYqNNEFYUH0rxH0kEFY6RVOH4My/vEiapxXHrji3Z6Xq5SyOIjgAh+AYOOAcVME1qIMGwOARPINX8GY8GS/Gu/ExbS0Ys5l98AfG5w/tXZxT</latexit>

Figure 2. Graphical representation of a distributed Bayesian inference
framework with L local computational nodes, and a central node. Each local
node addresses a posterior density, which is generally different in each node. If
we consider just a parallel framework each node addresses the same posterior.

particle filter (GPF) is a well-known benchmark PF algorithm
proposed in [22]. The GPF outperforms of conventional Gaus-
sian filters (like the Extended Kalman filter and its variants) in
many scenarios and presents lower complexity than standard
particle filters. The resampling steps In the GPF are replaced
by a sampling step from an adapted Gaussian density. Table
III describes the novel scheme based on C-MC, where the
pdf in Eq. (45) plays the role of the Gaussian density in
the standard GPF. Note that, with M = 1, we recover the
standard GPF whereas, with M = N , the I-GPF is equivalent
to the well-known regularized particle filter [12]. Moreover,
resampling from π̂(N) is more costly than resampling from
π̃(M) if M < N . Related ideas can be found in the literature
[23], [26]. The performance of GPF and I-GPF are compared
in Section VI-E.

Table III
IMPROVED GAUSSIAN PARTICLE FILTER (I-GPF)

Initialization: Choose N , M and x̄
(i)
0 , with i = 1, ..., N .

For t = 1, ..., T :

1) Draw x
(i)
t ∼ p(xt|x̄

(i)
t−1), with i = 1, ..., N .

2) Compute the M weights

wn = p(yt|x(i)
t), i = 1, ..., N. (55)

3) Apply a C-MC scheme for obtaining π̃(M)(x) in Eq.
(45).

4) Draw x̄
(n)
t ∼ π̃(M)(x) with n = 1, ..., N .

Compressed particle filter (C-PF). If the compression is ap-
plied before the evaluation of the likelihood function p(yt|xt),
we have an additional reduction of the computational cost.
Indeed, in this case, we need to evaluate the likelihood, only
M < N times at the summary particles sm. This is particularly
convenient if the evaluation of the likelihood is costly (due to
the number of data, or a complex measurement model). The
C-PF is given in Table IV. As in I-GPF, the resampling step is
performed over M weighted samples instead of N . Thus, C-PF
is cheaper and faster than a standard particle filter. Note that
the C-MC weights âm are included in particle weights in Eq.

10

(56). The weighted points {sm, âm}Mm=1 play a similar role
than the sigma points in the Unscented Kalman filter (UKF)
[21], [45].
Other possible applications of C-MC are within the so-called
parallel partitioned particle filters and multiple particle filters,
as an alternative to the use of first moment estimators (or sigma
points) for approximating marginal posterior distributions [11].
Similar ideas has been also applied within particle smoothing
techniques [13].

Table IV
COMPRESSED PARTICLE FILTER (C-PF)

Initialization: Choose N , M and x̄
(i)
0 , with i = 1, ..., N .

For t = 1, ..., T :

1) Draw x
(i)
t ∼ p(xt|x̄

(i)
t−1), with i = 1, ..., N .

2) Apply a C-MC scheme obtaining {sm, âm}Mm=1.
3) Compute the M weights

wm = âmp(yt|sm), m = 1, ...,M. (56)

and normalized them w̄m = wm∑M
k=1 wk

.

4) Obtain {x̄(n)
t }Nn=1, by resampling N times within

{sm}Mm=1 according to w̄m, with m = 1, ...,M .

C. Application to adaptive importance sampling

In the so-called layered adaptive importance sampling
(LAIS) algorithm [33] and similar methods [46], an MCMC
algorithm is used for obtaining a set of mean parameters
{µ1, ...,µT }. Then, one sample xt is drawn from a proposal
density with mean µt, i.e., xt ∼ q(xt|µt,C) where C is a
covariance matrix and t = 1,, T . One possible choice of
the weights is

wt =
π(xt)

1
T

∑T
k=1 q(xt|µk,C)

, (57)

where a temporal mixture is used in the denominator [33],
[46]. With this choice, very good performance can be obtained,
but the computational cost of evaluating the weight denomina-
tor increases with T 2 [33]. If T is large, the evaluation of the
weights in Eq. (57) can be costly. Hence, the C-MC scheme
can be applied to the set {µ1, ...,µT } are shown in Table V.
More generally, C-MC can be also applied within adaptive
MC schemes to obtain a good construction of the adaptive
proposal density [6], [5], [4].

D. Extensions: Least Squares CMC (LS-CMC)

If we relax the assumption that the weights âm must be non-
negative, we can obtain better performance in terms of loss in
compression. Indeed, given the summary particles {sm}Mm=1

considering a family of R + 1 functions, i.e., H = {h0(x) =

Table V
COMPRESSED LAIS (CLAIS)

1) Generate a chain µ1, ...,µT using an MCMC tech-
nique (with target π or a tempered version).

2) Draw T samples from xt ∼ q(xt|µt,C), with t =
1, ..., T , and where C is a covariance matrix.

3) Considering the samples {xt}Tt=1, obtain π̃(M)(x) in
Eq. (45) by C-MC, with M < T .

4) To each xt, assign the weight

wt =
π(xt)

π̃(M)(xt)
. (58)

1, h1(x), ..., hR(x)}, we can write the following linear system,

M∑
m=1

âm = 1,

M∑
m=1

âmh1(sm) = Î(N)(h1),

...
M∑
m=1

âmhR(sm) = Î(N)(hR).

(59)

with M unknowns and R + 1 equations. If M ≤ R + 1 the
system is overdetermined, and it has in general no solution.
However, we can still find a Least Squares (LS) solution for
this problem. Indeed, the system in Eq. (59) can be rewritten
as

Hâ ≈ v,

where H is a (R+ 1)×M matrix with entries Hij = hi(sj),
a = [â1, ..., âM]> is the vector of the unknowns, and v =
[1, Î(N)(h1), ..., Î(N)(hR)]>. The well-known LS solution is
then given by

â = (H>H)−1H>v. (60)

Note that the weights in the vector â = [â1, ..., âM]> could
be also negative. For this reason, the range of application of
LS-CMC is reduced but, for instance, LS-CMC can be still
applied to the pure parallel framework, described in Section
V-A.

VI. NUMERICAL EXPERIMENTS

In the section, we test the proposed C-MC techniques in six
different numerical examples and compare their performance
with the corresponding benchmark methods. In the first ex-
periment, we apply the compression techniques to two sets of
Monte Carlo samples. In the second experiment, we consider
a localization problem in a wireless sensor network and the
use of L local parallel processors. We test the performance
of the Compressed LAIS (CLAIS) scheme for performing an
inference in an exoplanetary model, in the third example. The
last three experiments consider the use of particle filtering.
In Section VI-D, we test the proposed C-PF obtaining very
promising results. Finally, in Sections VI-E and VI-F, we
consider two different object tracking problems with different

11

measurements and propagation models. Moreover, in Section
VI-F a centralized distributed inference problem is considered.

A. First numerical analysis

Let start, for simplicity, with a scalar scenario, i.e., x ∈ R.
Furthermore, we consider two possible target densities: the
first one is a Gamma pdf

π̄(x) ∝ xα−1 exp
(
−x
κ

)
, (61)

with α = 4 and κ = 0.5, and the second one is a mixture of
two Gaussians,

π̄(x) =
1

2
N (x| − 2, 1) +

1

2
N (x|4, 0.25). (62)

Experiments. We generate N = 105 Monte Carlo samples
from both and compare the bootstrap strategy (BS) with differ-
ent C-MC schemes. More specifically, we consider two kind of
partition procedures: random (P1) and uniform (P2) described
in Section IV-C. Furthermore, we compare the stochastic
and the deterministic choices of the summary particles sm,
described in Section III. Therefore, for the deterministic C-MC
schemes, we consider the use of sm in Eq. (22). We repeat the
experiment 500 independent runs and average the results. At
each run, we compute the loss L5 with ξ2

r = 1, for r = 1, ..., 5
(i.e., the loss in the first 5 moments) provided by the different
techniques. Figure 3 depicts the averaged L5 as function of
the number M of summary particles. Figure 3-(a) refers to
the Gamma target pdf, whereas Figure 3-(b) corresponds to
the Gaussian mixture pdf. The results of the BS method are
displayed with triangles. The stochastic C-MC schemes are
shown with dashed lines, whereas the deterministic C-MC
schemes with solid lines.
Discussion. In all cases, C-MC outperforms BS and the deter-
ministic C-MC schemes provide the best results. As expected,
the partition P2 (depicted with circles) outperforms P1 (shown
with squares). Note that P1 represents the simplest and perhaps
the worst possible construction of the partition. However, it is
important to remark that the C-MC schemes, even with P1,
outperform the BS method.3

B. Localization in a sensor network with Parallel AIS schemes

In this section, we test the C-MC technique considering the
problem of positioning a target in R2 using a range measure-
ments in a wireless sensor network [19]. Specifically, the target
position is modeled as a random vector X = [X1, X2]>, hence
the actual position of the target is a specific realization X = x.
The data (range measurements) are obtained from 3 sensors
located at h1 = [3,−8]>, h2 = [10, 0]>, h3 = [0, 10]>, as
shown in Figure 4-(d). The likelihood function is induced by
the following observation model,

Yj = 20 log (||x− hj ||) +Bj , j = 1, 2, 3, (63)

where Bj ∼ N (bj ; 0, λ2
j). We consider the true position of the

target as x∗ = [x∗1 = 2.5, x∗2 = 2.5]> and set λj = 6. Then,

3The code of this first example is provided at http://www.lucamartino.
altervista.org/CMC CODE pub EX1.zip.

0 100 200 300 400 500
M

10-6

10-4

10-2

100

102

104

106
BS
C-MC P2
C-MC P1
Det C-MC P2
Det C-MC P1

(a) Gamma target pdf

0 100 200 300 400 500
M

10-5

100

105

BS
C-MC P2
C-MC P1
Det C-MC P2
Det C-MC P1

(b) Mixture target pdf

Figure 3. The loss L5 as function of M . The results obtained by the bootstrap
strategy [3], [43], [31] in Section II-D is depicted with a solid line and
rhombuses. The results of C-MC with a random partition (P1), and with a
grid partition (P2) are shown by squares and circles, respectively. The results
obtained with the deterministic choice of sm in Eq. (22) are shown with solid
lines (squares and circles), whereas the results corresponding to the random
choice of sm are provided with dashed lines (squares and circles).

we generate one measurement yj from each sensor according
to the model in Eq. (63), obtaining the vector y = [y1, y2, y3].
Assuming a uniform prior in the rectangle Rz = [−30, 30]2,
then the posterior density is

π̄(x) ∝

[
3∏
j=1

exp

(
− 1

2λ2
j

(yj − 20 log (||z− hj ||)2
)]

IRz (x), (64)

where IRz
(x) is an indicator function that is 1 if x ∈ Rz ,

otherwise is 0.
Parallel setup. We assume L local computational nodes. At
each one, we run an adaptive importance sampler, specifically
a standard Population Monte Carlo (PMC) scheme [6]. Each
PMC delivers N` weighted samples as an approximation of the
posterior of Eq. (64), after a certain number of iterations [4].
Therefore, we have π̂(N`)

` local approximations of N` particles.
In this setting, we have a clear improvement in term of com-
putational times, since the L different PMC algorithms are run
in parallel. When all the samples are transmitted to the central

12

node, we obtain a complete particle approximation π̂(N)
tot as in

Eq. (48) with N =
∑L
`=1N` (we set N` = N

L). However, in
general due to the transmission cost, a particle compression is
applied. In this case, we have L local approximations π̃(M`)

` ,
and the central node performs the fusion obtaining π̃

(M)
tot as

in Eq. (50) with M =
∑L
`=1M` (we set M` = M

L). We
measure the quality of the approximation π̃(M)

tot computing the
loss (i.e., mean square error) in the estimation of the mean
vector, the covariance matrix, skewness, and kurtosis vectors
(i.e., overall 9 scalar values) with respect to π̂(N)

tot . We compare
the bootstrap strategy (BS) in [3], [43], [48], [31] and C-MC.
For building the partition for C-MC, we perform a k-means
clustering with M` clusters in each local node. The clustering
is applied after resampling N` times within the weighted
particles given by PMC. Thus, the partition is given by the
M` Voronoi regions. Then, we consider again the weighted
samples produced by the PMC and build the summary weights
âm and summary samples sm for each Voronoi region. We
average the results over 200 independent runs.
Experiments. The losses of BS (triangles) and C-MC (circles)
for different values of M` and N` (witht L = 10) are depicted
in Figures 4 (a)-(b)-(c). More specifically, in Figure 4-(a) we
set N` = 1000 and vary M`. In Figure 4-(b), we vary M
keeping fixed the compression rate η = N`

M`
= 100, i.e.,

when M` grows also N` is increased. In Figure 4-(c), we
set M` = 10, and vary N`. Finally, in Figure 4-(d) we set
M` = 10, N` = 1000 and vary L.
Discussion. First of all, we can observe that C-MC always
outperforms BS providing the small loss in any scenario.
The increase of M` has always a positive impact as shown
in Figures 4-(a)-(b). In Figure 4-(c), the compression rate
η = N`

M`
is increasing since M` is fixed and N` grows, so

that we expect that the performance should become worse as
N` grows. However, in a first moment, the increase of N`
helps both schemes, C-MC and BS, since a better partition
can be built with a greater N` in C-MC by clustering, and the
resampling steps used in bootstrap improves its performance
with a greater N` in BS. Moreover, in this scenario, the
increase of N` seems to have a more positive impact on
the BS technique. However, Figure 4-(b) shows that, if the
compression rate η = N`

M`
is maintained fixed, then C-MC

obtains a better improvement. In Figure 4-(d), we can see that
the performance improves when L grows.

C. Inference in a exoplanetary model
In this section, we consider the application of the Com-

pressed LAIS (CLAIS) scheme described in Table V to make
inference in an exoplanetary system. Let us consider the
following simplified observation model of a Keplerian orbit
and the radial velocity of the host star,

yj = V +

NP∑
i=1

Ki

[
cos

(
2π

Pi
tj + ωi

)
+ ei cos (ωi)

]
+ξj , (65)

where yj is the j-th observation, tj is a known time instants,
V is the mean radial velocity, Np is the number of planets
in the system, and Ki is an amplitude, Pi is the period, ωi
is longitude of periastron, ei the eccentricity of the orbit and

ξj ∼ N (0, 1) [2]. We consider that all the parameters V ,
Ki, Pi, ei, ωi are unknown for i = 1, ..., NP and also the
number of planets NP is unknown. Note that the dimension
of the inference space depends on NP : if there is no planet
in the system x = V then dX = 1, with NP = 1 we have
x = [V,K1, P1, e1, ω1]> then dX = 5, with NP = 2 we have
x = [V,K1, P1, e1, ω1,K2, P2, e2, ω2]> hence dX = 9, i.e.,
generally we have dX = 1 + 5NP .

Let consider 50 data stacked in a vector y, generated from
the model in Eq. (65). Our goal is to make inference regarding
the number of NP and the corresponding parameters, with
0 < NP ≤ 3. We consider uniform priors U([a, b]) over the
parameters (a = −20, b = 20 for V , a = 0, b = 365 for Pi,
a = −π, b = π for ωi, a = 0, b = 1 for ei) and a uniform
discrete prior pi = 1/4 over the number of planets, NP . We fix
NP , and apply CLAIS with a random walk Metropolis chain
[44], of length T = 205 and set M = 10 (see Table V). The
partition is built by the approach P2 given in Section IV-C.
With CLAIS we can easily estimate the marginal likelihood
Ẑ(i) with i = 0, ..., 3, using the corresponding IS estimator.
Then, the marginal posterior of NP is approximated by

p(NP = k|y) ≈ Ẑ(k)∑3
i=0 Ẑ

(i)
, (66)

with k = 0, ..., 3. We make two experiments. First, we set
NP = 1 and then NP = 3 planets and generate the corre-
sponding data y. Note that for computing p(NP = k|y) we
need to integrate out the rest of parameters. The probabilities
p(NP = k|y) obtained in the two experiments are given in
Figure 5. Note that the task of providing a good estimation
of Ẑ(i) depends on the ability of the sampling method of
exploring properly the state space. For this reason, the need
of increasing the length T of the MCMC chain raises as the
dimension dX grows. In Figure 5, we can observe that CLAIS
is able to recover the number of planets in each experiments.
The results are averaged over 100 independent runs.

D. Compressed Particle Filtering

This section is devoted to analyzing the performance of
the Compressed Particle Filter (C-PF) described in Table IV.
Given the following the state-space model{

xt = |xt−1|+ vt
yt = log(x2

t) + ut
, t = 1, . . . , T, (67)

where vt ∼ N (0, 1) and ut ∼ N (0, 1), the goal is to
track xt for T = 100 time instants, with a particle filtering
algorithm considering N ∈ {100, 1000} particles. We compare
the bootstrap particle filter (BPF) [12] and C-PF in terms of
the Mean Square Error (MSE) in the estimation of x1:T . We
apply C-PF with different values of M (clearly, with M ≤ N).
We consider the deterministic C-MC scheme with a uniform
construction P2 of the partition.

Figure 6 shows the MSE (averaged over 5000 independent
runs) as function of the compression rate, given by the ratio
M
N . The solid lines represent the MSE obtained by the BPF.
The dashed line with squares corresponds to the C-PF (using
the deterministic compression) with N = 100, whereas the

13

0 50 100 150 200
10-3

10-2

10-1

100

101

(a)

5 10 15 20 25 30 35 40 45 50
10-3

10-2

10-1

100

101

(b)

0 200 400 600 800 1000
10-2

10-1

100

101

(c)

2 4 6 8 10 12 14 16 18 20
10-2

10-1

100

(d)

Figure 4. (a)-(b)-(c)-(d) Results in terms of information loss for the localization problem in wireless sensor network: C-MC is shown with circles and the
bootstrap strategy with triangles.

0

0.2

0.4

0.6

0.8

1
p(NP|y)

0 1 2 3
NP

0

0.2

0.4

0.6

0.8

1
p(NP|y)

0 1 2 3
NP

Figure 5. Approximation of the marginal posterior probability mass of
number of planets NP obtained by using CLAIS with T = 205 and M = 10
(NP = 1 on the left and Np = 3 on the right).

dashed line with circles corresponds to the C-PF with N =
1000. Note that C-PF virtually obtains the same performance
of the BPF with approximately 85% fewer evaluations of the
likelihood function. We recall that the N resampling steps
are performing over M particles instead of N . Furthermore,
fixing the compression rate of M

N , It is interesting to note that
the performance of C-PF improves when N grows. Finally,
we have applied an unscented Kalman filter (UKF) [21], [45],
and computed its MSE in estimating x1:T . C-PF obtains the
same or better MSE for M ≥ 20 when N = 1000.

E. Tracking with Improved Gaussian particle filtering (I-GPF)

In this section, we compare the performance of the bench-
mark Gaussian particle filter (GPF) with an Improved GPF
(I-GPF) method which employs C-MC, described in Table
III. For this comparison, we consider a bearings-only tracking
(BOT) model. The BOT model arises in different engineer-
ing applications. More specifically, we considers tracking
position and velocity of an object moving in a 2D space,
xt = [pt,1, pt,2, vt,1, vt,2]> where pt = [pt,1, pt,2]> and
vt = [vt,1, vt,2]> are the position and velocity vectors,
respectively. The measurements taken by the sensor are the
bearings or angles regarding the sensor position, contaminated
by noise. The range of the object, that is, the distance from
the sensor, is not observed. The transition model is

xt+1 = Φxt + Γηt+1, t = 1, ..., T,

0 0.2 0.4 0.6 0.8 1
M/N

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
3.8

4
4.2

C-PF (N=100)
C-PF (N=1000)

Figure 6. MSE as function of the compression rate M
N

. The dashed line
with squares corresponds to the C-PF with N = 100, whereas with circles
corresponds to the C-PF with N = 1000. The solid lines corresponds to
the bootstrap particle filter with N = 100, 1000. C-PF virtually obtains the
same performance of the bootstrap particle filter with approximately 85% less
evaluations of the likelihood function.

where

Φ =

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , Γ =

0.5 0
0 0.5
1 0
0 1

 ,

and ηt+1 = [η1,t+1, η2,t+1]> ∼ N (0, σ2
ηI). The measure-

ments consist of the true bearing of the target contaminated
by noise, i.e., the measurement equation is

yt = arctan

[
pt,1
pt,2

]
+ ζt

where ζi,t ∼ N (0, σ2
ζ). Note that, with this kind of observation

model, we obtain no information about the range of the object
from the measurement. At the t-th iteration, the GPF algorithm
replaces the resampling steps in a standard particle filter by
constructing a Gaussian density, given the weighted samples,
and sampling from it. In the I-GPF scheme, the pdf in Eq.
(45) (δ = 0.1) based on the deterministic C-MC, plays the
role of the Gaussian density in the standard GPF (see Table
III). We consider a uniform partition P2 (see Section IV-C). We
generate trajectories of length T = 15 and measurements from

14

the model with parameters x0 = [−0.05, 0.001, 0.7,−0.055],
ση = 0.001, ση = 0.005, and number of particles N = 1000.
We compute the MSE (averaged in the four components) in
estimation of x1:T (averaged over 105 runs) using GPF and
I-GPF with M ∈ {5, 10, 20}. The results in Table VI, shown
that I-GPF outperforms GPF.

Table VI
MSE IN ESTIMATION OF x1:T (EX. IN SECTION VI-E).

Method M = 5 M = 10 M = 20 M = 30

GPF 0.0186
I-GPF 0.0157 0.0145 0.0121 0.0098

F. Application to distributed particle filtering (DPF)

In this section, we consider the nearly coordinated turn
model, with state xt = [pt,1, pt,2, vt,1, vt,2, γt]

>, i.e., dX = 5,
which contains the position and velocity coordinates (pt =
[pt,1, pt,2]> and vt = [vt,1, vt,2]>), as well as the turn rate γt.
Thus, the transition model is

xt+1 =

1 0 sin(γt)

γt

cos(γt)−1
γt

0

0 1 cos(γt)−1
γt

sin(γt)
γt

0

0 0 cos(γt) − sin(γt) 0
0 0 sin(γt) cos(γt) 0
0 0 0 0 1

xt + ηt+1,

where t = 1, ..., T , ηt+1 ∼ N (0,D) with D =
diag([0.05, 0.05, 0.04, 0.04, 0]), and constant turn rate wt =
0.139. The measurement equations is

yi = hi(xt) + ζi,t (68)

where hi(xt) represents the specific sensor and ζi,t ∼
N (0, σ2

i). We consider K sensors distributed uniformly in the
square region R = [−3, 3]× [−3, 3], with the position denoted
as ri = [ri,1, ri,2]>, i = 1, ...,K. We consider 4 different types
of sensors: K/4 of them are bearing-only sensors,

hi(xt) = arctan

[
pt,1 − ri,1
pt,2 − ri,2

]
, (69)

with σi = 0.175 and K/4 of them are the signal-strength
sensors,

hi(xt) =
1

||pt − ri||2 + a
, (70)

with a = 10−4, σi = 2, K/4 of them are the range-
measurement sensors,

hi(xt) = ||pt − ri||, (71)

with σi = 0.14 and K/4 of them are the radial-velocity
sensors described by

hi(xt) =
(pt − ri) · vt
||pt − ri||

, (72)

where σi = 0.004 and · denotes the scalar product. Each
sensor provides one measurement, yi, per iteration. We con-
sider L ∈ {4, 8} local processors distributed uniformly in the

area R (in a grid form). Each sensor transmit to the closest
local processor. Hence, each local processor addresses a partial
posterior π̄(t)

` , using Eqs. (45)-(46) (δ = 0.1), with different
number of observations. In the central node, we perform the
information fusion obtaining π̂(t)

tot or, with compression π̃(t)
tot.

The deterministic C-MC is performed creating a partition
of M sets creating a uniform grid strategy P2 suggested in
Section IV-C. We compare the deterministic C-MC with the
ideas proposed in [40] adapted for the central node scenario
that coincides with the first method proposed in [38] but
employed within a particle filtering context. We set T = 10,
K = {8, 16, 40} and M = 4 and compute the MSE in
estimation of x1:T , averaged over 104 independent runs. The
results are shown in Table VII. The proposed technique obtains
the smallest MSE since, in general, provides a more robust
estimation of x1:T .

Table VII
MSE IN ESTIMATION OF x1:T (EX. IN SECTION VI-F).

Method K = 8 K = 16

L = 4
[40], [38] 0.332 0.186
CMC-DPF 0.161 0.095

Method L = 4 L = 8

K = 16
[40], [38] 0.186 0.301
CMC-DPF 0.095 0.143

VII. CONCLUSIONS AND FUTURE WORKS

In this work, we have introduced a novel efficient scheme to
summarize the information provided by Monte Carlo sampling
algorithms. This problem is related to the moment matching
approach used in different filtering methods but applicable
only for certain target densities. The proposed technique
can be applied in different scenarios, for instance, in the
distributed inference framework, within advanced particle fil-
tering schemes, or within adaptive Monte Carlo methods. We
have introduced three novel Monte Carlo schemes based on C-
MC. Among them, the C-PF is particularly promising, since
reducing considerably the number of the likelihood evalua-
tions, C-PF is still able to provide a similar performance of
a standard particle filter, with remarkably more evaluations of
the likelihood. In the proposed CLAIS method, we have shown
that C-MC can be employed for reducing the computational
cost of AIS schemes.
The C-MC-based algorithms have been tested in six different
numerical experiments, considering several inference prob-
lems. The results have shown that C-MC techniques outper-
form the corresponding benchmark methods. The deterministic
C-MC scheme appears particularly efficient. As future research
line, we plan to study the connection between C-MC and
sigma-points approaches (see, e.g., in C-PF). We also plan
to analyze the information loss using the Kullback-Leibler
(KL) divergence between the C-MC approximation and the
true distribution. The LS-CMC scheme (and its regularized
versions) also deserves further studies also from a theoretical
point of view, trying to overcome the difficulty due to the
possibility of obtaining negative weights. The joint use of LS-
CMC and C-PF will be also investigated.

15

REFERENCES

[1] I. Arasaratnam and S. Haykin. Cubature Kalman filters. IEEE
Transactions on Automatic Control, 54(6):1254–1269, 2009.

[2] S. T. Balan and O. Lahav. Exofit: orbital parameters of extrasolar
planets from radial velocities. M. N. of the Royal Astronomical Society,
394(4):1936–1944, 2009.

[3] M. Bolić, P. M. Djurić, and S. Hong. Resampling algorithms and
architectures for distributed particle filters. IEEE Transactions Signal
Processing, 53(7):2442–2450, 2005.

[4] M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Miguez, and P. M.
Djuric. Adaptive importance sampling: The past, the present, and the
future. IEEE Signal Processing Magazine, 34(4):60–79, 2017.

[5] O. Cappé, R. Douc, A. Guillin, J. M. Marin, and C. P. Robert.
Adaptive importance sampling in general mixture classes. Statistics and
Computing, 18:447–459, 2008.

[6] O. Cappé, A. Guillin, J. M. Marin, and C. P. Robert. Population Monte
Carlo. Journal of Computational and Graphical Statistics, 13(4):907–
929, 2004.

[7] M. Cetin, L. Chen, J. W. Fisher III, A. T. Ihler, R. L. Moses, M. J.
Wainwright, and A. S. Willsky. Distributed fusion in sensor networks.
IEEE Signal Processing Magazine, 23(4):56–69, July 2006.

[8] W. Chao, M. Rabbat, and S. Blouin. Particle weight approximation
with clustering for gossip- based distributed particle filters. IEEE
Int. Workshop Comp Comput. Advances Multi-Sensor Adaptive Process.
(CAMSAP), pages 85–88, 2015.

[9] W. Ye Chen, L. Mackey, J. Gorham, F. X. Briol, and C. J. Oates. Stein
Points. arXiv:1803.10161, pages 1–31, 2018.

[10] Y. Chen, M. Welling, and A. Smola. Super-samples from kernel herding.
In Proceedings of the 26th Conference on Uncertainty in Artificial
Intelligence, pages 1–8, 2010.

[11] P. M. Djuric, T. Lu, and M. F. Bugallo. Multiple particle filtering.
In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1181–1184, 2007.

[12] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte
Carlo Methods in Practice. Springer, New York, 2001.

[13] M. Klaas et al. Fast particle smoothing: If I had a million particles.
International conference on Machine learning (ICML), pages 481–488,
2006.

[14] S. Farahmand, S. I. Roumeliotis, and G. B. Giannakis. Set-membership
constrained particle filter: distributed adaptation for sensor networks.
IEEE Transactions on Signal Processing, 59(9):4122–4138, 2011.

[15] P. Fearnhead. Using random Quasi-Monte Carlo within particle filters,
with application to financial time series. Journal of Computational and
Graphical Statistics, 14(4):751–769, 2005.

[16] M. Gerber and N. Chopin. Sequential quasi Monte Carlo. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 77(3):509–
579, 2015.

[17] O. Hlinka, F. Hlawatsch, and P.M. Djuric. Consensus-based distributed
particle filtering with distributed proposal adaptation. IEEE Transactions
on Signal Processing, 62(12):3029–3041, 2014.

[18] F. Huszár and D. Duvenaud. Optimally-weighted herding is Bayesian
quadrature. Proceedings of the Twenty-Eighth Conference on Uncer-
tainty in Artificial Intelligence (UAI-12), pages 377–386, 2012.

[19] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky. Nonparametric
belief propagation for self-localization of sensor networks. IEEE
Transactions on Selected Areas in Communications, 23(4):809–819,
April 2005.

[20] A. T. Ihler, E. B. Sudderth, W. T. Freeman, and A. S. Willsky. Efficient
multiscale sampling from products of Gaussian Mixtures. Advances in
Neural Information Processing Systems (NIPS), pages 1–8, 2004.

[21] S. J. Julier and J. Uhlmann. Unscented filtering and nonlinear estimation.
Proceedings of the IEEE, 92(2):401–422, March 2004.

[22] J. Kotecha and Petar M. Djurić. Gaussian particle filtering. IEEE
Transactions Signal Processing, 51(10):2592–2601, October 2003.

[23] J. Kotecha and Petar M. Djurić. Gaussian sum particle filtering. IEEE
Transactions Signal Processing, 51(10):2602–2612, October 2003.

[24] S. Lacoste-Julien, F. Lindsten, and F. Bach. Sequential kernel herding:
Frank-Wolfe optimization for particle filtering. In Proc. of the 18th
International Conference on Artificial Intelligence and Statistics, page
544552, 2015.

[25] T. Li, M. Bolic, and P. M. Djuric. Resampling methods for particle
filtering: classification, implementation, and strategies. IEEE Signal
Processing Magazine, 32(3):70–86, 2015.

[26] T. Li, T. P. Sattar, and S. Sun. Deterministic resampling: Unbiased
sampling to avoid sample impoverishment in particle filters. Signal
Processing, 92(7):1637–1645, 2012.

[27] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer,
2004.

[28] P. LEcuyer. Efficiency improvement and variance reduction. In
Proceedings of the 1994 Winter Simulation Conference, pages 122–132,
1994.

[29] S. Mak and V. R. Joseph. Projected support points: a new method for
high-dimensional data reduction. arXiv:1708.06897, pages 1–48, 2018.

[30] S. Mak and V. R. Joseph. Support points. (to appear) Annals of
Statistics, arXiv:1609.01811, pages 1–55, 2018.

[31] L. Martino, V. Elvira, and G. Camps-Valls. Group Importance Sampling
for Particle Filtering and MCMC. Digital Signal Processing, 82:133–
151, 2018.

[32] L. Martino, V. Elvira, and F. Louzada. Weighting a resampled particle in
Sequential Monte Carlo. IEEE Statistical Signal Processing Workshop,
(SSP), 122:1–5, 2016.

[33] L. Martino, V. Elvira, D. Luengo, and J. Corander. Layered adaptive
importance sampling. Statistics and Computing, 27(3):599–623, 2017.

[34] L. Martino, V. P. Del Olmo, and J. Read. A multi-point Metropolis
scheme with generic weight functions. Statistics & Probability Letters,
82(7):1445–1453, 2012.

[35] L. Martino, J. Read, V. Elvira, and F. Louzada. Cooperative parallel
particle filters for on-line model selection and applications to urban
mobility. Digital Signal Processing, 60:172–185, 2017.

[36] J. Mı́guez and M. A. Vázquez. A proof of uniform convergence over
time for a distributed particle filter. Signal Processing, 122:152–163,
2016.

[37] A. Mohammadi and A. Asif. Diffusive particle filtering for distributed
multisensor estimation. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 3801–3805, 2016.

[38] W. Neiswanger, C. Wang, and E. Xing. Asymptotically exact, embar-
rassingly parallel MCMC. arXiv:1311.4780, 2013.

[39] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods. Society for Industrial Mathematics, 1992.

[40] B. N. Oreshkin and M. J. Coates. Asynchronous distributed particle
filter via decentralized evaluation of gaussian products. International
Conference on Information Fusion, pages 1–8, 2010.

[41] A. Owen. Monte Carlo theory, methods and examples.
http://statweb.stanford.edu/∼owen/mc/, 2013.

[42] Luc Pronzato. Minimax and maximin space-filling designs: some
properties and methods for construction. Journal de la Societe Franaise
de Statistique, 158(1):7–36, 2017.

[43] J. Read, K. Achutegui, and J. Mı́guez. A distributed particle filter
for nonlinear tracking in wireless sensor networks. Signal Processing,
98:121 – 134, 2014.

[44] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer,
2004.

[45] S. Särkkä. Bayesian Filtering and Smoothing. Cambridge University
Press, 2013.

[46] I. Schuster and I. Klebanov. Markov Chain Importance Sampling - a
highly efficient estimator for MCMC. arXiv:1805.07179, pages 1 – 16,
2018.

[47] Steven L. Scott, Alexander W. Blocker, Fernando V. Bonassi, Hugh A.
Chipman, Edward I. George, and Robert E. McCulloch. Bayes and big
data: The consensus Monte Carlo algorithm. International Journal of
Management Science and Engineering Management, 11(2):78–88, 2016.

[48] C. Verg, C. Dubarry, P. Del Moral, and E. Moulines. On parallel
implementation of sequential Monte Carlo methods: the island particle
model. Statistics and Computing, 25(2):243–260, 2015.

[49] J. R. Wilson. Variance reduction techniques for digital simulation. Amer-
ican Journal of Mathematical and Management Sciences, 4(3):277–312,
1984.

[50] Y. Wu, D. Hu, M. Wu, and X. Hu. A numerical-integration per-
spective on Gaussian filters. IEEE Transactions on Signal Processing,
54(8):2910–2921, 2006.

APPENDIX A
ZERO-LOSS COMPRESSION FOR A SPECIFIC INTEGRAL I(h)

Given a function h(x), Theorem 1 states that, with the
choice sm =

∑
j∈Jm

w̄m,jh(xj) in (23), we have Ĩ(M)(f) ≡

16

Î(N)(h), when f(x) = x. Indeed, we have

Ĩ(M)(f) =

M∑
m=1

âmsm

=

M∑
m=1

âm

 ∑
j∈Jm

w̄m,jh(xj)

and replacing w̄m,j =

w̄j

âm
given in Eq. (21), we obtain

Ĩ(M)(f) =

M∑
m=1

âm

 ∑
j∈Jm

w̄j
âm

h(xj)

 .
=

M∑
m=1

∑
j∈Jm

w̄jh(xj)

=

N∑
j=1

w̄jh(xj) = Î(N)(h), (73)

that is the desired result, given in Theorem 1.
APPENDIX B

DERIVATION OF cm(h)

In this Appendix, the goal is to show that

cm(h) = â2
mvarπ̂m

[h(sm)|S] (74)

=
∑
i∈Jm

w̄i
∑
i∈Jm

w̄i|h(xi)|2 −
∣∣∣ ∑
i∈Jm

w̄ih(xi)
∣∣∣2.

First of all, we have

varπ̂m
[h(sm)|S] =

∑
i∈Jm

w̄m,i|h(xi)|2 −
∣∣∣ ∑
i∈Jm

w̄m,ih(xi)
∣∣∣2,

and considering the expressions w̄m,j =
w̄j

âm
given in Eq. (21)

and âm =
∑
k∈Jm

w̄k given in Eq. (20), we obtain

varπ̂m
[h(sm)|S] =

∑
i∈Jm

w̄i|h(xi)|2∑
k∈Jm

w̄k
−

∣∣∣∑i∈Jm
w̄ih(xi)

∣∣∣2∣∣∣∑k∈Jm
w̄k

∣∣∣2 .

(75)

Moreover, again since âm =
∑
k∈Jm

w̄k and replacing above,
we can write

â2
mvarπ̂m

[h(sm)|S] =

=
∣∣∣ ∑
k∈Jm

w̄k

∣∣∣2∑i∈Jm
w̄i|h(xi)|2∑

k∈Jm
w̄k

−

∣∣∣∑i∈Jm
w̄ih(xi)

∣∣∣2∣∣∣∑k∈Jm
w̄k

∣∣∣2 ,

=
∑
k∈Jm

w̄k
∑
i∈Jm

w̄i|h(xi)|2 −
∣∣∣ ∑
i∈Jm

w̄ih(xi)
∣∣∣2,

that is exactly the expression in Eqs. (43) and (74).

